Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3480082 A
Publication typeGrant
Publication dateNov 25, 1969
Filing dateSep 25, 1967
Priority dateSep 25, 1967
Publication numberUS 3480082 A, US 3480082A, US-A-3480082, US3480082 A, US3480082A
InventorsHarold E Gilliland
Original AssigneeContinental Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
In situ retorting of oil shale using co2 as heat carrier
US 3480082 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Nov. 25, 1969 H. E. GILLILAND 3,480,082

IN sITU RETORTING 0F OIL SHALE USING cozAs HEAT CARRIER Filed Sept. 25, 1967 fl? /|0 6 25 2| 23 24 25 Q6-m9, fr nooo l :y www 22 HRL E. G/LL/L/V BY United States Patent O U.S. Cl. 166--266 4 Claims ABSTRACT oF THE DISCLOSURE Carbon -dioxide is utilized as heat carrier for retorting oil shale which is intimately associated with carbonate minerals. The carbon dioxide has high heat capacity and with the high CO2 atmosphere prevents calcining the carbonate, thus conserving heat.

BACKGROUND OF INVENTION Field of invention This invention relates to recovery of oil from oil shale either in situ or by surface retorting. More particularly, this invention relates to conservation of energy in heating oil shale associated with a carbonate mineral to retorting conditions with a carrier fluid.

Oil shale deposits are found in many locations with very large reserves of hydrocarbons. The hydrocarbon material is generally present as semi-fluids to solids and generally referred to as kerogens. These hydrocarbons are valuable sources of liquid petroleum products and have added vastly to the potential petroleum reserves of the world. While in many deposits of kerogens the oil shale is associated with clayey materials and non-reactive mineral, there are many deposits of such shale closely associated with carbonates such as calcite and dolomite.

Description of prior art In recovering usable hydrocarbons from oil shales, many proposals have been made. In those methods most widely used, heat is involved which softens or liquees the kerogen and/or cracks such material to produce liquid and gaseous products. The heat can be applied in situ or the shale can vbe mined by conventional mining methods such as room and pillar mining, long-wall mining, strip mining or any other method for removing the oil shale from its natural environment, and the shale is then subjected to retorting. When in situ retorting is utilized, the product can be recovered from the same well through which the heating agent is injected; however, more generally, the heating agent is injected in one well and the product is produced through one or more wells spaced from the injection well. Sometimes air is injected into the well and the kerogen is ignited. The hot gases resulting from the combustion move through the formation liquefying and partially gasifying the kerogen and carry the liquid and gaseous product through the formation to the production well where it is recovered. This in situ combustion has the obvious disadvantage of consuming useful components of the kerogen along with the least desirable components or rather those particularly useful as fuels. To overcome this disadvantge, an inert gas such as steam, nitrogen, ue gas and the like is heated on lthe surface and forced into the formation, and the hydrocarbons are withdrawn at a production well; the low molecular weight gaseous material is separated, from the desired liquid product, and burned to heat the injected gas. One such method for recovering hydrocarbons from 34,480,082 Patented Nov. 25, 1969 ICC tar sands, rather than oil shale, is described in U.S. Patent 3,040,809 Pelzer. A controlled combustion system is disclosed in U.S. Patent 2,839,141 by Water. R. W. Thomas in U.S. Patent 3,284,281 discloses fracturing and heating with inert gases. While CO2 has been disclosed by these patentees either in admixture with other gases or alone, the CO2 has been equated with other inert gases and the prior art has failed to recognize the problem of carbonate-containing material being associated with the oil shale or any advantage of utilizing CO2 as the inert gas.

SUMMARY OF INVENTION According to this invention, oil shale in association with carbonate minerals (wherein I mean by carbonate minerals-calcite, dolomite, nahcolite, trona, etc.) are heated to a temperature wherein the hydrocarbon associated with said oil shale is liquefied or gasied by contacting such oil shale with hot carbon dioxide. The oil shale can be contacted in situ or can be mined and lcontacted in a retort.

BRIEF DESCRIPTION OF DRAWINGS FIGURE 1 is a schematic flow diagram illustrating the invention as applied to in situ treatment of oil shale.

FIGURE 2 is a schematic ow diagram illustrating the invention as applied to surface retorting of oil shale.

DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION As has been indicated, when oil shale is associated with carbonate minerals, certain problems are encountered which do not exist with other oil shales. Frequently the carbonate minerals will equal approximately 50 percent of the mixture of minerals and hydrocarbon material. At temperatures of approximately 1000 F. which are required to retort the shale for recovery of hydrocarbons, the carbonates begin to calcine, e.g., decompose, consuming prodigious quantities of heat which will generally range from about 600,000 to 1,000,000 B.t.u. per ton of shale. The cost of supplying this heat can range from two to four times or more than that required for supplying the minimum heat requirement for heating the shale to retorting temperatures. The carbonates in the shale are also one of the principal agents for bonding the mineral matrix 0f the shale. Thus, the strength of the shale is deleteriously aifected by carbonate decomposition. This loss of strength leads to particle size degradation and shale dust is formed. Particularly in surface retorting, this dust creates numerous operating problems and contributes to atmosphere polution. To a lesser degree, the dust is also a problem from in situ retorting since the dust is easily carried out through the producing well and also tends to block the ow paths in the subterranean formation.

The decomposition of the carbonate minerals can be substantially reduced if the mineral is heated to calcining temperature in an atmosphere of CO2. Even at atmospheric pressures CaCO3 decomposition is reduced by a factor between 3 and 4 as compared to the decomposition at calcining temperatures in a nitrogen atmosphere. As the partial pressure of the CO2 is increased, the amount and rate of decomposition is decreased; therefore, I prefer to use a pressurev of at least 500 pounds per square inch gauge (p.s.i.g.) and generally use a pressure of at least 1000 p.s.i.g. The upper limit on the pressure is limited only by the structural strength of the formation or retorting vessel. Since the retorting temperature is generally around 1000 F., the CO2 must be heated to some temperature in excess of the 1000 F., the minimum temperature depending upon the formation temperature, the volume of gas per volume ofl shale to be heated and other` heat loss factors which will vary with.each...given..set-ofconditions.: Y

The determination of such temperature is within the skill of the art utilizing well known physical and chemical principles. In general, the minimum practical temperature will be about 1250 F.`fand preferably about 1500 F. The maximum temperature" will depend upon the nature of lthe' kerogenv and the degree of -thermal Acracking desired and will `be limited'by materials technology. This, of course, is not part of 'my invention and the -determination of the desired temperature tor-whichr the shale is to be heated is'well-'within the sk ill lof the art;v

Theuseof CO2 as the heat carrierhas additional advantages'over otherfinert'gasesFor' example,fCO2has` a relativelyhigh heat'capacity and' therefore is an efficient heat' carrier. The vCO2 `is easily 'liquefied' attemperatures below=87-8 E., thus'facilitating` recoveryof the CO2 for recirculation and handling. l 4

Having set forth certain broad'lir'nits of the invention, its `application for in situ retorting and. for surface Vretorting will be described in preferred embodiments by reference to the drawings. Whilecertainspecific` volumes, temperatures and pressures will be used, it is obvious that these can be varied within the framework of the foregoing general disclosure.

Describing first an in situ retorting embodiment, reference is made to FIGURE 1. Carbon dioxide gas is passed via conduit 1 and well 2 to oil shale formation 3 at a rate of 1,000,000 s.c.f.h. (standard cubic feet per hour), a temperature of 1500 F. and at a pressure of 1000 p.s.i.g. The CO2 heats the shale and vaporizes and/or entrains the hydrocarbons produced by cracking and/or vaporization and liquefaction and is produced from the formation through production well 4 and passed via conduit 5 to heat exchanger 6. The temperature of the stream entering exchanger 6 is 300 F. and has a pressure of 750 p.s.i.g. The stream is cooled to about 200 F. and passes via conduit 27 to separator 7 where a first condensate is removed via conduit 8 and passed to product line 9 to be sent to storage, not shown. The gaseous material is then passed to a second heat exchanger 10 via conduit 11 where it isfurther cooled to about 100 F. Vand passed via conduit 12 to a second separator 13 where theremaining condensible liquid is separated from the gaseous material and is passed via 'conduit 14 to conduit 9 and mixed with the liquid from separator 7 to be passed to storage. The mixed product amounts to 1000 bbls./day oil and 150 bbls/day water. The water can, of course, `be separated from the oil by well known decanting or other separating means and is not shown. The CO2 and light hydrocarbon gases are then passed at 700 p.s.i.g. to CO2 liquefaction zone 16 via conduit 15. Make up CO2 is added via conduit 17. The CO2 is liquefied and is separated from the gaseous hydrocarbons. These hydrocarbons amount to 1400 s.c.f./bbl. of shale oil recovered and have an energy Value of about 800 B.t.u./s.c.f. This fuel is passed via conduit 18 to primary heating zone 26. Additional fuel is mixed with this recovered fuel via conduit 19. The liquid CO2 is passed via conduit 21 and pump 22 at 40 F. and 1200 p.s.i.g. to heat exchanger 10 where it is heated to 140 F. and passed via conduit 24 to heat exchanger 6 where the temperature is raised to 240 F. The CO2 then passes via conduit'25 to primary heater` 26 where it is heated by burning the fuel from conduit Y9 -with air supplied via conduit toa temperature of 1500 F., the pressure having dropped to 1000 p.s.i.'g. and is then passed via conduit 1 to injection well 2 as previously described.

Normally, with an' oil shale-carbonate deposit, one would expect a net make of CO2 particularly where the hot gases enter the formation. However, operating according to the preferred method described above, it vis necessary to add make up CO2`via` conduit 17.

In the above description, valves, details of the liquelfaction zone, the separators andthe like'have been i omitted, since'these are not'part of invention and can readily be supplied by those skilled in the-art. Itis obvious that the CO2 can be directly heated without passing through the heat exchangers and the product from well 4 can be cooled by separate means if desired. It is also obvious that the liquid and gaseous product from the shale-carbonate layer 3 could be produced from the same well into which the hot CO2 is injected or could be produced from more than a .single production well. All of this is within the skill of the art.

A preferred method of treating oil shale mixed with a carbonate ina. surface retorting operation will be described with reference to FIGURE 2. Raw shale feed containing about 45 percent dolomite plus calcite, after being reduced to the desired particle size, is fed via conduit 1 at 50 F. and at a rate of 1000 pounds per hour per square foot of retort cross-sectional area to vertical kiln 2 where it is contacted by a rising stream of hot CO2. Hot CO2, at 1500 F. and at a rate of 4780 s.c.f./ton of shale, `is introduced to vessel 2 via conduit 3 at the desired operating pressure, preferably at least 500 p.s.i.g. CO2 at 150 F. and a rate of 20,900 s.c.f./ton of shale oil is introduced at the bottom of vessel 3 via conduit 4 and Serves to cool the spent shale. The spent shale is removed from vessel 2 via conduit 5 at 250 F. and sent to storage or dump as desired (not shown).

The hot gases (CO2 and hydrocarbon) with entrained liquid hydrocarbon passes overhead from vessel 2 via conduits 6 and 7 at a temperature of about 130 F. wherein most of the hydrocarbons liquefy and are passed to separator 8 via conduit 9. The liquid hydrocarbon product is removed from separator 8 via conduit 10 and sent to storage, not shown. The gases are cooled to about F. in separator 8 and passed via conduit 11 to zone 12 where the CO2 is liquefied and separated from the hydrocarbon gases. Make up CO2 is added via conduit 13. Cold CO2 is passed via conduit 14 to pump 15 and is introduced to vessel 2 as previously described. Hydrocarbon gases of 800 B.t.u./s.c.f. are passed at a rate of 1000 s.c.f./ton of oil shale processed via conduit 16 and with additional fuel gas from conduit 17 are burned in heater 18 with air supplied via conduit 19 to heat the CO2 to be passed to vessel 2 via conduit 3. The flue gas is taken off via conduit 20. The CO2 to be heated is passed via conduit 21, pump 22 and conduit 23 to Zone 18 where it is heated to 1500 F. and passed to vessel 2 via conduit 3 as described supra.

As in the case of in situ retorting, it is within the skill of the art to modify the flow described as required by the nature of the oil shale.

Having thus described my invention, I claim:

1. A process for recovering hydrocarbon product from a subterranean deposit of oil shale in association with a carbonate mineral, said process comprising introducing into said subterranean deposit a gas consisting essentially of CO2 at a pressure of at least 500 pounds per square inch gauge and at a temperature of at least 1000 F. wherein at least a portion of the deposit will be heated to a temperature above the ordinary decomposition temperature of said carbonate mineral in the absence of CO2, recovering from said subterranean deposit a mixture of CO2 and hydrocarbon and separating the recovered hydrocarbon from said CO2.

2. The process of claim 1 wherein the CO2 is separated from the hydrocarbon by liquefying the CO2.

3. The process of claim 2 wherein the CO2 is introduced into the subterranean deposit and the mixture of CO2 and hydrocarbon ishrecovered through the same well.

4. The process of claim 2 wherein the CO2 is introduced into the subterranean formation through a rst well, and the mixture of CO2 and hydrocarbon are recovered through a second well spaced from said iirst well.

Y, (References on following page) References Cited UNITED STATES PATENTS Day 166-8 Hoover et al. 166-7 McKee.

Deering et al 208-11 Friedman 20S-11 Natland 208-11 X Dougan 166-7 6 3,303,881 2/ 1967 Dixon. 3,342,257 9/196-7 Jacobs et al. 166-11 CHARLES E. OCONNELL, Primary Examiner 5 IAN A. CA-LVERT, Assistant Examiner U.S. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1342741 *Jan 17, 1918Jun 8, 1920Day David TProcess for extracting oils and hydrocarbon material from shale and similar bituminous rocks
US1422204 *Dec 19, 1919Jul 11, 1922Brown Thomas EMethod for working oil shales
US2039330 *Jul 8, 1930May 5, 1936Mckee Ralph HPurification of carbon dioxide
US3058904 *Apr 26, 1960Oct 16, 1962Union Oil CoShale oil eduction process
US3074877 *Jul 1, 1959Jan 22, 1963Texaco IncMethod for recovering oil from oil-bearing minerals
US3109781 *Nov 6, 1958Nov 5, 1963Richfield Oil CorpCombined apparatus of a retort, fractionator and heater for treating hydrocarboniferous material
US3241611 *Apr 10, 1963Mar 22, 1966Equity Oil CompanyRecovery of petroleum products from oil shale
US3303881 *Nov 22, 1963Feb 14, 1967Nuclear Proc CorpUnderground nuclear detonations for treatment and production of hydrocarbons in situ
US3342257 *Dec 30, 1963Sep 19, 1967Standard Oil CoIn situ retorting of oil shale using nuclear energy
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3596993 *Feb 14, 1969Aug 3, 1971Mc Donnell Douglas CorpMethod of extracting oil and by-products from oil shale
US3617467 *Dec 6, 1968Nov 2, 1971Atlantic Richfield CoProcesses for retorting oil shale
US3617468 *Dec 6, 1968Nov 2, 1971Atlantic Richfield CoProcess for removing the hydrocarbon content of carbonaceous materials
US3617469 *Dec 26, 1968Nov 2, 1971Texaco IncHydrotorting of shale to produce shale oil
US3617470 *Dec 26, 1968Nov 2, 1971Texaco IncHydrotorting of shale to produce shale oil
US3617471 *Dec 26, 1968Nov 2, 1971Texaco IncHydrotorting of shale to produce shale oil
US3617472 *Dec 31, 1969Nov 2, 1971Texaco IncProduction of shale oil
US3700280 *Apr 28, 1971Oct 24, 1972Shell Oil CoMethod of producing oil from an oil shale formation containing nahcolite and dawsonite
US3882941 *Dec 17, 1973May 13, 1975Cities Service Res & Dev CoIn situ production of bitumen from oil shale
US4026357 *Jun 26, 1974May 31, 1977Texaco Exploration Canada Ltd.In situ gasification of solid hydrocarbon materials in a subterranean formation
US4133381 *Dec 27, 1977Jan 9, 1979Occidental Oil Shale, Inc.Contacting treated oil shale with carbon dioxide to inhibit leaching
US4243511 *Mar 26, 1979Jan 6, 1981Marathon Oil CompanyProcess for suppressing carbonate decomposition in vapor phase water retorting
US4303127 *Feb 11, 1980Dec 1, 1981Gulf Research & Development CompanyMultistage clean-up of product gas from underground coal gasification
US4344486 *Feb 27, 1981Aug 17, 1982Standard Oil Company (Indiana)Method for enhanced oil recovery
US4384614 *May 11, 1981May 24, 1983Justheim Pertroleum CompanyMethod of retorting oil shale by velocity flow of super-heated air
US4446921 *Mar 16, 1982May 8, 1984Fried. Krupp Gesellschaft Mit Beschrankter HaftungMethod for underground gasification of solid fuels
US4615392 *Feb 11, 1985Oct 7, 1986Shell California Production Inc.Recovering oil by injecting hot CO2 into a reservoir containing swelling clay
US4856587 *Oct 27, 1988Aug 15, 1989Nielson Jay PRecovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US6505683 *Apr 27, 2001Jan 14, 2003Institut Francais Du PetroleProcess for purification by combination of an effluent that contains carbon dioxide and hydrocarbons
US7624801 *Jun 30, 2008Dec 1, 2009Pioneer Energy Inc.Control system and method for controlling a hybrid petroleum extractor/power generator
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7677310 *Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730946 *Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US8047007May 3, 2011Nov 1, 2011Pioneer Energy Inc.Methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8450536Jul 17, 2009May 28, 2013Pioneer Energy, Inc.Methods of higher alcohol synthesis
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8602095Feb 20, 2009Dec 10, 2013Pioneer Energy, Inc.Apparatus and method for extracting petroleum from underground sites using reformed gases
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8616294Aug 25, 2010Dec 31, 2013Pioneer Energy, Inc.Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8701788Dec 22, 2011Apr 22, 2014Chevron U.S.A. Inc.Preconditioning a subsurface shale formation by removing extractible organics
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8785699Apr 19, 2013Jul 22, 2014Pioneer Energy, Inc.Methods of higher alcohol synthesis
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8839860Dec 22, 2011Sep 23, 2014Chevron U.S.A. Inc.In-situ Kerogen conversion and product isolation
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8851177Dec 22, 2011Oct 7, 2014Chevron U.S.A. Inc.In-situ kerogen conversion and oxidant regeneration
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8936089Dec 22, 2011Jan 20, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and recovery
US8992771May 25, 2012Mar 31, 2015Chevron U.S.A. Inc.Isolating lubricating oils from subsurface shale formations
US8997869Dec 22, 2011Apr 7, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and product upgrading
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033033Dec 22, 2011May 19, 2015Chevron U.S.A. Inc.Electrokinetic enhanced hydrocarbon recovery from oil shale
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9133398Dec 22, 2011Sep 15, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and recycling
US9181467Dec 22, 2011Nov 10, 2015Uchicago Argonne, LlcPreparation and use of nano-catalysts for in-situ reaction with kerogen
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9528322Jun 16, 2014Dec 27, 2016Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US9605522Feb 20, 2009Mar 28, 2017Pioneer Energy, Inc.Apparatus and method for extracting petroleum from underground sites using reformed gases
US9605523Dec 30, 2013Mar 28, 2017Pioneer Energy, Inc.Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US20080142216 *Oct 19, 2007Jun 19, 2008Vinegar Harold JTreating tar sands formations with dolomite
US20090008089 *Jun 30, 2008Jan 8, 2009Zubrin Robert MControl system and method for controlling a hybrid petroleum extractor/power generator
US20090014181 *Oct 19, 2007Jan 15, 2009Vinegar Harold JCreating and maintaining a gas cap in tar sands formations
US20090095478 *Apr 18, 2008Apr 16, 2009John Michael KaranikasVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US20090101346 *May 31, 2007Apr 23, 2009Shell Oil Company, Inc.In situ recovery from a hydrocarbon containing formation
US20090229815 *Feb 20, 2009Sep 17, 2009Pioneer Energy, Inc.Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases
US20100088951 *Jul 17, 2009Apr 15, 2010Pioneer AstronauticsNovel Methods of Higher Alcohol Synthesis
US20110203292 *May 3, 2011Aug 25, 2011Pioneer Energy Inc.Methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US20130000349 *Sep 11, 2012Jan 3, 2013General Synfuels International, Inc.Apparatus and methods for the recovery of hydrocarbonaceous and additional products from oil shale and sands via multi-stage condensation
WO2010076282A1 *Dec 23, 2009Jul 8, 2010Shell Internationale Research Maatschappij B.V.Minimal gas processing scheme for recycling co2 in a co2 enhanced oil recovery flood
Classifications
U.S. Classification166/266, 208/951, 166/402, 166/267
International ClassificationE21B43/24, E21B43/40, E21B43/16
Cooperative ClassificationY10S208/951, E21B43/24, E21B43/164, E21B43/40
European ClassificationE21B43/16E, E21B43/24, E21B43/40