Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3460248 A
Publication typeGrant
Publication dateAug 12, 1969
Filing dateFeb 26, 1968
Priority dateMay 26, 1966
Publication numberUS 3460248 A, US 3460248A, US-A-3460248, US3460248 A, US3460248A
InventorsTate Clarence R
Original AssigneeTate Clarence R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for making micromagnets
US 3460248 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

Aug. 12, 1969 c. R. TATE 3,460,248

METHOD FOR MAKING MICROMAGNETS Original Filed May 26, 1966 INVENTOR.

YQARENCER 7272- B MG VMML United States Patent M Int. Cl. H01f 7/06 US. Cl. 29-607 7 Claims ABSTRACT OF THE DISCLOSURE Method for producing magnetically actuatable particles comprising providing at least two moldable compositions of contrasting colors, forming the compositions into a composite sheet, hardening the sheet, inducing a constant magnetization vector in the material and fracturing the sheet into tiny magnetized multi-colored particles.

This application is a division of application Serial No. 553,087, filed May 26, 1966, now Patent No. 3,406,363.

This invention relates to a method for forming improved micromagnets for magnetically actuatable visual display devices.

In US. Patent 3,036,388, since reissued as Reissue 25,363 and Re-Reissue 25,822, I have described magnetic writing materials employing magnetically orientable color coded particles. The particles in a liquid suspending medi um beneath a transparent face plate, for example, may be oriented with their first-color poles toward the viewing surface by passing over the surface a flat erasing magnet. The particles are made to possess a low volumetric magnetization so that their magnetic strength is not sufficient to cause a magnetic interaction when in close association with each other, which would prevent selective orientation by an activating external magnetic force, and a magnetic field of opposite polarity applied to a portion of the surface reorients the affected particles with their secondcolor poles exposed to view thereby forming a visibly distinct pattern.

The present invention provides an improved method for the manufacture of magnetically orientable particles having two or more color zones. The method of this invention permits high production rates using relatively simple equipment.

Briefly summarized, the method of this invention involves the steps of providing at least two moldable compositions of contrasting colors, at least one of which contains finely divided magnetic material of high retentivity, then forming the compositions into thin superposed layers to form a composite sheet, hardening the sheet, subjecting the magnetic material in the sheet to a magnetic field of suflicient intensity and duration to produce a constant magnetization vector in the material, and then fracturing the sheet into irregularly shaped particles equal in thickness to the thickness of the original sheet and having a broad dimension at least as great as the thickness of the sheet. The fractured particles may be screened to select an optimum size range.

Further objects and advantages will be apparent from the accompanying detailed description and drawings wherein:

FIGURE 1 is a magnified perspective view of a typical two-colored magnetically orientable particle produced by the method of this invention; and

FIGURE 2 is a magnified view in elevation of a magnetically orientable shaped particle having three different color zones.

3,460,248 Patented Aug. 12, 1969 The magnetic orientation of the particles is illustrated by the arrow, the arrowhead, for convenience, indicating the north pole. Although other magnetic materials are also useful, I prefer to use small proportions of magnetic materials of high retentivity such as barium ferrite, together with a diluent or extender which usually serves as a binder for the powdered magnetic material.

The tiny particles are conveniently described as having a constant magnetization vector, the term including both direction and magnitude. The direction of magnetization, i.e., the permanent magnetic axis, may have any desired relationship to the surface color zones, as will be further described. The magnetic particles shall be referred to hereinafter as micromagnets.

Micromagnets small enough to pass through a 325-mesh Tyler standard screen, i.e. about 45 microns, provide a smooth uniform appearance at the viewing surface since the individual micromagnets cannot be resolved by the eye. Micromagnets not larger than about microns are preferred but micromagnets up to about 2000 microns are generally useful.

It is preferred to suspend the micromagnets in a suspending fluid in which the micromagnets will rotate therein upon the application of a magnetic field. It is desirable to provide this fluid with a viscosity and thixotropy such that a certain minimum force must be applied in order to rotate the micromagnets. Such viscosity and thixotropy provide a degree of stability to the display device, minimizing unwanted disorientation of the micromagnets. Finely divided magnesium aluminum silicate (Bentone) may be dispersed in a light oil, for example, to provide the desired viscosity and thixotropy.

Micromagnets can be manufactured rapidly and economically by forming appropriately colored compositions containing magnetizable material into thin flat sheets made up of two or more distinctly colored layers. For example, different colored hardenable solutions or suspensions can be cast successively onto a smooth carrier web or other suitable casting surface to form a layered sheet. The sheet is subjected to a strong magnetic field to magnetize the magnetizable material, hardened, and broken up into a finely divided state by impacting in an agitator or in other suitable fragmentizer such as a mechanical blender. The order of these steps may be interchanged if desired. Hardening can be accomplished by curing and/or drying the compositions until relatively brittle. Although it might be expected that violently reducing the sheet to a virtual powder would result in particles either singly colored or unusable because of randomly different characteristics, it has been found that progressive fragmentation tends to break the sheet across the broad dimensions, which provide the lines of least resistance to fracture. Each micromagnet therefore tends to retain its individual magnetic and color zone integrity so long as fragmentation is stopped before the micromagnets are reduced in size and dimension to less than the thickness of the sheet. The micromagnet shown in FIGURE 1 is typical of those produced by this method. As shown, the individual micromagnets have flat, generally parallel top and bottom surfaces and irregularly shaped edges. The particles illustrated are magnetized so that the magnetic axis of each micromagnet is substantialy normal to the flat parallel surfaces. Micromagnet 10 shown in FIGURE 1 has a first color 12 adjacent the north pole and a different color 14 adjacent the south pole.

In FIGURE 2 is shown an edge view of a three-colored micromagnet I16 which may be made by a similar procedure to that just described. Micromagnet 16 is provided with a first color 18, for example blue, on the surface ad jacent to the north pole and second color 20, for example White, on the surface adjacent the south pole. Sandwiched between layers 18 and 20 is a third coroled layer 22, for example red. When used in a display device micromagnet 16 will present its blue colored surface when the south pole of a magnet is passed over the display device and its. white colored surface when a north pole of a magnet is passed in front of the display device. A magnet having closely adjacent north and south poles, passed over the surface, will orient the micromagnets between its poles to an edgewise position to display a mark of a third color, red. The colors may be selected to produce other colors in combination. For example, a yellow layer and a blue layer produces green when oriented to blend, and shades and blends may be also produced by orienting the micromagnets to intermediate degrees, the activating magnetic force in this case being of a strength and duration insufficient to cause a full 90 or 180 orientation.

The micromagnets of this invention may be carried in a liquid suspension medium or used in dry powder form and the external activating magnetic force may be that from a permanent magnet or from an electrical field. The micromagnets may be spread dry on a sheet of paper, for example, and an external activating magnetic force passed under the carrier to produce a visual display.

By subjecting a sheet containing magnetizable material to a magnetic field first in one direction and then in another, it is possible to produce particles having more than one magnetic axis. Such axes may be of equal or, more preferably, of differing strengths, thus making it possible to control the orientation of the particles in more than one direction. The same effect can be produced by forming two or more sheets of contrasting color, magnetizing the sheets in different directions, then laminating the sheets and fracturing the sheets to produce particles having multiple magnetic axes.

In some cases it is desirable to magnetize the particles in a direction other than parallel to the color axes, for example, in a direction normal thereto. For example, particles having three color zones could be formed in which the two outer zones are white and the middle Zone is black having magnetic axes parallel to the layers. Such particles when lying at random would present a predominantly white viewing surface on which a black line could be produced by applying to the surface thereof either a north or south pole magnet.

The magnetic strength of the particles can be varied by changing the proportion or the type of magnetizable material added, or by varying the strength of the magnetizing field. In the case of particles suspended within a liquid medium, the tendency to cluster can be reduced by using a more viscous liquid.

The following examples, in which proportions are given by weight unless otherwise indicated, will serve to illustrate but not limit the invention. Also the colors mentioned and the layer thickness given are illustrative and may be varied to produce displays having any desired combinations of colors and sharpness of images.

Example I Color coded micromagnets were prepared with a binder of lacquer containing appropriate color pigments. The lacquer was a widely marketed type containing cellulose nitrate, ester gum, plasticizer, glycol esters, alcohols, aromatic and aliphatic hydrocarbons and was slightly thinned with lacquer thinner. A white portion contained 60 parts of lacquer, and 50 parts of titanium dioxide pigment. A red portion contained 75 parts of the lacquer and 25 parts of red pigment. A black portion, contained 60 parts of lacquer, 20 parts of carbon black, and parts of powered barium ferrite. Corn starch, added to the blends, will provide additional thickening, if desired.

The several blends were then coated in successive layers on a polyethylene carrier with intermediate drying. In spreading, the depth of each layer was controlled by drawing the sheet between spaced bars although other means such as the use of rollers are also suitable. Compositions 4 of lighter viscosity can be sprayed or otherwise coated. The dried sheet was made up of a first layer /z-mil thick of White, a central layer of %-mil of red, and a third layer of Mt-Illll of the black, the layers being parallel to each other.

Several sheets of the coated carrier were stacked, each with the same color up, between the poles of a large electromagnet where they were subjected to a strong field to saturate the magnetizable barium ferrite component. The sheets were then peeled from the carrier and broken up by vigorous agitation by impacting in an agitator or in a mechanical blender into micromagnets capable of passing through a 325 mesh Tyler screen.

Micromagnets with more than three color zones can be obtained from a sheet having additional other colored layers and two color micromagnets can be made in this manner from a sheet having laminations with only two contrasting colors.

Example II A curable epoxy resin composition is used as a binder, the composition consisting of parts of liquid epoxy resin to which is added 35 parts of liquid curing agent just prior to coating and thoroughly mixed with this is 100 parts of titanium dioxide. The epoxy resin has a viscosity of -210 cps. at 77 F. and the curing agent has a viscosity of 150400 cps. at 77 F. The mixture is then spread in an even layer to a thickness of about 1 mil on a temporary carrier, such as a sheet of glass, the surface of which has been previously prepared with a film of mold release agent, and is permitted to cure either by heat or the passage of time to a hardened state. A second layer, preferably thicker, from a composition of 100 parts of epoxy resin, 35 parts of curing agent, 15 parts of carbon black, and 15 parts of powdered barium ferrite, is then applied and similarly cured. Then another thin layer from a composition like that of the initial layer, except containing 40 parts of a red coloring pigment instead of white, is applied and permitted to cure. The cure material is directionally magnetized by placing the sheet between the pole pieces of an electromagnet where it is subjected to a magnetic field which magnetizes the barium ferrite component. The sheet is removed from the temporary carrier by peeling and is then fragmented to a virtual powder under vigorous agitation. Any oversized micromagnets are screened out.

Example III A hardenable white composition was prepared by mixing the following ingredients:

Parts Styrene butadiene copolymer containing 65% by weight Ti0 pigment (Goodyear Pliolite lA-SS) 16.6 Toluol solvent 25 This composition was coated using the 80 tri-helicoid rotogravure roll over the white layer and oven dried at 250 F. The black layer had a dry weight of 0.00065 gram/cm The combined layers had a weight of 0.00138 gram/cm. and a calculated density of 1.77 grams per cc. The combined layers had a barium ferrite content of 2.2%. The hardened material was passed on the carrier web between the poles of an electromagnet, magnetized at 9000 gauss at a speed of 1 foot per second. Material was removed from the carrier web by flexing and air blasted and conveyed at high velocity through a tortuous path and impinged against itself and other obstructions until the average particle diameter was about 1 /2 times its thickness. Oversized particles were removed by screening. A suspension in oil of the black and white micromagnets thus obtained was formed by mixing the particles into the following oily mixture:

Parts Low molecular weight chlorotrifiuoroethylene polymer having a density of 1.9 and a Brookfield viscosity at 72 F., #1 spindle, 30 r.p.m., of 124 centipoise (Kel F Oil #3, 3M Co.) 300.00 Oil having a density of 0.85 and a Brookfield viscosity at 72 F. of 24 centipoise #1 spindle, 60

r.p.rn., (Retrax, Std. Oil Co.) 269.00 Purified bentonite with an organic base, gelling agent (Bentone 38, Nat. Lead Co.) 1 00 Stearic acid 4:75

The resin mixture had a calculated density of approximately 0.91 and a Brookfield viscosity of 140 centipoise. An oil resin emulsion was formed by mixing 1 part by volume of the magnet contained oil mixture with 3.5 parts by volume of the resin. After mixing, an emulsion was formed in which the resin was a continuous phase having dispersed therein oil droplets averaging about mils in diameter as a discontinuous phase. One or more colored micromagnets were contained within the preponderant number of oil droplets. The emulsion was knife coated using a 0.025 setting on 2 mil hard aluminum foil precoated with a 2 mil thick black-pigmented vinyl acetate based coating. The coating was dried by passing high velocity room temperature air thereover until a surface skin was formed followed by air drying overnight.

What is claimed is:

1. A method for producing multi-colored micromagnets comprising:

(a) providing at least two moldable compositions of contrasting colors, at least one of said compositions comprising finely divided magnetic material of high retentivity;

(b) forming said compositions into thin superposed layers to form a composite sheet;

(c) hardening said sheet;

((1) subjecting said magnetic material to a magnetic field of sufiicient intensity and duration sufficient to produce a constant magnetization vector in said material;

(e) fracturing said sheet into a plurality of tiny particles, equal in thickness to said sheet and having a broad dimension at least as great as the thickness of said sheet.

2. Method according to claim 1 wherein said hardenable compositions comprise liquid synthetic organic polymers.

3. A method according to claim 1 wherein said magnetic material is barium ferrite.

4. A method according to claim 2 wherein said compositions comprise a volatile organic solvent, and said hardening is elfected by drying said solvent.

5. A method according to claim 1 wherein said layers are formed by casting said compositions onto a releaseable carrier sheet which is stripped from said composite sheet after said sheet is hardened.

6. A method according to claim 1 wherein said magnetization vector is in a direction normal to the surface of said sheet.

7. A method according to claim 1 wherein said sheet is fractured into irregularly shaped particles.

References Cited UNITED STATES PATENTS 3,036,388 5/1962 Tate 3566 3,124,725 3/1964 Le Guillon 335303 3,257,586 6/ 1966 Steingroever 335303 3,406,363 10/1968 Tate 335-302 CHARLIE T. MOON, Primary Examiner C. E. HALL, Assistant Examiner US. Cl. X.R. 29-609

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3036388 *Oct 27, 1961May 29, 1962Tate Clarence RMagnetic writing materials set
US3124725 *Nov 18, 1959Mar 10, 1964 Flexible plastic permanent magnets
US3257586 *Mar 2, 1961Jun 21, 1966Magnetfabrik Bonn GewerkschaftFlexible permanent magnet and composition
US3406363 *May 26, 1966Oct 15, 1968Clarence R. TateMulticolored micromagnets
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4457723 *Jun 11, 1981Jul 3, 1984Thalatta, Inc.Color changeable fabric
US4659619 *Feb 21, 1986Apr 21, 1987Thalatta, Inc.Visual display; rotating color-coded electromagnets in hollow transparent filaments
US5930026 *Oct 25, 1996Jul 27, 1999Massachusetts Institute Of TechnologyNonemissive displays and piezoelectric power supplies therefor
US5961804 *Mar 18, 1997Oct 5, 1999Massachusetts Institute Of TechnologyMicroencapsulated electrophoretic display
US6017584 *Aug 27, 1998Jan 25, 2000E Ink CorporationEncapsulated displays are disclosed; particles encapsulated therein are dispersed within a suspending or electrophoretic fluid
US6067185 *Aug 27, 1998May 23, 2000E Ink CorporationCuring binder; deformation with mechanical force; suspending, or electrophoretic, fluid; electro-osmotic displays
US6090478 *Mar 4, 1997Jul 18, 2000Nitto Boseki Co., Ltd.For use in building materials and sound-proof walls
US6120588 *Sep 23, 1997Sep 19, 2000E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6120839 *Aug 27, 1998Sep 19, 2000E Ink CorporationElectro-osmotic displays and materials for making the same
US6124851 *Jul 20, 1995Sep 26, 2000E Ink CorporationElectronic book with multiple page displays
US6130773 *Nov 10, 1998Oct 10, 2000Massachusetts Institute Of TechnologyNonemissive displays and piezoelectric power supplies therefor
US6241921Dec 7, 1998Jun 5, 2001Massachusetts Institute Of TechnologyElectrophoretic separation of first and second particles within a circularly contained and encapsulated suspension, fusing the particles to form opposing optical elements
US6249271Feb 25, 2000Jun 19, 2001E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US6262706Aug 27, 1998Jul 17, 2001E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US6262833Oct 6, 1999Jul 17, 2001E Ink CorporationCapsules for electrophoretic displays and methods for making the same
US6323989May 5, 2000Nov 27, 2001E Ink CorporationElectrophoretic displays using nanoparticles
US6376828Oct 7, 1999Apr 23, 2002E Ink CorporationIllumination system for nonemissive electronic displays
US6377387Apr 6, 2000Apr 23, 2002E Ink CorporationMethods for producing droplets for use in capsule-based electrophoretic displays
US6392785Jan 28, 2000May 21, 2002E Ink CorporationNon-spherical cavity electrophoretic displays and materials for making the same
US6422687Dec 23, 1999Jul 23, 2002E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6445489Mar 18, 1999Sep 3, 2002E Ink CorporationElectrophoretic displays and systems for addressing such displays
US6473072May 12, 1999Oct 29, 2002E Ink CorporationMicroencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6480182Jul 20, 2001Nov 12, 2002Massachusetts Institute Of TechnologyPrintable electronic display
US6498114Aug 31, 2000Dec 24, 2002E Ink CorporationMethod for forming a patterned semiconductor film
US6518949Apr 9, 1999Feb 11, 2003E Ink CorporationElectronic displays using organic-based field effect transistors
US6538801Nov 12, 2001Mar 25, 2003E Ink CorporationElectrophoretic displays using nanoparticles
US6652075Jul 22, 2002Nov 25, 2003E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6680725Oct 14, 1998Jan 20, 2004E Ink CorporationMethods of manufacturing electronically addressable displays
US6693620May 3, 2000Feb 17, 2004E Ink CorporationThreshold addressing of electrophoretic displays
US6704133Aug 30, 2002Mar 9, 2004E-Ink CorporationReflective display in optical communication with emissive display comprising electrooptic and photoconductive layers, electrodes, synchronization module receiving signals indicating emissive display output, controlling electric field
US6727881Aug 27, 1998Apr 27, 2004E Ink CorporationLongterm image quality
US6738050Sep 16, 2002May 18, 2004E Ink CorporationMicroencapsulated electrophoretic electrostatically addressed media for drawing device applications
US6753999May 31, 2002Jun 22, 2004E Ink CorporationElectrophoretic displays in portable devices and systems for addressing such displays
US6839158Oct 6, 1999Jan 4, 2005E Ink CorporationEncapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6842657Jul 21, 2000Jan 11, 2005E Ink CorporationReactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6864875May 13, 2002Mar 8, 2005E Ink CorporationFull color reflective display with multichromatic sub-pixels
US6865010Dec 13, 2002Mar 8, 2005E Ink CorporationElectrophoretic electronic displays with low-index films
US6870661May 7, 2002Mar 22, 2005E Ink CorporationElectrophoretic displays containing magnetic particles
US6980196Mar 18, 1997Dec 27, 2005Massachusetts Institute Of TechnologyPrintable electronic display
US7002728Feb 9, 2004Feb 21, 2006E Ink CorporationElectrophoretic particles, and processes for the production thereof
US7038655Nov 18, 2002May 2, 2006E Ink CorporationElectrophoretic ink composed of particles with field dependent mobilities
US7071913Jun 29, 2001Jul 4, 2006E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US7075502Apr 9, 1999Jul 11, 2006E Ink CorporationFull color reflective display with multichromatic sub-pixels
US7106296Jul 19, 1996Sep 12, 2006E Ink CorporationElectronic book with multiple page displays
US7109968Dec 24, 2002Sep 19, 2006E Ink CorporationNon-spherical cavity electrophoretic displays and methods and materials for making the same
US7148128Aug 29, 2003Dec 12, 2006E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US7167155Aug 27, 1998Jan 23, 2007E Ink CorporationColor electrophoretic displays
US7230750Oct 7, 2004Jun 12, 2007E Ink CorporationElectrophoretic media and processes for the production thereof
US7242513May 20, 2004Jul 10, 2007E Ink CorporationEncapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7247379Sep 6, 2005Jul 24, 2007E Ink CorporationElectrophoretic particles, and processes for the production thereof
US7312916Aug 6, 2003Dec 25, 2007E Ink CorporationElectrophoretic media containing specularly reflective particles
US7375875May 2, 2007May 20, 2008E Ink CorporationElectrically charged particle suspended in a fluid, with a polymeric shell which is incompatible with the suspending fluid, a second charged particle having optical properties differing from the first particle, with a polymer shell; for encapsulated and microcell electrophoretic displays
US7391555Jun 27, 2006Jun 24, 2008E Ink CorporationNon-spherical cavity electrophoretic displays and materials for making the same
US7532388May 2, 2007May 12, 2009E Ink CorporationElectrophoretic media and processes for the production thereof
US7583251May 1, 2007Sep 1, 2009E Ink CorporationDielectrophoretic displays
US7667684Apr 2, 2004Feb 23, 2010E Ink CorporationMethods for achieving improved color in microencapsulated electrophoretic devices
US7746544Mar 31, 2008Jun 29, 2010E Ink CorporationElectro-osmotic displays and materials for making the same
US7791789May 9, 2008Sep 7, 2010E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US7956841Dec 21, 2007Jun 7, 2011E Ink CorporationStylus-based addressing structures for displays
US8035886Nov 2, 2006Oct 11, 2011E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US8040594Mar 17, 2010Oct 18, 2011E Ink CorporationMulti-color electrophoretic displays
US8089453Dec 21, 2007Jan 3, 2012E Ink CorporationStylus-based addressing structures for displays
US8139050Jan 31, 2005Mar 20, 2012E Ink CorporationAddressing schemes for electronic displays
US8213076Jul 21, 2010Jul 3, 2012E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US8305341Aug 28, 2009Nov 6, 2012E Ink CorporationDielectrophoretic displays
US8384658Jan 8, 2008Feb 26, 2013E Ink CorporationElectrostatically addressable electrophoretic display
US8441714Oct 3, 2011May 14, 2013E Ink CorporationMulti-color electrophoretic displays
US8466852Apr 20, 2004Jun 18, 2013E Ink CorporationFull color reflective display with multichromatic sub-pixels
US8593718Apr 5, 2010Nov 26, 2013E Ink CorporationElectro-osmotic displays and materials for making the same
US8593721May 2, 2012Nov 26, 2013E Ink CorporationMulti-color electrophoretic displays and materials for making the same
Classifications
U.S. Classification29/607, 29/609
International ClassificationG09F9/37, H01F1/032, H01F13/00, H01F1/113
Cooperative ClassificationH01F1/113, H01F13/003, G09F9/375
European ClassificationG09F9/37M, H01F13/00B, H01F1/113
Legal Events
DateCodeEventDescription
Mar 16, 1989ASAssignment
Owner name: FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWAR
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ZZEXX, INC., FORMERLY THALATTA, INC.;REEL/FRAME:005030/0762
Effective date: 19881201
Mar 16, 1989AS02Assignment of assignor's interest
Owner name: FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWAR
Owner name: ZZEXX, INC., FORMERLY THALATTA, INC.
Effective date: 19881201
Aug 26, 1988ASAssignment
Owner name: FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY,
Free format text: SECURITY INTEREST;ASSIGNOR:ZYEXX, INC.,;REEL/FRAME:004932/0618
Effective date: 19860224
Aug 26, 1988AS06Security interest
Owner name: FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY,
Owner name: ZYEXX, INC.,
Effective date: 19860224