Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3477058 A
Publication typeGrant
Publication dateNov 4, 1969
Filing dateFeb 1, 1968
Priority dateFeb 1, 1968
Also published asDE1904873A1, DE1904873B2
Publication numberUS 3477058 A, US 3477058A, US-A-3477058, US3477058 A, US3477058A
InventorsSchultz John Jr, Vedder Willem
Original AssigneeGen Electric
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Magnesia insulated heating elements and methods of production
US 3477058 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Nov. 4, 1969 w. VEDDER ETAL MAGNESIA INSULATED HEATING ELEMENTS AND METHODS OF PRODUCTION Filed Feb. 1, 1968 Fig.

M60 1 2 Pyrophy/li/e Tempera/ure "f Inventor VV/llem l edaer; Jo/v .Sc/w fz, Jr. 7 S U Afiorn United States Patent U.S. Cl. 338238 8 Claims ABSTRACT OF THE DISCLOSUREj Compacted, granular, fused magnesia used as thermallyconducting electrical insulation in tubular, electrical resistance elements is substantially improved both in compaction density and electrical resistivity through the addition of 0.1 to 5.0 percent of any of a variety of substances of layer-structure crystal form such as pyrophyllites.

The present invention relates generally to tubular, electrical-resistance, heating elements and is more particularly concerned with novel sheathed elements having superior performance characteristics, With a method of making these novel elements, and with a new magnesia-base composition having special utility as thermally-conducting, electrically-insulating, packing material in these elements.

Heating elements of the type comprising an inner, electrically-resistive conductor, a surrounding layer of magnesia, electrical insulation and an outermost protective jacket are widely used in many industrial heating devices as well as in devices such as domestic ranges, dishwashers and water heaters. This type of heating element is much more durable than, for example, exposed resistance wire. Structurally, it usually includes: (1) a coiled resistance wire composed of alloys such as those made up of 20 percent chromium and 80 percent nickel; (2) compacted magnesia powder containing minor amounts of impurities surrounding the resistance coil as an insulator; and (3) an outer protective metal jacket.

Over the long period in which such elements have been in general use, they have been developed and improved to a state of good performance and service life, meeting high safety standards and competing with consistent success with gas and high-frequency current heating devices. At the same time, however, it has long been recognized that a substantial increase in the thermal conductivity of the magnesia insulation employed in these elements would be desirable, and that a sizable increase in the electrical resistivity of this material would be even more important. Each of these objectives, however, would have to be realized without incurring any substantial offsetting disadvantage of cost of production or operation or impairment of efliciency of these elements. To the best of our knowledge, no one heretofore has achieved either of these objectives.

In accordance with this invention based upon our discovery subsequently to be described, tubular heating elements having superior operating characteristics attributable to our achievement of the foregoing objectives can be produced consistently. Moreover, no substantial modification of the principal operations involved in commercial production is required in the manufacture of these elements.

This invention in its method, article and composition aspects is predicated upon our discovery that certain materials in particulate form, when added in amounts as small as 0.1 percent to granular, fused magnesia, increase electrical resistivity in accordance with the foregoing objectives and improve thermal conductance. We have also found that these additive substances, which preferably will be used in amounts of approximately 2.0 percent, but may. be used in amounts up to 5.0 percent, have in common the characteristic that they exist in layer-structure crystal form. Thus non-swelling layer silicates such as pyrophyllites, talcs and non-silicate layer-structure materials such as boron nitride are useful as additives in accordance with this invention, except that those having impurities, such as iron or alkali metals, in significant quantities (generally of the order of more than 5.0 percent in the aggregate) are unsuited for this purpose because of the appreciable electronic or ionic electrical conductivity which they would impart to the resulting magnesia mixture.

As disclosed and claimed in a copending application filed: of even date herewith in the name of Louis Balint and assigned to the assignee hereof the foregoing new results and advantages can be obtained through the use of layer-structure clay minerals and, alternatively, through the use of quartz in comparatively small amounts.

Compaction densities approximating those of the compositions of this invention can also be obtained without the use of any of the foregoing additives by surface hydration of the magnesia powder before compacting it in a heating element in the usual manner. This additional discovery or invention is disclosed and claimed in copending application Ser. No. 809,149, filed Mar. 21, 1969 in the name of Willem Vedder and assigned to the assignee hereof and entitled Tubular Heating Elements and Magnesia Insulation Therefor and Method of Production.

In some way, not totally understood, the additives of the present invention function to increase the electrical resistivity of magnesia powder used as packing in tubular heating elements, having apparently a physical-chemical effect at high temperature manifesting itself in the form of substantially increased electrical resistivity of the magnesia insulation. This increase is suprising in that the resistivity of the combined materials is substantially greater than that of either material alone. Additionally, these platey powder additives apparently act as lubricants in the compaction operation, thereby functioning to increase the compaction density and the thermal conductivity of the magnesia insulation.

This invention in its composition aspect accordingly in general comprises a uniform powder mixture of granular, fused magnesia and from 0.1 percent to 5.0 percent of an electrically non-conducting additive of layer-structure crystal form. This composition is further characterized in that at about percent of theoretical density, it has a specific impedance of at least 50 megohm-in. at 830 C.

More in detail, the composition of this invention, as indicated above, will preferably contain about 2.0 percent of a non-swelling layer-structure silicate additive such as a pyrophyllite or a talc. Alternatively, a layer structure non-silicate such as boron nitride may be the additive in part or whole. Further, the mixture may include a wide variety of particle sizes both of magnesia and the additive material, the magnesia preferably, however; being a mixture of particle sizes from 40-mesh to below 325-mesh (US. Standard screen sizes). The add tive'particulate material is suitably of a size or a mix ture of sizes within that range. In any case, the additive material preferably will not be of particle size larger than that of the largest magnesia particles of the mixture at the outset of the compaction operation. Also, as indicated above, a mixture of additives may be employed providing they meet the foregoing requirements and providing further that the aggregate amount of the additives is within the range stated above. We have discovered, in fact, that mixtures of pyrophyllite and boron nitride are especially effective additives for the purposes of this invention.

In its article aspect, this invention, generally described,

comprises a tubular heating element including a metal sheath, a coaxial coiled resistor in the sheath and a compacted, polycrystalline mass of a magnesia composition of this invention filling the space between the resistor and the sheath. Those skilled in the art will understand that this description of the article applies to the article at the intermediate stage of its production when the composition of this invention has been introduced into the sheath but prior to the time when the article has been thermally cycled to the extent that the identity of the additive may no longer be readily detected.

Finally, in its method aspect, this invention, described broadly, involves the use of the novel composition described above in the production of a tubular heating element including particularly the step of filling the metal sheath with that novel material. Thus, this method centers in a use concept which in itself has novelty independently of the uniqueness of the composition per se.

Referring to the drawings accompanying and forming a part of this specification:

FIGURE 1 is an enlarged, side-elevational view of the heating element of this invention, portions being broken away for purposes of illustration; and,

FIGURE 2 is a chart bearing curves comparing the specific impedance of typical magnesia insulation with magnesia insulation of this invention, impedance being plotted on a semi-logarithmic scale as a function of temperature.

The heating element of FIGURE 1 resembles the heretofore conventional tubular heaters in that it is made up of three principal parts. Thus, a coiled resistance wire 1 is disposed within an outer protective metal jacket 2 and is embedded in and spaced from the jacket by compacted magnesia powder 3 which serves both as a thermal conductor and electrical insulator. In contrast to the prior devices, however, the heating element of FIGURE 1 incorporates magnesia powder which has uniquely high electrical resistivity and may also have superior thermal conductivity because of the presence in it of a minor amount of a layer-structure susbtance such as pyrophyllite.

The FIGURE 1 element is suitably fabricated in accordance with the usual practice in the art, the parts being assembled and the element being conditioned at elevated temperature.

Thus, essentially the only significant departure from prior practice in terms of the fabrication operation consists in the use of the new magnesia compositions of this invention, these being substituted for magnesia used in accordance with the prior art practices in order to obtain the special new results and advantages stated above.

Three pyrophyllites and a tale preferred for use in this invention have analyses as follows:

PYROPHYLLITE A 4 PYROPHYLLITE C Percent SiO, 62.9 A1 0 23.8 CaO 3.0 MgO n 0.8 F6203 0.7 Ign. loss -a 5.1

Total 96.3

TALC D Percent Si0 51.0 A1 0 7.3 F6 0 1.4 MgO 32.5 CaO 0.2 Ign. loss 7.3

Total 99.7

Those skilled in the art will understand that tales and pyrophyllites in their natural forms are hydro-silicates which can be dehydrated upon heating. When used in natural form in preparing the mixtures of this invention, they are dehydrated during the normal annealing or heat-treating operation after fabrication of the heating element or possibly during initial operation of the finished unit if such a preliminary heating operation is not involved. Alternatively, the additives can be dehydrated by heating prior to loading the insulation mixture into the heating unit or even prior to the time that these materials are mixed with magnesia. The eifects obtained as described above and the special advantages of this invention are realized independently of how and when this dehydration step is carried out.

Those skilled in the art will also recognize that although the plate-like powder additives of this invention can act as compaction aids during forming operations in the course of fabricating heating elements and thus result in improved density of the insulation, the principal benefits described above can be achieved in certain instances without effecting a substantial increase in compaction density of the material.

The following illustrative, but not limiting, examples are offered in the interest of insuring a full and clear understanding of this invention by those skilled in the art and enabling their practice of it without the necessity for experiment to obtain the new results and advantages stated above:

EXAMPLE I' To 100 grams of magnesia of minus 40-mesh particle size are added two grams of pyrophyllite A of minus 200- mesh particle size. A portion of the resulting powder mixture is introduced into a nickel-chromealloy sheath containing a nickel-chrome electrical resistance element, and the powder is compacted therein to a density of 3.05 grams per centimeter, i.e. about percent theoretical density. The resulting element is then annealed at about 1,970 F. for from 10 to 15 minutes, at which time it is ready for test. Results of insulation impedance and thermal conductance tests on this element and on an element which differs only in that the magnesia powder contains no additive are set out as the first and third items in Table I below.

EXAMPLE II Another portion of the mixture prepared in accordance with the description'in Example I is mixed with an additional amount of minus ZOO-mesh pyrophyllite 'A to bring the pyrophyllite content to approximately four percent. On test, a heating element made with this mixture as described in Example I yields insulation impedance and thermal conductance values set out as the fourth item in Table I.

5 EXAMPLE 111 To another 100-gram portion of minus 40-mesh magnesia is added 0.10 gram of 325-mesh boron nitride. A heating element test specimen prepared as described 6 EXAMPLE IX Pyrophyllite B mixed together with magnesia and used to provide a heating unit as described above yields the test results stated in the ninth entry in Table I. Again above through the use of the resulting mixture yields test 5 the materials are of the powder sizes stated in Example results as set forth in the sixth entry in Table I.

I for both the magnesia and the additive.

TABLE I Insulation Thermal Impedance Conductance (1,700 F.), (1,625 F. megohms mean), B.t.u. in.

MgO, no additive 0. 45 11.0 MgO plus 0.5% pyrophyllite A... 1. 85 11. 2 MgO plus 2% pyrophyllite A- 1. 60 1. 20 MgO plus 4% pyrophyllite A... 0. 65 14. MgO plus 2% talc 0. 60 13. 5 MgO plus 0.1% boron nitride 0. 65 12. 0 MgO plus 3% boron nitride. 0. B7 20. 0 MgO plus 2% Dyroplryllite 0-- 0. 65 12. 9 MgO plus 4% pyrophylhte B 0. 61 12. 7 MgO plus 2% pyrophyllite B plus 0.1 boron nitride 1. 10 12. 7

EXAMPLE IV Boron nitride of minus 325-mesh is added to magnesia to produce a uniform powder mixture containing three percent boron nitride as described in Example I. A test heating element prepared as described in Example I using this mixture is tested with results stated in the seventh entry in Table I.

EXAMPLE V In still another operation, magnesia and pyrophyllite B and boron nitride powders are mixed together as stated in the foregoing examples to provide a composition containing 97.9 percent MgO particle size of minus -mesh pyrophyllite B (minus ZOO-mesh) 2.0 percent and 0.1 percent boron nitride (minus 325-mesh).

Again, on test of a heating unit prepared as described in Example I, it is found that the thermal conductivity of this mixture is superior to that of the standard magnesia and that the insulation resistance and the current leakage resistance of this mixture are far superior to those properties of the standard magnesia. These test results appear as the final entry in Table 1.

EXAMPLE VI A magnesia (minus 40-mesh)-0.5 percent pyrophyllite A powder mixture (minus ZOO-mesh) prepared as described in Example I is tested in a heating element test specimen produced as also described in Example I. As indicated by the second entry in Table I, the insulation impedance of this mixture is substantially better than that of the magnesia powder alone and thermal conductance is slightly improved.

EXAMPLE VII Talc D of minus 325-mesh particle size is mixed with magnesia of minus 40-mesh particle size to provide a heating unit magnesia mixture containing about two percent talc. Upon test in a heating unit made as described above, this mixture is found to have insulation impedance greater than standard magnesia alone and a thermal conductance comparing favorably with the compositions of Examples I-IV as shown by the fifth entry of Table I.

EXAMPLE VIII A magnesia mixture prepared by mixing together 100 grams of magnesia of -40-mesh particle size and two grams of 200-mesh pyrophyllite C is used to produce a heating unit as described above. Upon tests this product shows substantial improvement in both insulation impedance and thermal conductance as reported in the eighth entry in Table I.

As illustrated in FIGURE 2, specific impedance of a magnesia insulation containing 2. 0 percent of pyrophyllite A" compared very favorably with the same magnesia containing no additive over the temperature range from about 1600 to about 1800 F. Thus, at each specific temperature over that range, the specific impedance of the pyrophyllite magnesia mixture additive approached an order of magnitude greater than that of the magnesia containing no such additive and consisting essentially of magnesia powder.

Wherever in this specification and in the appended claims reference is made to percentages or proportions, reference is had to the weight basis rather than the volume basis unless otherwise specifically stated.

By the term non-swelling as used herein and in the appended claims is meant the property of layer silicates like micas of maintaining the distance between layers of the layer structure in the presence of pure water.

Although the present invention has been described in connection with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention, as those skilled in the art will readily understand. Such modifications and variations are considered to be Within the purview and scope of the invention and the appended claims.

What We claim as new and desire to secure by Letters Patent of the United States is:

1. In a tubular heating element including a metal sheath and a coaxial coiled resistor enclosed in the sheath, the combination of a compacted polycrystalline electrical insulating mass filling the space in the sheath between the resistor and the sheath and comprising fused magnesia and from 0.1 percent to 5.0 percent of an electrically nonconducting additive of layer-structure crystal form, said polycrystalline mass having a density of at least percent of theoretical density of pure magnesia and a specific impedance of at least 50 megohm-in. at 830 C.

2. In the method of making a tubular heating element including the step of positioning a coiled resistor coaxially within a metal sheath, the combination of the step of filling the metal sheath and embedding the coiled resistor with a polycrystalline, electrically-insulating mixture of magnesia and from 0.1 percent to 5.0 percent of an electrically non conducting additive of layer-structure crystal form, said mixture at 85 percent of theoretical density having a specific impedance of at least 50 megohm-in. at 830 C.

3. The heating element of claim 1 in which the additive is present in the amount of about two percent.

4. The method of claim 2 in which the amount of the additive is about two percent.

7 5. The heating element of claim 1 in which the additive is a non-swelling layer silicate which is present in the amount of about two percent.

6. The method of claim 2 in which the additive is a pyrophyllite.

7. The method of claim 2 in which the additive is a talc. 5

8. The heating element of claim 1 in which the additive consists of 2.0 percent of a pyrophyllite and 0.1 percent of boron nitride.

8 References Cited UNITED STATES PATENTS 2,280,517 4/1942 Ridgway 338-238 X 3,201,738 8/1965 Mitofi 338238 E. A. GOLDBERG, Primary Examiner US. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2280517 *Oct 27, 1939Apr 21, 1942 Electrical insulation of modified
US3201738 *Nov 30, 1962Aug 17, 1965Gen ElectricElectrical heating element and insulation therefor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3621204 *Apr 29, 1970Nov 16, 1971Dynamit Nobel AgElectrical heating element with fused magnesia insulation
US3622755 *Mar 21, 1969Nov 23, 1971Gen ElectricTubular heating elements and magnesia insulation therefor and method of production
US3658587 *Jan 2, 1970Apr 25, 1972Allegheny Ludlum SteelElectrical insulation coating saturated with magnesium and/or calcium ions
US3678435 *Nov 9, 1970Jul 18, 1972Allis Chalmers Mfg CoElectrical resistor
US3761859 *Jul 27, 1971Sep 25, 1973Philips CorpHeating element having a high heating current
US4129774 *Aug 13, 1976Dec 12, 1978Hitachi Heating Appliances Co., Ltd.Filling materials for heating elements
US4234786 *Feb 12, 1979Nov 18, 1980General Electric CompanyMagnesia insulated heating elements and method of making the same
US4506251 *May 17, 1982Mar 19, 1985Matsushita Electric Industrial Co., Ltd.Sheathed resistance heater
US4586020 *May 17, 1982Apr 29, 1986Matsushita Electric Industrial Company, LimitedSheathed resistance heater
US5977519 *Feb 28, 1997Nov 2, 1999Applied Komatsu Technology, Inc.Heating element with a diamond sealing material
US6191390May 14, 1999Feb 20, 2001Applied Komatsu Technology, Inc.Heating element with a diamond sealing material
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US7040397Apr 24, 2002May 9, 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8257112Oct 8, 2010Sep 4, 2012Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8356935Oct 8, 2010Jan 22, 2013Shell Oil CompanyMethods for assessing a temperature in a subsurface formation
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8485256Apr 8, 2011Jul 16, 2013Shell Oil CompanyVariable thickness insulated conductors
US8485847Aug 30, 2012Jul 16, 2013Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US8502120Apr 8, 2011Aug 6, 2013Shell Oil CompanyInsulating blocks and methods for installation in insulated conductor heaters
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8586866Oct 7, 2011Nov 19, 2013Shell Oil CompanyHydroformed splice for insulated conductors
US8586867Oct 7, 2011Nov 19, 2013Shell Oil CompanyEnd termination for three-phase insulated conductors
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8732946Oct 7, 2011May 27, 2014Shell Oil CompanyMechanical compaction of insulator for insulated conductor splices
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8816203Oct 8, 2010Aug 26, 2014Shell Oil CompanyCompacted coupling joint for coupling insulated conductors
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857051Oct 7, 2011Oct 14, 2014Shell Oil CompanySystem and method for coupling lead-in conductor to insulated conductor
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8859942Aug 6, 2013Oct 14, 2014Shell Oil CompanyInsulating blocks and methods for installation in insulated conductor heaters
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8939207Apr 8, 2011Jan 27, 2015Shell Oil CompanyInsulated conductor heaters with semiconductor layers
US8943686Oct 7, 2011Feb 3, 2015Shell Oil CompanyCompaction of electrical insulation for joining insulated conductors
US8967259Apr 8, 2011Mar 3, 2015Shell Oil CompanyHelical winding of insulated conductor heaters for installation
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9048653Apr 6, 2012Jun 2, 2015Shell Oil CompanySystems for joining insulated conductors
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9080409Oct 4, 2012Jul 14, 2015Shell Oil CompanyIntegral splice for insulated conductors
US9080917Oct 4, 2012Jul 14, 2015Shell Oil CompanySystem and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9226341Oct 4, 2012Dec 29, 2015Shell Oil CompanyForming insulated conductors using a final reduction step after heat treating
US20020029881 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20020029882 *Apr 24, 2001Mar 14, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US20020029884 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020033255 *Apr 24, 2001Mar 21, 2002Fowler Thomas DavidIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20020033256 *Apr 24, 2001Mar 21, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20020033257 *Apr 24, 2001Mar 21, 2002Shahin Gordon ThomasIn situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020033280 *Apr 24, 2001Mar 21, 2002Schoeling Lanny GeneIn situ thermal processing of a coal formation with carbon dioxide sequestration
US20020034380 *Apr 24, 2001Mar 21, 2002Maher Kevin AlbertIn situ thermal processing of a coal formation with a selected moisture content
US20020035307 *Apr 24, 2001Mar 21, 2002Vinegar Harold J.In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020036083 *Apr 24, 2001Mar 28, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020036084 *Apr 24, 2001Mar 28, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US20020036089 *Apr 24, 2001Mar 28, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources
US20020036103 *Apr 24, 2001Mar 28, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation by controlling a pressure of the formation
US20020038705 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020038708 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a condensate
US20020038709 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020038710 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020038711 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020038712 *Apr 24, 2001Apr 4, 2002Vinegar Harold J.In situ production of synthesis gas from a coal formation through a heat source wellbore
US20020039486 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US20020040173 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US20020040177 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020040779 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture containing olefins, oxygenated hydrocarbons, and/or aromatic hydrocarbons
US20020040781 *Apr 24, 2001Apr 11, 2002Keedy Charles RobertIn situ thermal processing of a hydrocarbon containing formation using substantially parallel wellbores
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043366 *Apr 24, 2001Apr 18, 2002Wellington Scott LeeIn situ thermal processing of a coal formation and ammonia production
US20020043367 *Apr 24, 2001Apr 18, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020043405 *Apr 24, 2001Apr 18, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US20020046832 *Apr 24, 2001Apr 25, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020046839 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US20020049358 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation using a distributed combustor
US20020050353 *Apr 24, 2001May 2, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20020050356 *Apr 24, 2001May 2, 2002Vinegar Harold J.In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050357 *Apr 24, 2001May 2, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020052297 *Apr 24, 2001May 2, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US20020053429 *Apr 24, 2001May 9, 2002Stegemeier George LeoIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432 *Apr 24, 2001May 9, 2002Berchenko Ilya EmilIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020053435 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US20020053436 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US20020056551 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020062051 *Apr 24, 2001May 23, 2002Wellington Scott L.In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062052 *Apr 24, 2001May 23, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US20020062959 *Apr 24, 2001May 30, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020062961 *Apr 24, 2001May 30, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation and ammonia production
US20020066565 *Apr 24, 2001Jun 6, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US20020074117 *Apr 24, 2001Jun 20, 2002Shahin Gordon ThomasIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US20020077515 *Apr 24, 2001Jun 20, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020096320 *Apr 24, 2001Jul 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US20020104654 *Apr 24, 2001Aug 8, 2002Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020108753 *Apr 24, 2001Aug 15, 2002Vinegar Harold J.In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US20020117303 *Apr 24, 2001Aug 29, 2002Vinegar Harold J.Production of synthesis gas from a hydrocarbon containing formation
US20020170708 *Apr 24, 2001Nov 21, 2002Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US20020191968 *Apr 24, 2001Dec 19, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20020191969 *Apr 24, 2001Dec 19, 2002Wellington Scott LeeIn situ thermal processing of a coal formation in reducing environment
US20030006039 *Apr 24, 2001Jan 9, 2003Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626 *Apr 24, 2001Jan 30, 2003Vinegar Harold J.In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030024699 *Apr 24, 2001Feb 6, 2003Vinegar Harold J.In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US20030051872 *Apr 24, 2001Mar 20, 2003De Rouffignac Eric PierreIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030062154 *Apr 24, 2001Apr 3, 2003Vinegar Harold J.In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030062164 *Apr 24, 2001Apr 3, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030066644 *Apr 24, 2001Apr 10, 2003Karanikas John MichaelIn situ thermal processing of a coal formation using a relatively slow heating rate
US20030075318 *Apr 24, 2001Apr 24, 2003Keedy Charles RobertIn situ thermal processing of a coal formation using substantially parallel formed wellbores
US20030085034 *Apr 24, 2001May 8, 2003Wellington Scott LeeIn situ thermal processing of a coal formation to produce pyrolsis products
US20030130136 *Apr 24, 2002Jul 10, 2003Rouffignac Eric Pierre DeIn situ thermal processing of a relatively impermeable formation using an open wellbore
US20030141065 *Apr 24, 2001Jul 31, 2003Karanikas John MichaelIn situ thermal processing of hydrocarbons within a relatively permeable formation
US20030164234 *Apr 24, 2001Sep 4, 2003De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20030164238 *Apr 24, 2001Sep 4, 2003Vinegar Harold J.In situ thermal processing of a coal formation using a controlled heating rate
US20030213594 *Jun 12, 2003Nov 20, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040015023 *Apr 24, 2001Jan 22, 2004Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US20040069486 *Apr 24, 2001Apr 15, 2004Vinegar Harold J.In situ thermal processing of a coal formation and tuning production
US20040108111 *Apr 24, 2001Jun 10, 2004Vinegar Harold J.In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20090101346 *May 31, 2007Apr 23, 2009Shell Oil Company, Inc.In situ recovery from a hydrocarbon containing formation
US20100126727 *Dec 8, 2008May 27, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US20110124223 *May 26, 2011David Jon TilleyPress-fit coupling joint for joining insulated conductors
US20110124228 *Oct 8, 2010May 26, 2011John Matthew ColesCompacted coupling joint for coupling insulated conductors
US20110132661 *Oct 8, 2010Jun 9, 2011Patrick Silas HarmasonParallelogram coupling joint for coupling insulated conductors
US20110134958 *Oct 8, 2010Jun 9, 2011Dhruv AroraMethods for assessing a temperature in a subsurface formation
US20140138373 *Apr 4, 2012May 22, 2014Bosch CorporationCeramic heater-type glow plug
Classifications
U.S. Classification338/238, 501/96.4, 174/118, 501/108, 29/614
International ClassificationH05B3/48, H05B3/42, H01B3/12, H05B3/18, H05B3/10, C04B35/053, C04B35/03
Cooperative ClassificationH05B3/18, H05B3/48
European ClassificationH05B3/18, H05B3/48