Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3456721 A
Publication typeGrant
Publication dateJul 22, 1969
Filing dateDec 19, 1967
Priority dateDec 19, 1967
Publication numberUS 3456721 A, US 3456721A, US-A-3456721, US3456721 A, US3456721A
InventorsSmith Robert V
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Downhole-burner apparatus
US 3456721 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

.Fufiy 22, 1969 R. v. SMITH 3,456,721

DOWNHOLE-BURNER APPARATUS Filed Dec. 19, 1967 INVENTOR. R. V. SMITH A TTORNEVS 3,456,721 DOWNHOLE-BURNER APPARATUS Robert V. Smith, Bartlesville, Okla., assignor to Phillips Petroleum Company, a corporation of Delaware Filed Dec. 19, 1967, Ser. No. 691,873 Int. Cl. E2lb 43/24 US. Cl. 166-59 1 Claim ABSTRACT OF THE DISCLOSURE A downhole-burner apparatus comprises a tubular combustion chamber positioned in a well bore, preferably at the lower extremity thereof, having a fuel burner at the upper end thereof, the lower end of the combustion chamber being open to the well bore, said burner having closed and open ends, the open end being in communication with the combustion chamber, fuel and oxidizing gas injection and mixing means in communication with the closed end of the burner; i.e., the upper end, fuel ignition means in said burner for igniting the mixture of fuel and oxidizing gas injected therein, a water jacket surrounding the combustion chamber having water inlet means in communication with water conduit communicating with the surface outlet of the bore hole, a plurality of water injection orifices in a side wall of the combustion chamber communicating between the interior of the combustion chamber and the water jacket, whereby water is injected into the combustion chamber in contact with the flame emanating from the burner.

Background of the invention Petroleum is generally found in sandstones or porous limestone situated between impervious layers of shale or the like. Initially, the oil is usually found to be associated with lighter hydrocarbons such as methane and ethane, which may exist as free gases in contact with the oil or dissolved in the oil. When such oil-bearing sands are reached by drilling, the expansive force of the gas, either free or dissolved under pressure existing at the depth of the oil reservoir, moves oil and gas toward the region of low pressure around the well bottom. With conditions at the casinghead uncontrolled, the rapid flow of oil and gas from the well creates a gusher and flush production results.

After the initial pressure existing has diminished with the escape of most of the gas associated with the oil from the well, the motive power bringing oil to the surface is largely dissipated. At this stage, the well is put to pumping with resultant increased production of oil from the well together with additional amounts of gas. In time the flow of oil produced by pumping diminishes to the point where pumping is no longer economical. The remaining oil has little pressure exerted upon it by the small amount of residual gases or vapors remaining in the reservoir and the heavier hydrocarbons present assume a more viscous, semi-solid state which tends to choke the pores of the sand preventing drainage of the oil to the well bottom.

In an attempt to increase productivity of such wells, the method of repressuring has been adopted. This operation involves forcing back into selected central wells either natural gas taken from other wells or air. The gas injected into the selected well under pressure passes through the porous oil-containing sands and is vented from adjacent wells. By this procedure, the gas mechanically forces some of the heavier oil into the well bottoms, and entrains any hydrocarbons existing in vapor form in the reservoir. Upon continued operation, this method also becomes unprofitable and it must be abandoned even though the reservoir is only partially depleted with respect to the oil initially present.

nite States Patent "ice 3,456,721 Patented July 22, 1969 Further attempt to increase production from such wells involves final resort to the so-called flooding procedure. In this procedure water under pressure is injected into selected wells and the entire oil reservoir is scoured with water bringing to the surface from adjacent venting wells a further portion of the residual oil. After practicing this method the oil field can no longer be utilized for further production.

It is well-known, that oil fileds which have been subjected to the foregoing successive treatments still contain in the sands about half of the oil known to be initially present.

It has been recognized heretofore, that the application of heat to the oil-containing sands tends to increase production of oil from oil reservoirs. For example, it has been proposed to inject heated gaseous products of combustion into partially depleted oil reservoirs in an attempt to drive out the residual oil by reducing the viscosity and thereby facilitating flow. In some instances, combustion of the oil itself has been proposed as the source of heat.

All of these procedures require that formation be exposed to temperature gradients of extreme degrees in order to effect the transmission of sufiicient amounts of heat into the formation to obtain the desired results of increasing formation pressure and reducing viscosity of residual hydrocarbons. These processes require the maintenance of temperatures within the well bore or along a flame front propagating through an oil-bearing formation which are by design considerably in excess of temperatures at which at least a substantial part of the residual hydrocarbon is reduced to carbonaceous deposits. Such operations result in the reduction in porosity and permeability in the vicinity of the well bore, and for that matter, throughout the formation where flame fronts are allowed to propagate throughout the oil bearing strata. At the same time the extremely high temperatures promote the dissipation of heat in all directions from the heat source which results in the loss of substantial amounts of heat by dissipation to adjoining formation.

Merriam et al., US. Patent 2,584,606 disclosed a process for exposing an oil-bearing formation in the immediate vicinity of a well bore to an unattenuated burner flame and the generation of steam within the formation by injecting water into the formation in the vicinity heated by the burner flame.

I have discovered a secondary recovery method and downhole steam generation device by which the vapor pressure in an oil-bearing formation can be increased and the viscosity of residual hydrocarbon retained therein reduced without exposing the formation to temperature sufiicient to convert the residual hydrocarbons to more viscous species, e.g., carbonaceous materials.

It is therefore one object of this invention to provide method and apparatus for increasing reservoir vapor pressure and to reduce the viscosity of reservoir fluids. It is another object of this invention to provide a method and apparatus for increasing reservoir heat content without exposing reservoir fluids to temperatures in excess of those at which reservoir fluids decompose or are reduced to more viscous materials. It is another object of this invention to provide method and apparatus for increasing the heat content of subterranean formations while reducing heat loss by transmission to formations adjoining the subject strata or to formations bordering the well bore. It is another object of this invention to provide a highly efficient downhole steam generator.

Summary of the invention In accordance with one embodiment of this invention a suitable fuel such as a hydrocarbon fuel gas or oil is combusted in the presence of an oxygen-containing gas in the approximate vicinity of a formation to which it is desired to add substantial amounts of heat, and the flame produced by such combustion is quenched by spraying water or low quality steam directly into the flame in a confined combustion zone whereby the water or low quality steam is converted to high pressure, high quality steam which passes into the formation.

In accordance with another embodiment of this invention steam is produced in a downhole steam generator comprising a fuel burner in a combustion zone by injecting water or low quality steam into the combustion zone to quench the flame and generate high quality, high pressure steam which is forced into the adjoining formation to increase the temperature thereof.

In accordance with another embodiment of this invention a downhole steam generator comprises a tubular combustion chamber positioned in a well bore having a fuel burner at the upper end of the chamber, the lower end of the chamber being open to the well bore, the chamber and burner being surrounded by a water jacket having a plurality of water inlet means; i.e., orifices, in the side wall of the chamber communicating between the interior of the combustion chamber and the water jacket for injecting water into the combustion chamber in direct contact with the flame from the burner whereby high pressure, high quality steam is produced and the flame is quenched prior to contacting with the adjacent formation.

One of the most significant advantages of this process and apparatus is that elevation of formation temperatures is accomplished by the injection of a homogeneous-steam phase containing quenched combustion products into the well bore and adjoining formation with the result that hot spots, localized overheating, and excessive temperature gradients which result in the decomposition of residual hydrocarbons and consequent formation plugging are avoided.

The method of the invention is preferably practiced by utilizing an existing oil well communicating with the oil reservoir as the input well, and employing one or more existing adjacent wells as the venting wells. If necessary, however, new venting wells may be drilled closer to the selected input wells. The combustion-supporting gas may be air, oxygen, or mixtures thereof, or any permanent gas containing sufficient oxygen to effect good combustion. The combustible gas may be any heating gas such as producer gas, water gas or natural gas. The input well is capped or closed in at the casinghead so that any desired pressures may be developed. The ignition products; i.e., the flame emanating from the burner, are quenched in a confined generation zone by the injection of Water or low quality steam directly into the flame. As a result of this procedure, the flame is quenched prior to contact with the adjoining formation and a homogeneous steam phase containing quench combustion products is continuously produced. The heat added to the formation adjoining the point of injection elevates tempera ture thereof and, depending on the volatility of constituouts of the reservoir fluid, volatilizes a portion of those reservoir fluids, e.g., hydrocarbons and reduces the viscosity of the remaining heavier constituents, whereby those constituents flow more easily through the formation under the influence of pressure developed in the injection well.

As the vaporized portions of the oil move into cooler regions of the oil-containing sands, they are partially condensed and release the latent heat of condensation at that point, which together with the sensible heat in the gaseous products of combustion serves to increase the temperature in the regions of the formations more remote from the input well. Thus, the entire reservoir is progressively heated and the hydrocarbon in vaporous and/ or fluid state is forced into the venting well bottom where it is removed by ordinary pumping means. Vaporization of a portion of the oil, and, in addition, formation of steam from the connate water adds to the total volume of gases facilitating removal of the oil from the reservoir.

Although it may be desirable, in some instances, to provide for an excess of oxygen in the burner flame which permeates the formation and may under certain conditions promote the oxidation of reservoir hydrocarbon, it is presently preferred that the ratio of oxygen to fuel in the burner be sufficient only to provide an economic degree of combustion of the burner fuel without introducing a substantial amount of free oxygen into the formation. This preference derives from the observation that oxidation of reservoir hydrocarbons generally results in 'an increase in the viscosity of certain hydrocarbon constituents by virtue of localized overheating due to rapid oxidation. This oxidation, itself, is not undesirable from the standpoint of the viscosity of the reaction products. On the contrary, these oxidation products; i.e., carbon monoxide and carbon dioxide, generally contribute to the total volume of the vapor, e.g., steam phase, and reduction of the viscosity of the remaining hydrocarbons. However, such oxidation if allowed to continue to a substantial' degree results in the consumption of hydrocarbons which might otherwise be recovered in the recovery well.

The ratio of oxygen to fuel in the burner feed will, of course, depend upon the characteristics of the fuel. For example, ratios of oxygen to fuel within the range of from 290 to about 340 standard cubic feet per gallon generally result in the substantially complete combustion of fuel when No. 6 grade fuel oils are employed. Oxygen to fuel ratios of from 2 to about 6.2 cubic feet per cubic foot at standard conditions are those preferred for these purposes where light hydrocarbon gas fuels such as those containing hydrocarbons having from 1 to 4 carbon atoms are employed. In this latter instance, i.e., where light hydrocarbon gas fumes are employed as burner feed, they are conveniently obtained from the recovery wells by separating the necessary amount of these light hydrocarbons from the hydrocarbon recovered in those wells and recycling the lighter hydrocarbons as fuel to the downhole steam generators of this invention. It is also necessary, of course, to assure that the back pressure on the fuel supply, oxygen supply and water or steam supply to the steam generator be sufiiciently in excess of the pressures developed in the immediate vicinity of the generator. These pressures can vary over a wide range and can be determined to some extent by the original pressure of the reservoir. Pressures usually encountered in such operations are generally within the range from about 200 to about 2,000 p.s.i.g. Similarly, temperatures encountered within the immediate vicinity of the steam generator are preferably maintained below about 500 F. Preferred temperatures are generally within the range of from 300 to about 400 F. In order to accomplish this result, the rate of steam or water injection into the burner flame prior to its contact with the adjoining strata must be sufficient to quench the flame and exhaust gases; the amount of steam or water injection required to accomplish this purpose will, of course, depend upon the rate of heat generation by the burner which in turn is determined by the size of the injection well and the rate at which it is desired to inject steam into the formation. Steam injection rates are preferably within the range of from 675 to about 3750 standard cubic feet per hour per square foot of wall surface of the injection zone; i.e. steam injection rates are usually within the range of from 25 to pounds per hour per square foot of wall surface in the injection zone at the conditions of temperature and pressure above-referred to. To accomplish these purposes, the burner should generate heat at a rate of about 29,000 to about 162,000 B.t.u.s per hour per square foot of bore hole surface in the injection zone, which in turn requires the injection of from 31 to about pounds per hour of water into the quench zone; i.e., steam generator, per hour per square foot. Obviously, where low quality steam is injected into the steam generator, the pound rate injection rate of steam will necessarily be higher in order to accomplish the same degree of quenching of the burner flame.

The concept of this invention will be better understood by reference to the drawing which presents a schematic illustration of the steam generator of this invention.

Referring now to the drawing, the steam generator provides an isolated quench zone defined by water jacket 4 having an interior refractory lined boundary 6 provided with water or steam injection ports; i.e., orifices, 7. Burner 5 positioned in the closed end of the steam generation zone and containing the flame 11 is fueled by suitable fuel as above-described which enters the burner by way of conduit 2. Oxygen-containing gas such as pure oxygen, air etc., is mixed with the fuel prior to injection into burner 5 in a suitable mixing zone 12 into which it is injected by way of conduit 3. Water or steam is passed to jacket 4 by way of conduit 1 from which it is sprayed into steam generation zone 10 via orifices 7.

Suitable provision is also made for auto or remote control ignition of the fuel-air mixture in burner 5 so that the burner can be ignited when situated in the bore hole. Such ignition devices as resistive or spark igniters illustrated graphically by numeral 8 are generally well known in the art. Igniter 8 in this example can be controlled from the surfaces; i.e., at the well head by virtue of suitable electrical connections 9. Said connections 9 can also be used for thermocouples located near igniter 8 which with suitable means control fuel and air supply to burner 5.

As the flame 11 emanates from the downhole open end of burner 5 into the steam generation zone 10 it is inwardly contacted and quenched with water or steam sprayed from jacket 4 via orifices 7. The length of the generation zone; i.e., the distance between the open end of burner 5 and the exit of the generation zone 10* from which quenched exhaust gases and steam enter the bore hole is sufficient to allow the complete mixing of water or lower quality stea'rn injected via ports 7 and the combustion products in the flame to provide the complete quenching thereof. This mixture of quenched exhaust gases and generated steam then exits the downhole open end of generation chamber 10 and is forced into the formation under the influence of pressures generated in the generation zone.

I claim:

1. A downhole-burner apparatus comprising a tubular interiorally refractory lined combustion chamber positioned in a well bore, said chamber having a fuel burner at the upper end thereof, the lower end of said chamber being opened to said well bore, said burner having one closed end and one open end, said open end being in communication with said combustion chamber, fuel and oxidizing gas injection and mixing means in communication with said closed end of said burner, fuel ignition means in said burner for igniting the mixture of fuel and oxidizing gas therein, a water jacket surrounding said combustion chamber having water inlet means in communication with a water conduit, a plurality of water injection orifices in the side wall of said chamber communicating with the interior of said combustion chamber and said water jacket for injecting water into said combustion chamber in contact with the flame resulting from the ignition of said fuel and oxidizing gas.

References Cited UNITED STATES PATENTS 2,584,606 2/1952 Merriam et al. 16659 X 2,712,35l 7/1955 Roth et a1. 175l4 X 2,725,929 12/ 1955 Massier.

3,093,197 6/1963 Freeman et al l14 DAVID H. BROWN, Primary Examiner

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2584606 *Jul 2, 1948Feb 5, 1952Frederick SquiresThermal drive method for recovery of oil
US2712351 *Feb 23, 1949Jul 5, 1955Union Carbide & Carbon CorpMethod of operating an internal combustion blowtorch
US2725929 *Nov 24, 1951Dec 6, 1955Selas Corp Of AmericaCombustion chamber type burner
US3093197 *Dec 9, 1958Jun 11, 1963Union Carbide CorpMethod and apparatus for thermally working minerals and mineral-like materials
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3616857 *Aug 26, 1969Nov 2, 1971British Petroleum CoGeological formation heating
US3982591 *Dec 20, 1974Sep 28, 1976World Energy SystemsDownhole recovery system
US3982592 *Sep 8, 1975Sep 28, 1976World Energy SystemsIn situ hydrogenation of hydrocarbons in underground formations
US4050515 *Sep 27, 1976Sep 27, 1977World Energy SystemsInsitu hydrogenation of hydrocarbons in underground formations
US4077469 *Sep 27, 1976Mar 7, 1978World Energy SystemsDownhole recovery system
US4078613 *Jan 3, 1977Mar 14, 1978World Energy SystemsDownhole recovery system
US4079784 *Mar 22, 1976Mar 21, 1978Texaco Inc.Method for in situ combustion for enhanced thermal recovery of hydrocarbons from a well and ignition system therefor
US4159743 *Mar 13, 1978Jul 3, 1979World Energy SystemsProcess and system for recovering hydrocarbons from underground formations
US4199024 *Jan 18, 1979Apr 22, 1980World Energy SystemsMultistage gas generator
US4237973 *Oct 4, 1978Dec 9, 1980Todd John CMethod and apparatus for steam generation at the bottom of a well bore
US4336839 *Nov 3, 1980Jun 29, 1982Rockwell International CorporationDirect firing downhole steam generator
US4452309 *Sep 13, 1982Jun 5, 1984Texaco Inc.Method and means for uniformly distributing both phases of steam on the walls of a well
US4456068 *Aug 28, 1981Jun 26, 1984Foster-Miller Associates, Inc.Process and apparatus for thermal enhancement
US4459101 *Aug 28, 1981Jul 10, 1984Foster-Miller Associates, Inc.Burner systems
US4558743 *Jun 29, 1983Dec 17, 1985University Of UtahSteam generator apparatus and method
US4574884 *Sep 20, 1984Mar 11, 1986Atlantic Richfield CompanyDrainhole and downhole hot fluid generation oil recovery method
US4687491 *Feb 23, 1984Aug 18, 1987Dresser Industries, Inc.Fuel admixture for a catalytic combustor
US4861263 *Mar 4, 1982Aug 29, 1989Phillips Petroleum CompanyMethod and apparatus for the recovery of hydrocarbons
US4865130 *Jun 17, 1988Sep 12, 1989Worldenergy Systems, Inc.Hot gas generator with integral recovery tube
US4930454 *Aug 14, 1981Jun 5, 1990Dresser Industries, Inc.Steam generating system
US5055030 *Jun 23, 1989Oct 8, 1991Phillips Petroleum CompanyMethod for the recovery of hydrocarbons
US6016867 *Jun 24, 1998Jan 25, 2000World Energy Systems, IncorporatedUpgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US6016868 *Jun 24, 1998Jan 25, 2000World Energy Systems, IncorporatedProduction of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US6328104Jan 24, 2000Dec 11, 2001World Energy Systems IncorporatedUpgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US7640987 *Aug 17, 2005Jan 5, 2010Halliburton Energy Services, Inc.Communicating fluids with a heated-fluid generation system
US7770643Oct 10, 2006Aug 10, 2010Halliburton Energy Services, Inc.Hydrocarbon recovery using fluids
US7770646 *Aug 10, 2010World Energy Systems, Inc.System, method and apparatus for hydrogen-oxygen burner in downhole steam generator
US7784533 *Dec 31, 2008Aug 31, 2010Hill Gilman ADownhole combustion unit and process for TECF injection into carbonaceous permeable zones
US7809538Jan 13, 2006Oct 5, 2010Halliburton Energy Services, Inc.Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7832482Oct 10, 2006Nov 16, 2010Halliburton Energy Services, Inc.Producing resources using steam injection
US7841407 *Apr 16, 2009Nov 30, 2010Shell Oil CompanyMethod for treating a hydrocarbon containing formation
US7866388 *Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US8091625Jan 10, 2012World Energy Systems IncorporatedMethod for producing viscous hydrocarbon using steam and carbon dioxide
US8091626 *Aug 6, 2010Jan 10, 2012Hill Gilman ADownhole combustion unit and process for TECF injection into carbonaceous permeable zones
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8286698Oct 5, 2011Oct 16, 2012World Energy Systems IncorporatedMethod for producing viscous hydrocarbon using steam and carbon dioxide
US8387692Jul 15, 2010Mar 5, 2013World Energy Systems IncorporatedMethod and apparatus for a downhole gas generator
US8573292Oct 8, 2012Nov 5, 2013World Energy Systems IncorporatedMethod for producing viscous hydrocarbon using steam and carbon dioxide
US8584752Nov 15, 2012Nov 19, 2013World Energy Systems IncorporatedProcess for dispersing nanocatalysts into petroleum-bearing formations
US8613316Mar 7, 2011Dec 24, 2013World Energy Systems IncorporatedDownhole steam generator and method of use
US8684072 *Oct 9, 2013Apr 1, 2014Kreis Syngas, LlcDownhole gas generator
US9228738Jan 18, 2013Jan 5, 2016Orbital Atk, Inc.Downhole combustor
US20020029881 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20020029882 *Apr 24, 2001Mar 14, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US20020029884 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020033253 *Apr 24, 2001Mar 21, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using insulated conductor heat sources
US20020033255 *Apr 24, 2001Mar 21, 2002Fowler Thomas DavidIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20020033256 *Apr 24, 2001Mar 21, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20020033257 *Apr 24, 2001Mar 21, 2002Shahin Gordon ThomasIn situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020033280 *Apr 24, 2001Mar 21, 2002Schoeling Lanny GeneIn situ thermal processing of a coal formation with carbon dioxide sequestration
US20020034380 *Apr 24, 2001Mar 21, 2002Maher Kevin AlbertIn situ thermal processing of a coal formation with a selected moisture content
US20020035307 *Apr 24, 2001Mar 21, 2002Vinegar Harold J.In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020036083 *Apr 24, 2001Mar 28, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020036084 *Apr 24, 2001Mar 28, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US20020036103 *Apr 24, 2001Mar 28, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation by controlling a pressure of the formation
US20020038069 *Apr 24, 2001Mar 28, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
US20020038705 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020038708 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a condensate
US20020038709 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020038710 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020038711 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020038712 *Apr 24, 2001Apr 4, 2002Vinegar Harold J.In situ production of synthesis gas from a coal formation through a heat source wellbore
US20020039486 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US20020040173 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US20020040177 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020040781 *Apr 24, 2001Apr 11, 2002Keedy Charles RobertIn situ thermal processing of a hydrocarbon containing formation using substantially parallel wellbores
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043366 *Apr 24, 2001Apr 18, 2002Wellington Scott LeeIn situ thermal processing of a coal formation and ammonia production
US20020043367 *Apr 24, 2001Apr 18, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020043405 *Apr 24, 2001Apr 18, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US20020045553 *Apr 24, 2001Apr 18, 2002Vinegar Harold J.In situ thermal processing of a hycrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US20020046832 *Apr 24, 2001Apr 25, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020046838 *Apr 24, 2001Apr 25, 2002Karanikas John MichaelIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US20020046839 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US20020049358 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation using a distributed combustor
US20020050352 *Apr 24, 2001May 2, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to control product composition
US20020050353 *Apr 24, 2001May 2, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20020050356 *Apr 24, 2001May 2, 2002Vinegar Harold J.In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050357 *Apr 24, 2001May 2, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020052297 *Apr 24, 2001May 2, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US20020053429 *Apr 24, 2001May 9, 2002Stegemeier George LeoIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432 *Apr 24, 2001May 9, 2002Berchenko Ilya EmilIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020053435 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US20020053436 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US20020056551 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020062051 *Apr 24, 2001May 23, 2002Wellington Scott L.In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062052 *Apr 24, 2001May 23, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US20020062959 *Apr 24, 2001May 30, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020062961 *Apr 24, 2001May 30, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation and ammonia production
US20020066565 *Apr 24, 2001Jun 6, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US20020074117 *Apr 24, 2001Jun 20, 2002Shahin Gordon ThomasIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US20020077515 *Apr 24, 2001Jun 20, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020096320 *Apr 24, 2001Jul 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US20020104654 *Apr 24, 2001Aug 8, 2002Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020108753 *Apr 24, 2001Aug 15, 2002Vinegar Harold J.In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US20020117303 *Apr 24, 2001Aug 29, 2002Vinegar Harold J.Production of synthesis gas from a hydrocarbon containing formation
US20020170708 *Apr 24, 2001Nov 21, 2002Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US20020191968 *Apr 24, 2001Dec 19, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20020191969 *Apr 24, 2001Dec 19, 2002Wellington Scott LeeIn situ thermal processing of a coal formation in reducing environment
US20030006039 *Apr 24, 2001Jan 9, 2003Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626 *Apr 24, 2001Jan 30, 2003Vinegar Harold J.In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030024699 *Apr 24, 2001Feb 6, 2003Vinegar Harold J.In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US20030051872 *Apr 24, 2001Mar 20, 2003De Rouffignac Eric PierreIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030062154 *Apr 24, 2001Apr 3, 2003Vinegar Harold J.In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030062164 *Apr 24, 2001Apr 3, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030066644 *Apr 24, 2001Apr 10, 2003Karanikas John MichaelIn situ thermal processing of a coal formation using a relatively slow heating rate
US20030075318 *Apr 24, 2001Apr 24, 2003Keedy Charles RobertIn situ thermal processing of a coal formation using substantially parallel formed wellbores
US20030085034 *Apr 24, 2001May 8, 2003Wellington Scott LeeIn situ thermal processing of a coal formation to produce pyrolsis products
US20030141065 *Apr 24, 2001Jul 31, 2003Karanikas John MichaelIn situ thermal processing of hydrocarbons within a relatively permeable formation
US20030164234 *Apr 24, 2001Sep 4, 2003De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20030164238 *Apr 24, 2001Sep 4, 2003Vinegar Harold J.In situ thermal processing of a coal formation using a controlled heating rate
US20030213594 *Jun 12, 2003Nov 20, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040015023 *Apr 24, 2001Jan 22, 2004Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US20040069486 *Apr 24, 2001Apr 15, 2004Vinegar Harold J.In situ thermal processing of a coal formation and tuning production
US20040108111 *Apr 24, 2001Jun 10, 2004Vinegar Harold J.In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20070193748 *Feb 21, 2006Aug 23, 2007World Energy Systems, Inc.Method for producing viscous hydrocarbon using steam and carbon dioxide
US20080083537 *Oct 8, 2007Apr 10, 2008Michael KlassenSystem, method and apparatus for hydrogen-oxygen burner in downhole steam generator
US20090200025 *Oct 13, 2008Aug 13, 2009Jose Luis BravoHigh temperature methods for forming oxidizer fuel
US20090260808 *Apr 16, 2009Oct 22, 2009Scott Lee WellingtonMethod for treating a hydrocarbon containing formation
US20090260809 *Oct 22, 2009Scott Lee WellingtonMethod for treating a hydrocarbon containing formation
US20090260810 *Oct 22, 2009Michael Anthony ReynoldsMethod for treating a hydrocarbon containing formation
US20090260811 *Apr 16, 2009Oct 22, 2009Jingyu CuiMethods for generation of subsurface heat for treatment of a hydrocarbon containing formation
US20090260812 *Oct 22, 2009Michael Anthony ReynoldsMethods of treating a hydrocarbon containing formation
US20090260825 *Oct 22, 2009Stanley Nemec MilamMethod for recovery of hydrocarbons from a subsurface hydrocarbon containing formation
US20110127036 *Jun 2, 2011Daniel TilmontMethod and apparatus for a downhole gas generator
US20130312950 *Feb 20, 2012Nov 28, 2013Linc Energy Ltd.Igniting an underground coal seam in an underground coal gasification process, ucg
EP0051127A2 *Sep 3, 1981May 12, 1982Rockwell International CorporationDirect firing downhole steam generator
EP0088375A2 *Mar 3, 1983Sep 14, 1983Phillips Petroleum CompanyPressure control for steam generator
EP0088376A2 *Mar 3, 1983Sep 14, 1983Phillips Petroleum CompanyMethod and apparatus for the recovery of hydrocarbons
WO1982001214A1 *Oct 5, 1981Apr 15, 1982Foster Miller AssThermal enhancement
Classifications
U.S. Classification166/59
International ClassificationE21B36/00, E21B36/02
Cooperative ClassificationE21B36/02
European ClassificationE21B36/02