Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3481759 A
Publication typeGrant
Publication dateDec 2, 1969
Filing dateAug 22, 1966
Priority dateAug 22, 1966
Also published asDE1671634B1
Publication numberUS 3481759 A, US 3481759A, US-A-3481759, US3481759 A, US3481759A
InventorsOstlie Dean A
Original AssigneeMinnesota Mining & Mfg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Impact marking carbonless paper
US 3481759 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 2, 1969 D. A. os'rue 3,481,759

IMPACT MARKING CARBONLESS PAPER Filed Aug. 22, 1966 I NVENTOR. flaw/A 0574 a? (47 TOR/V6715 United States Patent US. Cl. 117--36.2 9 Claims ABSTRACT OF THE DISCLOSURE Self-marking papers of the transfer or manifolding type operate by having a dye precursor within microscopic capsules carried as a transfer coating on one sheet of paper, the dye precursor within the capsules reacting with a receptor coating on a mating sheet of paper to produce a visible mark on such mating sheet of paper upon impact against the contacting transfer and receptor coatings when the two sheets of paper are mated, the microcapsules at the point of impact rupturing and releasing their contents onto the receptor coating of the mating sheet. To prevent the inadvertent marking or backgrounding during handling, a co-reactant for the dye precursor is included in the transfer coating containing the capsules but externally of the capsules so that upon the inadvertent rupture of capsules in the transfer coating the contents will react with the colorless co-reactant before passage through the sheet or transfer to the receptor sheet coating and thus prevent inadvertent marking of the paper. Scuff capsules to help further prevent inadvertent marking may also be included in the transfer coating along with the dye precursor containing capsules.

The invention relates to self-marking impact papers of the transfer or manifolding type wherein one marking ingredient is carried on one sheet of paper to react with a second marking ingredient carried on a mating sheet of paper. More particularly, this invention relates to selfmarking impact transfer or manifolding papers which have greatly increased resistance to inadvertent coloration or backgrounding during handling, particularly during printing or similar operations, and storage.

Impact or pressure sensitive self-marking .carbonless transfer papers have come into wide usage over the past ten or twelve years. Ordinarily, these papers are printed and collated into form sets for producing multiple copies, impact on the top sheet causing each of the remaining sheets to form a mark thereon corresponding to the mark applied by machine key or stylus on the top sheet without carbon paper interleaves or carbon coatings. Of course, this sequence can be carried out through a number of sheets just as if carbon paper is used. The top sheet of paper upon which the impact is immediately made usually has its back surface coated with tiny microscopic capsules containing one of the reactive ingredients which produce a mark. A receiver sheet, placed in contact with such backface of the top sheet has its front surface coated with a material having a component reactive with the contents of the capsules so that when capsules are ruptured upon impact by stylus or machine key the contents of the ruptured capsules react with a coreactant therefor on the receiver sheet and a mark forms corresponding to the mark impressed by the stylus or machine key. In the trade, these self-marking impact transfer papers are designated by the terms CB, CFB, and CF, which stand respectively for Coated Back," Coated Front and Back, and Coated Front. Thus, the CB sheet is usually the top sheet and the one on which the impact impression is directly made; the CFB sheets are the intermediate sheets which form a mark on the front surface thereof and transmit the contents of ruptured capsules from the back surface thereof to the front of the next succeeding sheet; the CF sheet is the last sheet used which is only coated on the front surface to form an image thereon and is not coated on the back surface as no further transfer is desired. While it is customary to coat the capsules on the back surface and coat the coreactant for the capsules on the front surface, this procedure could be reversed if desired. In fact, with some systems, e.g. those using urea-formaldehyde polymer shelled capsules and dithiooxamide derived image' forming dye precursors, coatings need not be used at all, and the coreactive ingredients may be carried in the sheets themselves, or one may be carried in one of the sheets and the other may be carried as a surface coating. Further, the reactants may both be in capsules and may both be liquid. Patents illustrative of the various kinds of systems that may be used in the production of carbonless transfer papers are, for example, Patent No. 1,781,902 to Gill issued Nov. 18, 1930, Patent No. 2,168,098 issued to Groak, issued Aug. 1, 1939, Patent No. 2,299,694, to Green, issued Oct. 20, 1942, and Patent No. 2,712,507, to Green, issued July 5, 1955.

The most common variety of carbonless impact transfer paper and the type with which this invention is primarily concerned is the type illustrated in Green Patent No. 2,712,507 wherein tiny microscopic capsule are coated on the back of one sheet with microscopic capsule containing liquid fill having chemically reactive color forming dye precursor coated on the back surface of the sheet,

and a dry coating of a coreactant chemical for such dye precursor is coated on the front surface of a receiving sheet. In these capsule containing papers, which are preferred because of the speed and adequacy of the marks produced, a persistent backgrounding problem is encountered when the sheets, are printed to provide forms which are thereafter collated, stacked and cut to size in 'the formation of multiply copy form sets. This backgrounding, which occurs through inadvertent capsule rupture and transfer of fill contents through the sheet from the back surface thereof to the front surface or from sheet to sheet (CB to mating CF or CFB), although not sufficient to render the sheets unusable, does discolor the sheets. Thus, white sheets have been heretofore avoided and colored sheets have been used to mask this backgrounding while maintaining good contrast between the desired marking color and the paper color. While this problem has been a known problem since the inception of these papers, until this invention it is not believed that any satisfactory solution had been found.

I have discovered that such backgrounding can be greatly reduced and very often eliminated by including in the capsule containing coatings of each of the mating sheets a minor amount of a further coreactive additive for the liquid fill contents of the capsules which reacts therewith to form a colorless or nearly colorless, reaction product. Not only has this discovery enabled the production of white capsule containing impact marking papers which remain that way through manufacture, printing, cutting, collation and storage, but it also reduces the extent of the severe discoloration which usually results around the cut edges of the sheets. Further, these beneficial results are achieved without any significant deterioration of the normal impact marking ability of the transfer paper.

The invention is further illustrated and described with reference to the accompanying wherein:

FIGURE 1 represents a collated form set of carbonless impact transfer paper;

FIGURE 2 is a greatly enlarged, partially schematic view of the collated form set of FIGURE 1 illustrating the manner in which a mark is made on each sheet of the form; and

FIGURE 3 is a greatly enlarged, partially schematic view of one of the intermediate CFB sheets of the collated set of FIGURE 1 illustrating one manner in which inadvertent marking may take place while printing the sheet.

Referring now to the accompanying drawing in more detail, collated form set as shown in FIGURE 1 as comprising a CB sheet 12, an intermediate CFB sheet 14, and a CF back sheet 16. Of course, the number of intermediate CFB sheets is limited only by the requirements of the form set and the efficiency of the color forming transfer system.

The character of each of the sheets and the manner in which impact forms a mark on each of the sheets of the form without carbon is illustrated in FIGURE 2. The top sheet 12, has a coating 20- on the undersurface thereof comprising tiny microscopic capsules having liquid fill therein, which fill comprises one of the reactive ingredients for producing a mark. The intermediate sheet, or sheets 14, the CFB sheet, has a coating 18 on the top surface thereof containing a coreactant for the liquid contents of the capsules 22 to form a mark thereon when the capsules of a mating coating 20 are ruptured as by the pressure of a stylus key such as on the top sheet of the form. The pressure of the stylus 15 carries through to the back coating of the CFB sheet 14 rupturing the capsules 22 therein, the contents of which in turn react with the coreactant on the coating 18 of the bottom sheet 16, the CF sheet, to form a mark there. The top sheet 12 is, of course, marked by the ink on the stylus or type key 15. However, although not shown, when the capsules have urea-formaldehyde polymer shells and a suitable color forming system, as noted hereinafter, the top sheet may also have on the front surface thereof a coating or coatings, or partial impregnant, of a combination of the capsules of coating and of the substance of coating 18 in contact with one another so that even if the type key or stylus does not contain any ink or other marking material the pressure alone will cause the capsules in the top of the sheet to rupture and react with the coreactant contiguous therewith so that this area of the sheet marks itself without the necessity of further mating sheet. Such a sheet is classified as an SCCB sheet, a self-contained, coated back sheet. The front surface of the sheet is self-contained to produce its own mark without the necessity of any other agency such as a mating sheet, which accounts for the shorthand description, SC. The back sheet is coated with CB coating 20, such as illustrated in the drawing.

One way that backgrounding of the sheets occurs is when the sheets are cut to size. The cutting operation ruptures some of the capsules adjacent the cut edge whereupon, due to migration of fill through the sheets 14 the areas adjacent the cut edge become severely discolored.

Undesirable backgrounding may occur on the SCCB and CFB sheets during manufacture, printing, or storage by migration. One way this occurs is illustrated in FIG- URE 3. Thus, observing FIGURE 3 it will be seen that as the sheet is pulled over the roller 26 to be printed by the printing roller 24 in an offset press or the like, some of the capsules of the coating 20 may be ruptured and migrate through the sheet to react with the front coating 18, and cause some backgrounding therein. The number of capsules ruptured may be considerable but they are spread out far enough that the resulting inadvertent marking is more in the form of a background color on the sheet than an actual vividly contrasting mark such as occurs when the capsules are specifically ruptured through an area of type'key impact as illustrated in FIGURE 2.

Another cause of backgrounding, of SCCB, CFB, CF and CB sheets collectively, and the most common cause, occurs upon storage of the sheets in collated form sets 4 as illustrated in FIGURES l and 2. When so collated (as the sheets must be to form sets which will mark properly) inadvertent discoloration results from transfer of fill from inadvertently ruptured capsules from sheet to sheet, as well as from migration of fill from surface to surface through the CFB sheets.

This inadvertent marking, I have discovered, is substantially reduced, and in many cases virtually eliminated when a further coreactant for the liquid fill contents of the capsules, which reacts therewith to provide a colorless image, is included. This color control additive is included in coating 20 with the capsules so that it immediately reacts with the ruptured capsule contents before such contents contact the coreactant of coating 18.

In general, the colorless product forming coreactant additive has been found to substantially reduce inadvertent backgrounding in carbonless impact transfer papers when used in amounts as small as 1% of the capsule coating weight and has maintained its effectiveness without undue harm to the functional characteristics of the sheet for desirable marking in amounts as high as 15%. Depending on the reactants used to produce a mark, this level may be very greatly varied. In a preferred system where dissolved derivatives of dithiooxamide are reacted with a metallic cations to produce a vivid mark, a level of about 5% background control additive, :L about 2%, has been found to be very satisfactory, and a general range of about 2 to 10% quite acceptable. With other reactive systems this may, of course, be changed and the amount can be readily adjusted with different systems simply by determining which reactive combinations yield colorless, or near colorless, reaction products, then adding the control additive which yields such a product to the capsule coating and visually determining at what point the functional properties of the paper are adversely affected to a degree to make the paper unsuitable for use (this would be with the higher amounts of additives) and the minimal amount necessary to provide some background reduction.

A presently preferred class of transfer papers is made wherein the capsule coating is comprised of capsules having a liquid fill containing an N,N'-di-substituted dithiooxamide complexing agent as a dye precursor which complexes with a metal cation, which may be included in the form of a metal salt in the coating 18 of the sheet material, to produce a vivid image. A particular N,N'- di-organo-substituted dithiooxamide used is a combination of N,N-di-benzyl-dithiooxamide (hereinafter sometimes referred to as DBDTO) and N,N'-bis (2-octanoyloxyethyl) dithiooxamide (hereinafter called DOEDTO). This material is usually present in an organic solvent such as cyclohexane within the capsule and is present in the amount of about 4% to 8% of the capsule fill.

A preferred cation is nickel, since many nickel salts provide fairly colorless coatings. Nickel rosinate is often used as the coating 18 since it is both colorless and reacts rapidly with the dye precursor to form a vivid blue image. Other metal cations such as mercury, cadmium, lead, zinc, copper, cobalt, and silver will also produce images. However, certain of these compounds such as cobalt, cadmium and zinc cation containing compounds reactwith the dithiooxamide derivatives to produce very nearly colorless products. Consequently, where white paper is desired they form images having very little, if any contrast with the background of the paper itself. Where tinted papers are used, one of the cations which reacts with the dye precursor to form a color matching the tint may be used, eg cobalt or cadmium for a yellow tinted sheet. Thus, these materials have been found to provide excellent background imaging control when used as additives for this purpose. Zinc salts, such as zinc rosinate, benzoate, octoate, laurate, salicylate, acetate, stearate, chloride, and sulfate, when used in concentrations of 1% or more and less than about 15% have been found to be excellent background color control additives for white papers.

Silver compounds have also been found elfective but since most silver compounds are light sensitive their utility is much less.

With DBDTO-DOEDTO capsule fill in the capsule coating 20 and a nickel rosinate coreactant in the coating 18, approximately 5% zinc rosinate incorporated into the capsule coating provides very effective background control with essentially no effect on the imaging characteristics of the paper. As the concentration of the zinc rosinate is raised, for example to levels above the impact image tends to change somewhat from blue to red and above the image becomes quite red rather than the more desirable blue, providing less contrast in the imaged sheets.

Other factors may affect the efficiency of the background control additive in the capsule coating. For example, if a strong film-forming binder such as a hydroxy ethylated starch is used to carry the capsules in the coating some loss and effectiveness in the control additive will be found. It is believed this is due to the formation of films around the zinc rosinate particles prevent.- ing their reaction with ruptured capsule contents.

While the invention is not limited thereto, a specific example of the preparation and formation of a transfer paper having color control additives therein in accordance with this invention is given hereinafter.

A paper coating slurry is prepared by mixing 344.5 parts of an imaging capsule slurry with 112 parts of 35% enzyme converted starch and 52.0 parts of 12.5% zinc rosinate. [In addition, 66.4 parts of a scuff capsule slurry is included in this mixture. The imaging capsule slurry contains 24.5% imaging capsules. The second slurry, in the smaller amount, contained 18.5% capsules, the capsules being quite large, in the range of about to microns on an average size, their purpose being primarily to protect the capsule coating against inadvertent rupture of the imaging capsules. The imaging capsules, on the other hand, are of the size average in the range of about 5 to 15 microns. Ordinarily, such capsules to be useful in image forming papers are in the size average range of about 5 to 25 microns.

The coating is applied upon the paper by means of an air knife at a coating weight of 5 pounds per 3,000 square feet of surface. The large, inert scuff capsules act as bearing surfaces to minimize the capsule breakage due to machine handling.

In the preparation of the coating slurry, the imaging capsule slurry is formed somewhat as follows:

Material Lbs/100 Charge:

A Cyclohexane 64.5 B Diethyl phthalate 15.7 Tri-butyl phosphate. 14. 3 N,N bis(2pctanoyloxyethyl) dithiooxamide 4. 0 E N,N-bis (dibenzyl) dithiooxamide 1.5

Material Lbs/100 Charge:

A Formalin 29. 3

B Triethanolaminenn 18 C Urea 11.10 D Soft water 50. 20

Material Lbs/100 Charge A. Precondensate solution 83. 12 B. Hydrochloric acid (12.50%) .19 O- Fill 15.10 D Hydrochloric acid (12.5%). 19 E..." o 21 F Caustic (50% NaOH) 13 G Soft water 1. 06

Charge A was added and the agitator started, then Charge B was added. The temperature was adjusted to 8990 F. and Charge C was added. The agitator was set for high shear agitation and Charge D was added over a five minute period. 30 minutes after Charge D was added, Charge E was added over a 30 minute period to adjust the pH of the system to 2.2 plus or minus .3. One hour after Charge E was added, the temperature was raised to 105 F. and the polymerization mixture was maintained at this temperature for a further nine hours. After the nine hour period, Charge F was added to neutralize the slurry and Charge G was added to flush the tanks as the slurry was removed therefrom and drummed for storage and use.

The scuff capsule slurry was prepared in general by use of the same precondensate solution used for the imaging capsules in the following manner:

Parts Material Prepolymer.

12.5% hydrochloric acid.

Cyclohexane.

12.53,, hydrochloric acid.

Water. 50% N aOH.

Charge A is added, the agitator is started, and then Charge B is added. The temperature is adjusted to the proper point (usually 90 to F.) and Charge C is added. The agitator is set for high-shear agitation and Charge D is added over a 5 minute period. Five minutes after the addition of Charge D, Charge E is added over a five minute period. The pH is 2.2:.3 at this point. One hour after the addition of Charge E, the temperature is raised to F and maintained at this temperature for an additional 9 hours while maintaining highshear agitation. After this time period, Charges F and G are added to neutralize the reaction and bring the pH to 70:5. The capsule slurry is drummed and stored for use in this form.

Similar capsule coatings were made as above utilizing as a color control additive, zinc rosinate, zinc 'benzoate, zinc octoate, zinc laurate, zinc salicylate, zinc acetate, zinc stearate, zinc chloride, zinc sulphate, cadmium rosinate, silver rosinate, and mercuric rosinate. All of these compounds exhibited some effectiveness in controlling the backgrounding of the sheet materials.

While the invention has been described in particular reference to the utilization of urea formaldehyde capsules and color forming systems of dithiooxamide derivatives as dye precursors reactive with metal cations, the system is as well practiced with capsules of other natures and other dye precursor-coreactive systems.

What I claim is:

1. An impact marking transfer paper having a transfer surfacing thereon comprising tiny microscopic capsules having liquid fill comprising a dye precursor, which capsules release said fill upon impact to a receptor surfacing comprising a color-forming co-reactant for said dye precursor to produce a visible contrasting image on said receptor sheet, said transfer surfacing including thereon externally of said capsules and distributed homogeneously among said capsules a minor amount of color control co-reactant for said dye precursor which reacts upon contact therewith to provide a substantially colorless reaction product relative to said transfer surfacing to prevent undue backgrounding on said receptor surfacing due to inadvertent capsule rupture while permitting normal marking of the paper upon marking impact.

2. An impact marking transfer paper having a transfer coating thereon of tiny microscopic sized capsules having a liquid fill containing N,N'-diorgano substituted dithiooxamide as a dye precursor, said coating further containing externally of said capsules and distributed evenly thereamong a minor amount of a metal cation supplying co-reactant for said dye precursor which forms a substantially colorless reaction product relative to the color of said coating when reacted with said precursor while permitting normal marking of the paper upon marking impact.

3. An impact marking carbonless transfer paper having a coating of urea formaldehyde polymer shelled capsules thereon, said capsules having liquid fills comprising N,Ndiorgano-substituted dithiooxamide dye precursor, said coating further including externally of said capsules and distributed evenly thereamong from about 1% to 15% by weight of a metal cation supplying co-reactant for said dye precursor which provides an essentially colorless reaction product with respect to the normal color of said coating While permitting normal marking of the paper upon marking impact.

4. The paper of claim 4 wherein said metal cation supplying co-reactant is an organic salt.

5. The paper of claim 4 wherein said co-reactant is an organic zinc salt.

6. The paper of claim 4 wherein said co-reactant is an organic salt of cobalt or cadmium.

7. The paper of claim 4 wherein said co-reactant is an organic salt of mercury or silver.

8. An impact marking transfer paper having a transfer surfacing thereon comprising tiny microscopic capsules having liquid fill comprising a dye precursor, which capsules release said fill upon impact to a receptor surfacing comprising a color-forming co-reactant for said dye precursor to produce a visible contrasting image on said receptor sheet, said transfer surfacing including thereon externally of and distributed evenly among said capsules a minor amount of color control re-actant for said dye precursor which reacts upon contact therewith to provide a substantially colorless reaction product relative to said transfer surfacing to prevent undue backgrounding on said receptor surfacing due to inadvertent capsule rupture while permitting normal marking of the paper upon marking impact, said paper further containing in the transfer surfacing thereof large inert scuff capsules to further minimize inadvertent rupture of dye precursor containing capsules, said scutf capsules having an average size slightly larger than the average size of said US. Cl. X.R.

" UNITED STATES PATENT OFFICE s9 CERTIFICATE OF CORRECTION at NO- 3 A81 .769 Dated December 2 1969 Inventor) Dean A Ostlie It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as chm below:

r- Column 2, line 20, "Gill" should read Gill, Jr.

line 27, "capsule" should read capsules line 38, "multiply" should read multiple Column 3, line 9, cancel "as" (second occurrence); line 10, "comprising" should read comprises Column 4, line 25, "cations" should read cation line 60, "reactwith" should read react with Column 5, line 73, "Formalin" should read formalin Column 6,.line 13 (Charge B), "(l2.5)%)" should read (12.5%) line 39 (Charge A), "2, 420.0" should read 2,320.0

Column 7, line 35 (in claim 4) "claim 4" should read claim 3 line 37 (in claim 5) "claim l" should read claim 3 Column 8, line 1 (in claim 6) "claim 1" should read claim 3 line 3 (in claim 7) 'claim should read claim 3 line 13, "re-actant" should read co-reactant SIGNED MID SEALED Am: WILLIAM E. 'SGHUYIER, JR.

' Gcmissioner of Patents EM 1L Flasher, Ir.

Attesting Officer

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3287154 *Dec 13, 1965Nov 22, 1966Polaroid CorpPressure responsive record materials
US3364052 *Feb 17, 1965Jan 16, 1968Frank D. MartinoMethod for desensitizing sensitized record sheets and resultant article
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3617334 *Nov 8, 1968Nov 2, 1971Ncr CoPressure-sensitive sheet material
US3627581 *Oct 19, 1970Dec 14, 1971Ncr CoPressure-sensitive record material
US3844816 *Mar 15, 1972Oct 29, 1974Plywood Champion Papers IncGrafted, polymeric microcapsular system
US4199174 *Nov 3, 1978Apr 22, 1980Moore Business Forms, Inc.Carbonless manifold business forms
US4201404 *May 17, 1978May 6, 1980Minnesota Mining And Manufacturing CompanyPressure-sensitive marking materials
US4203619 *Feb 14, 1979May 20, 1980The Mead CorporationProduction of pressure-sensitive carbonless record sheets using alkane dioic acid hot melt systems and products thereof
US4244604 *May 23, 1979Jan 13, 1981Minnesota Mining And Manufacturing CompanyAliphatic tertiary amine, dithiooxamide, aromatic substituted hydrazones
US4262937 *May 23, 1979Apr 21, 1981Minnesota Mining And Manufacturing CompanyCarbonless imaging system
US4334015 *May 23, 1979Jun 8, 1982Minnesota Mining And Manufacturing CompanyAromatic substituted hydrazones for forming colored complexes with transition metal salts
US4370362 *May 26, 1981Jan 25, 1983Yoshi MatsuiMethod of manufacturing transfer papers
US4461496 *Aug 17, 1982Jul 24, 1984Minnesota Mining And Manufacturing CompanyMetal cation with rosin and metallic soap
US4871193 *Dec 19, 1985Oct 3, 1989Woerndli Gerhard AProcess for irreversible recording, recording carrier, as well as use of the process or of the recording carrier
US5124308 *Nov 17, 1989Jun 23, 1992Albin Loren DReacts with transition metal salt for carbonless paper copying
US5135437 *Jun 24, 1991Aug 4, 1992Schubert Keith EForm for making two-sided carbonless copies of information entered on both sides of an original sheet and methods of making and using same
US5137494 *Mar 16, 1990Aug 11, 1992Schubert Keith ETwo-sided forms and methods of laying out, printing and filling out same
US5154668 *Mar 22, 1990Oct 13, 1992Schubert Keith ESingle paper sheet forming a two-sided copy of information entered on both sides thereof
US5197922 *Nov 13, 1989Mar 30, 1993Schubert Keith EMethod and apparatus for producing two-sided carbonless copies of both sides of an original document
US5204311 *Aug 23, 1991Apr 20, 1993Minnesota Mining And Manufacturing CompanyEthanediimidic acid bis[(arylalkylidene)hydrazide] color-formers
US5223473 *Nov 21, 1990Jun 29, 1993Xerox CorporationElectrographic imaging
US5224897 *Jun 29, 1992Jul 6, 1993Linden Gerald ESelf-replicating duplex forms
US5248279 *Dec 16, 1991Sep 28, 1993Linden Gerald ETwo-sided, self-replicating forms
US5284812 *Jan 6, 1992Feb 8, 1994Minnesota Mining And Manufacturing CompanyCoordination compounds formed thereof with transition metals; pressure sensitive carbonless copy paper
US5350857 *Jan 3, 1994Sep 27, 1994Minnesota Mining And Manufacturing CompanyMetallized thiazole dyes for images
US5376451 *Jun 29, 1990Dec 27, 1994Minnesota Mining And Manufacturing CompanyYellow color-formers
US5395288 *Sep 24, 1993Mar 7, 1995Linden; Gerald E.Two-way-write type, single sheet, self-replicating forms
US5426085 *Sep 6, 1994Jun 20, 1995Minnesota Mining And Manufacturing CompanyYellow color-formers
US6082773 *May 7, 1999Jul 4, 2000Janesky; Lawrence M.Product/service contractual proposal booklet
US6159585 *Sep 23, 1999Dec 12, 2000Georgia-Pacific CorporationSecurity paper
US6280322Feb 27, 1995Aug 28, 2001Gerald E. LindenSingle sheet of paper for duplicating information entered on both surfaces thereof
US7007853Jun 6, 2005Mar 7, 2006Corcoran Suzanne DGift card assembly and method
US7392952 *Dec 22, 2005Jul 1, 2008Data Management, Inc.Gift card assembly
DE2612036A1 *Mar 22, 1976Oct 14, 1976Moore Business Forms IncKohlefreies mehrfach-kopierblattsystem
DE2919838A1 *May 16, 1979Nov 22, 1979Minnesota Mining & MfgTrockene mikrokapseln als druckempfindliche markierungssubstanz sowie druckempfindliches, kohlefreies papier
EP0005024A1 *Apr 10, 1979Oct 31, 1979Appleton Papers Inc.Sheet materials
EP0062467A2 *Mar 26, 1982Oct 13, 1982Minnesota Mining And Manufacturing CompanyStabilizer for electron donor-acceptor carbonless copying systems
EP0101320A2 *Aug 16, 1983Feb 22, 1984Minnesota Mining And Manufacturing CompanySoap having improved carbonless imaging properties
EP0434213A1 *Nov 16, 1990Jun 26, 1991Minnesota Mining And Manufacturing CompanyMonosubstituted dithiooxamide compounds and their use
WO1992000199A1 *Apr 19, 1991Jan 9, 1992Minnesota Mining & MfgYellow color-formers
Classifications
U.S. Classification503/205, 503/211, 503/210, 503/212, 503/207, 264/4.7, 503/215, 427/153, 462/69
International ClassificationB41M5/132
Cooperative ClassificationB41M5/132
European ClassificationB41M5/132