US3456673A - Large-capacity bellows-type hydraulic reservoir - Google Patents

Large-capacity bellows-type hydraulic reservoir Download PDF

Info

Publication number
US3456673A
US3456673A US679736A US3456673DA US3456673A US 3456673 A US3456673 A US 3456673A US 679736 A US679736 A US 679736A US 3456673D A US3456673D A US 3456673DA US 3456673 A US3456673 A US 3456673A
Authority
US
United States
Prior art keywords
bellows
casing
reservoir
hydraulic
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US679736A
Inventor
Roger Legrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUD AVIAT SOC NATIONALE DE CON
SUD AVIATION SOC NATIONALE DE CONSTRUCTIONS AERONAUTIQUES
Original Assignee
SUD AVIAT SOC NATIONALE DE CON
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUD AVIAT SOC NATIONALE DE CON filed Critical SUD AVIAT SOC NATIONALE DE CON
Application granted granted Critical
Publication of US3456673A publication Critical patent/US3456673A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • F15B1/265Supply reservoir or sump assemblies with pressurised main reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/10Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means
    • F15B1/103Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means the separating means being bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/20Accumulator cushioning means
    • F15B2201/205Accumulator cushioning means using gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/20Accumulator cushioning means
    • F15B2201/21Accumulator cushioning means using springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3153Accumulator separating means having flexible separating means the flexible separating means being bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3158Guides for the flexible separating means, e.g. for a collapsed bladder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/41Liquid ports
    • F15B2201/411Liquid ports having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/415Gas ports
    • F15B2201/4155Gas ports having valve means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3003Fluid separating traps or vents
    • Y10T137/3084Discriminating outlet for gas
    • Y10T137/309Fluid sensing valve
    • Y10T137/3099Float responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/794With means for separating solid material from the fluid
    • Y10T137/8085Hollow strainer, fluid inlet and outlet perpendicular to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8225Position or extent of motion indicator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86381Head-establishing standpipe or expansion chamber [e.g., surge tanks]

Description

,July 22, 1969 l R. LEGRAND 3,456,673
LARGE-CAPACITY BELLOWS-TYPE HYDRAULIC RESERVOIR Filed Nov. 1, 1967 s sheets-sheet 1 July 22, 1969 R. LEGRAND LARGE-CAPACITY BELLOWS-TYPE HYDRAULIC RESERVOIR Filed Nov. l 1967 3 Sheets-Sheet 2 July 22, 1969 R. LEGRAND 3,456,673
LARGE-CAPACITY BELLOWS-TYPE HYDRAULIC RESERVOIR Filed Nov. 1. 1967 3 Sheets-Sheet 5 United States Patent O 3,456,673 LARGE-CAPACITY BELLOWS-TYPE HYDRAULIC RESERVOIR Roger Legrand, Toulouse, France, assignor to Sud- Aviation Socit Nationale de Constructions Aronautques, Paris, France Filed Nov. 1, 1967, Ser. No. 679,736 Claims priority, application France, Nov. 10, 1966,
Inf. ci. insb 1/04 U.S. Cl. 137-202 8 Claims ABSTRACT F THE DISCLOSURE A large size hydraulic reservoir for accumulating a iiuid usable in a hydraulic circuit, particularly though not exclusively on board an aircraft, wherein the reservoir comprises a hydraulic chamber separated from a pneumatic chamber formed by the outer casing of the reservoir by an internal bellows made of an elastic material and having a first end leaktightly attached to a corresponding end of the casing and a second end freely movable within the casing. A degassing device is coupled to the second end of the bellows for movement therewith and this movement is guided by radial roller devices which engage the inner surface of the outer casing and an end closure at the second end of the bellows. A gauge is supported on the casing for indicating the volume of the hydraulic chamber in accordance with the position of the second end of the bellows in the casing. A safety valve is also supported on the casing for depressurizing the hydraulic chamber in response to travel of the second end of the bellows beyond a limit position in the casing wherein an actuator device for the safety valve is contacted. Also supported on the casing is a depressurizing bleeder indicator for depressurizing the pneumatic chamber.
The present invention relates to a hydraulic fluid reservoir for accumulating a iiuid usable in a hydraulic circuit, more particularly though not exclusively aboard an aircraft, the reservoir being characterized by the fact that it is of large size and comprises a hydraulic chamber segregated from a pneumatic chamber consisting of the outer reservoir casing by means of an internal bellows made of an elastic material and having oneV of it sends leaktightly connected to one end of said casing and its other end, which is movable within said casing, associated with guiding means, degassing means, coupling means, control means of a gauge supported by said casing and with control means of a safety valve, said casing further comprising a depressurization bleeder-indicator.
This invention relates to a hydraulic reservoir for accumulating a uid usable in hydraulic circuits, more particularly though not exclusively on aircraft, and this largecapacity reservoir comprises a hydraulic chamber separated from a pneumatic chamber constituting the outer casing of the reservoir by an internal bellows made of elastic material and having one of its ends leaktightly connected to one end of said casing and its other end, which is free in said casing, associated with guiding means, degassing means, coupling means, control means of a gauge carried by said reservoir casing and control means of a safety valve, the reservoir casing itself comprising in addition a depressurizing bleeder-indicator.
The purpose of this arrangement is t0 ensure, by means of the bellows and the degassing means, correct segregation of the hydraulic fluid and the air, protection of the bellows itself against deterioration, freedom for volumetric changes taking place in the bellows, and correct operation of the ancillary devices associated to the bellows and referred to above.
3,456,673 Patented July 22, 1969 lice In one particular form of embodiment, the reservoir is further equipped with a pressurizing check-valve, a directreading pressure gauge, a warning pressure-switch for sensing pressure drops, an air overpressure valve and a filter the casing of which contains the corresponding protection and check valves.
The fitting of such a reservoir into a hydraulic circuit is well known, and indeed its use is by no means restricted to aeronautical environments. The Huid it contains is sucked out by a pump and drains back into it after it has been used in the different hydraulic devices of the hydraulic circuits.
A reservoir of this kind has multiple functions.
In an aircraft hydraulic circuit, for instance,
The reservoir acts a reserve of liquid in the circuit and makes it possible to compensate for the slight seepage which occurs in service, especially in flight;
The reservoir makes it possible to compensate for changes in volume of the circuit iiuid in the course of aircraft operations, for with an aircraft in supersonic flight, for example, the temperature may vary between 20 C. and C. (and exceptionally |150 C.), which causes large changes in uid volume as a result of the different coeliicients of expansion of the fluid and the casing; these changes in temperature may also be due to the aircraft operating conditions, as for instance when flying from a hot climate to a cold climate, or vice versa; further, the conversion into heat of the energy spent in the circuit, for example by the pumps, the hydraulic actuators and the servo-controls, will also result in changes of temperature;
The reservoir compensates for changes in the volume of the circuit liuid during operation of such servo-systems as the retractable landing-gear and its associated doors, and the like, which do not as a rule employ actuators with equal chambers;
By means of its bellows, the reservoir segregates the uid and the air at low pressure, say at 5,8 bars of absolute pressure; this segregation is necessary in order to avoid oxidation of the hydraulic fluid; the continuous degassing by means of the degassing device iixed to the bellows helps to prevent such oxidation while at the same time improving the dynamic response of the servo-controls;
In addition to guiding the bellows by its upper end, the guiding means avoids any error in the indications given by the gauge or incorrect operation of the safety valve or its control elements, and invariably ensures that the top of the bellows presents itself correctly in relation to the various components cooperating with it.
The various structural parts are designed to ensure minimum weight consistent with good durability and fatigue strength.
The description which follows with reference to the accompanying non-limitative exemplary drawing will give a clear understanding` of how the invention can be carried into practice.
In the drawing:
FIGURE 1 shows a reservoir according to the present invention in axial section and with partial cutaway.
FIGURE 2 is a partial section through the line II-II of FIGURE l.
FIGURE 3 is a top view corresponding to FIGURE 1.
FIGURE 4 is an underneath view corresponding to FIGURE l.
FIGURE 5 is a sectional view on an enlarged scale of one of the devices for guiding the bellows against the inside face of the reservoir casing.
FIGURE 6 is a sectional view on an enlarged scale of the disposition of the safety valve.
FIGURE 7 is a similar view of the disposition of the degassing means.
In the specific constructional form illustrated in the drawing, the reservoir consists of a cylindrical casing 1 made of titanium or stainless steel and is lined internally with a metallized material such as the polytetrafiuoroethylene-based material known as Teflon, in order to protect the bellows (to'be described hereinafter) in the course of its movements. Four spot-welded hoops 2 enable the hydraulic reservoir to be secured in the vertical position by means of a cradle and two straps.
To one end of the casing is welded a reinforced rim -to which there is secured, by means of screws 3, a ring 4 which receives in turn a cover 5 secured in position by means of screws 6, sealing joints 7 being accommodated in associated grooves for ensuring leaktightness between the reinforced rim and the ring 4 and between the latter and the cover 5.
The lower end-closure of casing 1 consists of a collar 8 secured by means of screws 9 to a flange 10 welded to casing 1. To the inner face of collar 8, on the inward side thereof, there is fixed, lby means of screws 11, the terminal flange 12 of a bellows 13. To the outside face of collar 8 is fixed a filter housing 14, through the medium of a securing ange formed thereon and a set of screws 15. Sealing gaskets are interposed between these various parts.
The bellows 13, which has a large diameter of the order of 350 mm., is made of a material such as that known under the trade name Inconel X 750, which possesses great mechanical strength (in excess of 100 hectobars after treatment) and segregates the hydraulic fluid contained in the space f17 within the bellows from the pressurization air contained in the chamber 18 within the casing 1 but outside the bellows 13.
The top of bellows 13 bears a flange 26 to which there is fixed, by a set of screws 20, the support 19 for the degasser housing 21 and a set of guiding devices 22 for the bellows. These guiding devices 22 are rollermounted in radial-fashion equidistantly on the perimeter of support 19, as shown in FIGURE 2. The rollers are preferably chromium-plated. As FIGURE clearly shows, each roller 22 is mounted on an axle 23 carried in a clevis 24 formed with a shank which is slidable inside a support 25 formed with a cylindrical portion 25a terminating in a reinforcement 2Sb secured in position by screws 20. These reinforcements 25h are thus rigidly united with the degasser support 19 and the fiange 26. Inside cylindrical portion 25a a spring 27 is inserted between a circlip positioned at the bottom of the cylinder and a collet integral with the shank extension of clevis 24. These several springs help to take up any play and ensure continuous contact between rollers 22 and the inner lining of cylindrical casing 1, thus protecting the bellows not only against shocks on the casing during handling or while in service but also against accidental lop-sided positioning of the top of the bellows, which would cause friction between said lining and the edges of the folds in the bellows, thereby impairing freedom of movement.
Each reinforcement 25b is surmounted by a guide 29 secured by a screw 28, and these guides jointly ensure correct stacking of the turns of a coil 31 which will be described in greater detail hereinafter. The degasser contained in housing 21 is of known design and it comprises a float 21a adapted to operate a needle 2lb whereby to apply the same against an associated seat 21C. Float 21a is designed to withstand high temperatures of the order of 150 C. and an absolute pressure of the order of 6 bars; it is accordingly made of an epoxy-resin/hollow-microball complex; it is rigid with a housing 21d contained in the body of the fioat, which-can -be loaded adjustably with granules 21e so as to fix the weight of the float according to the density of the fiuid being used.
Any gas or gas emulsion in the hydraulic fluid being used which should happen to fill the frusto-conical space formed by the perforated housing of float 21a beneath cover 21 would cause a drop in the level of the liquid and a descent of oat 21a, causing the needle 2lb to open and the said gas or emulsion to escape. The seat 21e is contained in the top of cover 21, which cover comprises an arrangement of ducts and grooves extending up to a union 21f joined to a coil-shaped degassing tube 31 beneath a screwed plug 38a. The spiral form of coil 31 does not hinder freedom of movement of the bellows despite the fact that it extends up to a fixed union 32 which passes through the ring 4 and is `ioined to a gas or gas emulsion discharge tube 33.
The hydraulic reservoir has associated with it a gauge 34 the case of which is fixed to the cover 5. This gauge measures the level reached by the top of the bellows containing the hydraulic fluid and consequently measures the accumulated volume .by noting the height of the bellows, by means of a cable 35 which is attached by a cable clamp or a cable ferrule to an extension of screwed plug 38a fitted to the top of the degasser cover 21, said cable passing through the upper cover 5 via a suitable opening therein and being wound on to the drum of a capstan enclosed leaktightly within the case of gauge 34. The rotation of the capstan is transmitted, through a reduction gear, to the gauge needle 36 which moves behind a transparent window over a graduated dial, and to a synchro-transmitter, for example for remote-display purposes. This transmission mechanism includes a cam (not shown) for operating two microswitches (not shown) the function of which is to identify two determinate levels. The cam and the microswitches are contained in the leaktight housing of the gauge.
Since the degasser ensures complete absence of any air, the displacement of the bellows and the indications given by the gauge therefore correspond exactly to changes in volume of the hydraulic fluid, for the tie 35 invariably extends exactly below the capstan since the top of the bellows is never askew.
Within the filter housing 14 is a cylindrical and hollow filtering element 14a retained elastically between a fixed support and a spring-loaded annular movable support which comprises safety valves 14b designed to protect the filtering element 14a in the event of clogging.
The filter housing includes a cover 14C fitted with a sealing joint, and this cover is retained in position `by a girdle formed by the links of a chain 14d which hug the matching oblique 'bearing surfaces of housing 14 and cover 14e` the chain links being additionally surrounded and tightly gripped by a flat metal strap 14e the ends of which are drawn together by a screw-tensioner.
The cover 14C is provided internally with a tubular extension 14; over which are guided the support for valve 14b and the bottom of the filtering element. Within this extension is a leaktightly slidable unit controlled by an externally accessible knurled thumbscrew locked in position by a pin, and, within the filter housing itself, a tubular pushrod into which is abuttingly socketed the end of the stem of a valve 37 which is located inside the bellows and is urged by a spring on to a seat formed at the center of an inner end closure 37a of housing 14.
The valve 37 obviates the need to drain the bellows when the filtering element requires to be cleaned or replaced.
Mounted at the top of the reservoir, on the ring 4, is a safety valve 42 which becomes operative as soon as the bellows 13 oversteps a critical filling point as it dilates. This valve is activated as soon as a washer 38 which forms part of the assembly surmounting the degasser housing 21 and which is slidably mounted on the extension of the cable attachment 35 and is urged against an upper stop by a spring 38b, actuates the terminal fork of a lever 39 pivotally connected to a support screwed to the interior vof the ring 4, this lever cooperating with a pushrod 40 extending leaktightly through bearings provided with sealing glands fixed to ring 4 and within valve housing 42. The top of pushrod 40 is fitted with a valvehead 41 which is urged by a spring 46 onto a seat which separates the outlet of a conduit 43 leading from the filter housing 14 from a discharge conduit 44 and from holes 45 formed beneath the seat in the guide for rod 40 to ensure the required ow. As soon as bellows `13 reverts to a normal position, contact ceases between Washer 38 and the arms of the terminal fork of lever 39, causing spring 46 to return valve 41 onto its seat and thereby ensure leaktightness in all normal positions of the bellows.
On ring 4 are additionally mounted a direct-reading pressure-gauge 48 equipped with a pressure switch 49 which closes an alarm circuit if there is a drop in the pressurization pressure, and a pressurizing check-valve 47 and an air overpressure valve 50.
At the lower end of' the reservoir is mounted a depressurizing bleeder-indicator S1 having its knurled opening thumbscrew suitably locked and which, when opened, enables the reservoir to be depressurized while at the same time making the traces of a possible internal leak of hydraulic fluid visible.
The housing 14 is provided with the required number of connections, and notably with a connection 52 to a pump intake and with connections 53 to the outlets from hydraulic devices utilizing the hydraulic fluid.
What I claim is:
1. In a large-size hydraulic reservoir for accumulating a fluid usable in a hydraulic circuit, the combination comprising an outer casing defining a pneumatic chamber therein, a bellows in said chamber defining a hydraulic chamber therewithin which is separated from said pneumatic chamber, said bellows being constituted of an elastic material and having a first end leaktightly attached to a corresponding end of said casing and a second end freely movable within said casing, degassing means coupled to said second end of the bellows for movement therewith, guiding means Ibetween said second end of said bellows and said outer casing for guiding the movement of said second end, a gauge on said casing for indicating the volume of the hydraulic chamber, means coupled to said bellows at the second end thereof to operate said gauge in accordance with the position of said second end in said casing, a safety valve on said casing for depressurizing the hydraulic chamber, means coupled to said safety valve for actuating the same in response to travel of the second end of the bellows beyond a limit position in said casing, and a depressurizing bleeder indicator on said casing for depressurizing said pneumatic chamber.
2. In a reservoir as claimed in claim 1, a pressurizing check-valve in communication with said pneumatic chamber, a pressure-gauge in communication with said pneumatic chamber for giving direct readings of the pressure therein, an alarm pressure-switch for sensing a drop in pressurization in said pneumatic chamber, an overpressure valve in communication with said pneumatic chamber and a filter for liquid in said hydraulic chamber including a filtering element which comprises associated protection and check valves.
3. In a reservoir as claimed in claim 1 wherein said guiding rneans comprises a plurality of rollers arranged radially and elastically urged against the inner surface of said casing, an axle supporting each roller, a slide with a clevis thereon supporting a respective axle, a slideway slidably receiving said slide, and a spring acting on said slide to urge the roller against the inner surface of the casing.
4. In a reservoir as claimed in claim 3, a coil shaped degassing tube coupled to said degassing means for discharging the substances liberated by said degassing means, said coil tube being in communication with the hydraulic chamber and the atmosphere external of said casing, and guide members on the slideways for positioning the turns of the coil tube.
5. In a reservoir as claimed in claim 4, a movable end-closure for the second end of said bellows, said means for operating said gauge comprising a cable connected to said end-closure and to said gauge itself leaktightly connected to said casing, said means for actuating the safety valve comprising a resilient pushrod for actuating said valve, and a pivotally mounted lever with a terminal fork for actuating said pushrod and the valve for discharging surplus liquid from the bellows when the same has reached a pre-determined maximum dilation.
6. In a reservoir as claimed in claim 5 wherein said degassing means comprises a housing disposed within said bellows and including perforated internal walls, a float consisting of a complex of plastic and hollow microballs mounted movably within said housing, a chamber for receiving weighting granules associated with said float, a needle-valve siem coupled to said lioat by contact, an upper seat for receiving said needle-valve, said coil shaped degassing tube being connected to said seat and being flexible with one end fixed to the housing of the degassing means and the other end attached to a fixed union member extending through an upper part of said casing.
7. In a reservoir as claimed in claim 6, a lower removable filter housing cover, a check-valve for disconnecting communication between the bellows and the filter when the housing cover is removed, a thumbscrew on said cover for closing and opening said check-valve, said check-valve having a guide and a seat disposed on one end-closure of said filter housing and projecting within said bellows, said thumbscrew being coupled by contact with a stem of said valve whereby to permit separation therefrom when removing said lower cover of said filter housing.
8. In a reservoir as claimed in claim 7 wherein said filter housing is provided with a wall having connection members of which one is connected to a pump suction conduit and others to return-flow conduits from hydraulic devices utilizing said hydraulic fluid, and a further connection member for receiving pipe means for interconnection with said safety valve.
References Cited UNITED STATES PATENTS 1,597,399 8/1926 Wilson 220-26 2,025,670 12/1935 Pettee 73-429 XR 2,050,686 8/1936 Wiggins. 2,074,959 3/1937 Guest 220-26 XR 2,664,220 12/1953 Cord et al. 220-26 HENRY T. KL'INKSIEK, Primary Examiner U.S. Cl. X.R.
US679736A 1966-11-10 1967-11-01 Large-capacity bellows-type hydraulic reservoir Expired - Lifetime US3456673A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR83302A FR1510907A (en) 1966-11-10 1966-11-10 Large capacity hydraulic bellows cover

Publications (1)

Publication Number Publication Date
US3456673A true US3456673A (en) 1969-07-22

Family

ID=8620857

Family Applications (1)

Application Number Title Priority Date Filing Date
US679736A Expired - Lifetime US3456673A (en) 1966-11-10 1967-11-01 Large-capacity bellows-type hydraulic reservoir

Country Status (4)

Country Link
US (1) US3456673A (en)
DE (1) DE1650192A1 (en)
FR (1) FR1510907A (en)
GB (1) GB1196777A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695297A (en) * 1970-05-23 1972-10-03 Pirelli Compensating pressure tank for oil-filled power cables
US4527580A (en) * 1983-11-25 1985-07-09 Sundstrand Corporation Volume control device
US4652222A (en) * 1981-04-22 1987-03-24 Sharp Kabushiki Kaisha Ripple regulating system in a liquid supply system
WO1999017029A1 (en) * 1997-09-29 1999-04-08 Jiangang Cao Membranous chamber-type accumulator
WO2003054437A1 (en) * 2001-12-19 2003-07-03 U.S. Environmental Protection Agency Low permeation hydraulic accumulator
US20040055656A1 (en) * 2002-09-19 2004-03-25 Advics Co., Ltd. Bellows-type hydraulic accumulator
EP1418342A1 (en) * 2002-11-07 2004-05-12 Ksb S.A.S Vessel comprising a valve system
US20050028879A1 (en) * 2003-08-06 2005-02-10 Kenichi Suzuki Metal bellows hydraulic accumulator
EP2175142A1 (en) * 2008-10-08 2010-04-14 Eaton SAS Accumulator piston position-measuring device
US20100090381A1 (en) * 2008-10-09 2010-04-15 Stroganov Alexander A Hydropneumatic accumulator with a compressible regenerator
WO2010141605A1 (en) 2009-06-03 2010-12-09 Control Products Inc. Hydraulic accumulator with position sensor
US20150059889A1 (en) * 2012-08-29 2015-03-05 Aes Engineering Ltd. Bladder accumulator volume indicating device
US20190360503A1 (en) * 2017-02-03 2019-11-28 Eagle Industry Co., Ltd. Accumulator
US20200003233A1 (en) * 2017-02-03 2020-01-02 Eagle Industry Co., Ltd. Accumulator
US10955144B2 (en) * 2016-12-28 2021-03-23 Joong Ang Engineering Co., Ltd Variable air pressure regulation device for expansion tank
US11022150B2 (en) 2017-02-03 2021-06-01 Eagle Industry Co., Ltd. Accumulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2418356A1 (en) * 1978-02-27 1979-09-21 Gratzmuller Jean Louis HYDRO-PNEUMATIC PISTON ACCUMULATOR EQUIPPED WITH A LACK OF GAS DETECTOR

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1597399A (en) * 1923-05-04 1926-08-24 Standard Oil Co Method and apparatus for preventing evaporation from storage tanks
US2025670A (en) * 1930-09-06 1935-12-24 Gen Cable Corp Reservoir
US2050686A (en) * 1935-04-18 1936-08-11 John H Wiggins Gas and liquid storage device
US2074959A (en) * 1936-09-10 1937-03-23 Guest Herbert Rainford Fuel tank gauge
US2664220A (en) * 1950-10-23 1953-12-29 Standard Oil Co Floating roof construction for tanks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1597399A (en) * 1923-05-04 1926-08-24 Standard Oil Co Method and apparatus for preventing evaporation from storage tanks
US2025670A (en) * 1930-09-06 1935-12-24 Gen Cable Corp Reservoir
US2050686A (en) * 1935-04-18 1936-08-11 John H Wiggins Gas and liquid storage device
US2074959A (en) * 1936-09-10 1937-03-23 Guest Herbert Rainford Fuel tank gauge
US2664220A (en) * 1950-10-23 1953-12-29 Standard Oil Co Floating roof construction for tanks

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695297A (en) * 1970-05-23 1972-10-03 Pirelli Compensating pressure tank for oil-filled power cables
US4652222A (en) * 1981-04-22 1987-03-24 Sharp Kabushiki Kaisha Ripple regulating system in a liquid supply system
US4527580A (en) * 1983-11-25 1985-07-09 Sundstrand Corporation Volume control device
WO1999017029A1 (en) * 1997-09-29 1999-04-08 Jiangang Cao Membranous chamber-type accumulator
WO2003054437A1 (en) * 2001-12-19 2003-07-03 U.S. Environmental Protection Agency Low permeation hydraulic accumulator
US7121304B2 (en) * 2001-12-19 2006-10-17 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Low permeation hydraulic accumulator
US20040055656A1 (en) * 2002-09-19 2004-03-25 Advics Co., Ltd. Bellows-type hydraulic accumulator
US6871672B2 (en) * 2002-09-19 2005-03-29 Advics Co., Ltd. Bellows-type hydraulic accumulator
EP1418342A1 (en) * 2002-11-07 2004-05-12 Ksb S.A.S Vessel comprising a valve system
FR2847008A1 (en) * 2002-11-07 2004-05-14 Ksb Sas FITTINGS SYSTEM FOR USE IN A VESSEL
US20050028879A1 (en) * 2003-08-06 2005-02-10 Kenichi Suzuki Metal bellows hydraulic accumulator
US7013923B2 (en) * 2003-08-06 2006-03-21 Advics Co., Ltd. Metal bellows hydraulic accumulator
WO2010040800A1 (en) * 2008-10-08 2010-04-15 Eaton Sas Accumulator piston position-measuring device
EP2175142A1 (en) * 2008-10-08 2010-04-14 Eaton SAS Accumulator piston position-measuring device
US20110197658A1 (en) * 2008-10-08 2011-08-18 Arlindo Da Costa Accumulator piston position-measuring device
US8794060B2 (en) 2008-10-08 2014-08-05 Eaton Sas Accumulator piston position-measuring device
US20100090381A1 (en) * 2008-10-09 2010-04-15 Stroganov Alexander A Hydropneumatic accumulator with a compressible regenerator
US8201582B2 (en) * 2008-10-09 2012-06-19 Stroganov Alexander A Hydropneumatic accumulator with a compressible regenerator
WO2010141605A1 (en) 2009-06-03 2010-12-09 Control Products Inc. Hydraulic accumulator with position sensor
EP2438342A1 (en) * 2009-06-03 2012-04-11 Control Products Inc. Hydraulic accumulator with position sensor
EP2438342A4 (en) * 2009-06-03 2014-03-05 Control Products Inc Hydraulic accumulator with position sensor
US20150059889A1 (en) * 2012-08-29 2015-03-05 Aes Engineering Ltd. Bladder accumulator volume indicating device
US9400055B2 (en) * 2012-08-29 2016-07-26 Aes Engineering Ltd. Bladder accumulator volume indicating device
US10955144B2 (en) * 2016-12-28 2021-03-23 Joong Ang Engineering Co., Ltd Variable air pressure regulation device for expansion tank
US20190360503A1 (en) * 2017-02-03 2019-11-28 Eagle Industry Co., Ltd. Accumulator
US20200003233A1 (en) * 2017-02-03 2020-01-02 Eagle Industry Co., Ltd. Accumulator
US10914323B2 (en) * 2017-02-03 2021-02-09 Eagle Industry Co., Ltd. Accumulator
US10927855B2 (en) * 2017-02-03 2021-02-23 Eagle Industry Co., Ltd. Accumulator
US11022150B2 (en) 2017-02-03 2021-06-01 Eagle Industry Co., Ltd. Accumulator

Also Published As

Publication number Publication date
DE1650192A1 (en) 1970-09-10
GB1196777A (en) 1970-07-01
FR1510907A (en) 1968-01-26

Similar Documents

Publication Publication Date Title
US3456673A (en) Large-capacity bellows-type hydraulic reservoir
US5474303A (en) Actuator rod hermetic sealing apparatus employing concentric bellows and pressure compensating sealing liquid with liquid monitoring system
CA2922954C (en) A shock absorber
US2348651A (en) Filter
US9846068B2 (en) Measuring the volume of fluid in a vessel
JPH0310894B2 (en)
US2625108A (en) Unloading means for gasoline dispensing pumps
US2930455A (en) Damping devices
US4192193A (en) Liquid filled pressure gauge
US2809712A (en) Gas and liquid separator
US2995922A (en) Gases and vapour measuring apparatus
US2858843A (en) Muller
US6981523B2 (en) Variable volume reservoir
US4245663A (en) Valve with condensate recovery device
US3251375A (en) Apparatus for bottom loading and unloading of tanks
JPH0467140B2 (en)
US2322660A (en) Device for gauging liquids in containers under pressure
US4090366A (en) Transit capsules
US2633022A (en) Liquid level measuring apparatus
US4422327A (en) Liquid level indicator apparatus
RU2374542C2 (en) Multipurpose valve
US2260789A (en) Outflow regulator for petroleum separators
US2161171A (en) Gas flow regulator
US2215660A (en) Liquid gauge apparatus
US2724527A (en) Pneumatic-hydraulic compensator and method