Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3483976 A
Publication typeGrant
Publication dateDec 16, 1969
Filing dateDec 7, 1966
Priority dateDec 7, 1966
Publication numberUS 3483976 A, US 3483976A, US-A-3483976, US3483976 A, US3483976A
InventorsWilliams Charles J
Original AssigneeErie Dev Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flexible screening panel
US 3483976 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 16, 1969 c. J. WILLIAMS FLEXIBLE SCREENING PANEL Filed Dec. 7, 1966 nited States Patent 3,483,976 FLEXIBLE SCREENING PANEL Charles J. Williams, Aurora, Minn., assignor to Erie Development Company, Cleveland, Ohio, a corporation of Delaware Filed Dec. 7, 1966, Ser. No. 599,931 Int. Cl. 1307b 1/12, 1/04 US. Cl. 209-395 2 Claims ABSTRACT OF THE DISCLOSURE A screening panel for a screen of the D.S.M. (Dutch State Mines) type is a unitary flexible slab of urethane rubber, or the like, comprising interconnecting screening bars and support bars, the latter extending at an angle with respect to the screening bars. Screening bars are parallel to each other, and so are support bars. Screening bars and support bars lie in the same plane and have identical cross-section in form of truncated pyramids whose bases together constitute a screening surface. The panel has a clamping strengthening flap extending laterally from at least one edge thereof.

This invention relates to the screening art, and is concerned with the provision of an improved fixed fine screen of the type disclosed in US. Patent No. 2,916,142, Fontein, dated Dec. 8, 1959.

Said type of fine screen is characterized by an inclined screening deck-fiat, or curved-composed of parallel spaced rod-like members which are disposed transversely to the direction of flow thereover of a slurry of a material to be screened. In screens of this category the spaces-styled slotsbetween said rod-like members mayand usually dohave positive relief. The size of solid particles passing through these slots is not more than one-half the width of said slots, and hence the rodlike members are spaced in a dimension predetermined with regard to the critical size of screeningor, split to be effected by said screen. In carrying out a screening operation on a screen of this type a slurry of a material to be screened is flowed, at a relatively high velocity, over and substantially parallel to the screening deck in a direction transverse to the long axis of said slots. That is to say, the direction of the solid particles (in such slurry) with respect to said slots is such that the particles are traveling substantially parallel to the screen surface and those the diameters of which are not more than onehalf the width of said slots are diverted (by the hydraulic action of the liquid of the slurry flowing through the slots) to a direction perpendicular to the screen surface and are transported by such liquid through said slots.

The aforesaid screens are styled stationary to distinguish them from screens which are vibrated or oscillated during their use.

The performance of fine screens of the aforesaid type depends on a large extent on the sharpness of the rodlike members or bars which form the slots. Inasmuch as materials normally screened are abrasive, the screens that are presently in use rapidly become less effective as the leading edges of the bars become dulled through wear.

Also, characteristically these screens must be made such that the openings or slots must be larger at the bottom than they are at the top. This is termed slots with relief. In presently used screens the slot relief is obtained by the use of parallel wedge-shaped bars. Fabrication of presently used screens consists of laboriously welding or otherwise fastening individual wedge-shaped bars to support members or ribs.

The ability of screens of the aforesaid type to differentiate between particles of different sizes in a uniform "ice manner depends on the uniformity of slot width. This characteristic becomes increasingly more important as the slot width is decreased. Because of the inherent difiiculty of jigging a wedge-sectioned rod or wire in fabrication, variation in slot width is inevitable and increases percentage wise as the slot opening is decreased. As a result, sharpness of separation decreases as variation in slot opening increases.

According to the present invention inobvious improvements in a fine screen of the aforesaid stationary type are realized by forming the screening deck thereof of a moldable synthetic organic material, which term I employ herein as including synthetic organic elastomeric materials and plastics. The mode of fabricating the screening deck is that of molding from a liquid as by liquid casting, pressure forming, injection casting or like procedure, or by suitably calendering a material in readily impressionable"intermediate-state.

Amongst elastomeric materials for use in forming the fine screen of the present invention are the following: neoprene, butyl rubber, butadiene-styrene rubber and urethane rubbers; fiuorocarbons; silicones. Amongst plastics for this use are the following: various resinous compounds such as nylon, polystyrene, polyethers, alkyd resins, melamine resins, phenolic resins.

The fine screen panel of the present invention consists essentially of a unitary slab or body having on one side thereof a plane screening surface, said slab comprising an array of interconnecting screening bars and support bars. The spaced screening bars are parallel to each other, and the spaced support bars-parallel to each other-preferably are disposed at an angle of less than to said screening bars. Each of said screening bars and support bars has, in cross-section, the shape of a truncated pyramid or wedge, the bases of the pyramids lying in a single plane and providing the aforesaid screening surface.

The invention will now be described in greater particularity and with reference to the appended drawing, in Which- FIG. 1 is a perspective view of apparatus for carrying out the process of the present invention;

FIG. 2 is a perspective view of a fragment of a screening deck (hereinafter referred to as a panel) embodying features of the present invention; and

FIG. 3 is a side elevational view of the fragment shown in FIG. 1, in section.

THE MOLD The mold M was composed of a lower plate (or, mold cavity) 11 and cooperating upper plate 12. Lower plate 11 was a piece of free-machining steel 1.25 inches in thickness by 16.0 inches square. The steel piece was machined top and bottom to fiat parallel surfaces. On the top side of lower plate 11 a first series of 72 similar parallel grooves 15, 15, were machined in the surface, the grooves being 0.15 inch in depth and spaced apart so as to leave an uncut portion of the surface, between each two adjacent grooves, 0.07 inch in width. At the top the grooves were 0.09 inch in width. These dimensions provide a positive draft angle of 8.5.

At a 45 angle to the grooves of said first series there were cut into the piece a second series of 36 parallel grooves 20, 20 of the same cross-section as were the grooves of said first series, the spacing between adjacent grooves of said second series being 0.354 inch. A third series of 4 grooves 25, 25', having a depth of 0.2 inch and a width of 0.2 inch, were cut around the periphery of the grooved portion of the plate to define a 12 inch square.

The first series of grooves, the second series of grooves and the third series of grooves were in a form complemental to a symmetrical truncated pyramid their sides having the same angle of inclination.

In the four corners of plate 11, bolt holes 26, 26 having a diameter of inch were drilled.

Upper plate (cover) 12 was a piece of steel 16 inches square and 1.25 inches thick, machined to have flat parallel upper and lower surfaces. Bolt holes 27, 27 matching holes 26, 26 were drilled in plate 12.

In addition to the above-described components of the mold, there was provided a sheet 28 of Teflon (tetrafluoroethylene), having a thickness of one thirty-second of an inch, which Teflon sheet was of a size just covering the aforesaid 12-inch square but having at each of its four corners an ear projection 30 having therein an aperture 31 matching bolt holes 26 and 27.

Bolts 34 were provided for securing together the upper plate 11, Teflon sheet 28, and lower plate 12.

The upper surface of mold cavity 11 presented a network of interconnecting grooves, surrounded by a lower (deeper) peripheral groove, which interconnecting grooves isolated the mold cavity surface into a multitude of parallelogram-shaped islands of metal. It is noted, at this point, that the purpose of the Teflon sheet was to allow the parallelogram-shaped islands in the mold surface to protrude up into the Teflon a distance on the order of magnitude of .001". This protrusion resulted in the production of screen castings with flashfree parallelogram-shaped openings.

THE MOLDING MIXTURE In this specific example the starting material was a room temperature-curing urethane (Flexane 85, liquid) consisting of an isocyanate resin in liquid form and a liquid hardening agent. The two liquid components were mixed together at room temperature and thereupon were ready for use.

THE CASTING PROCEDURE The surfaces of the mold cavity were sprayed with a liquid mold release compound, to prevent the elastomer from sticking, and was allowed to dry.

Thereupon, the aforesaid two-part urethane rubber mixture was poured into the mold cavity and spread so that there was an excess of the mixture over that amount required to completely fill the interconnecting grooves. The Teflon sheet 28 was then positioned over the filled mold cavity 11, the upper plate (i.e., cover) 12 was placed on top of the Teflon sheet, and the three parts were bolted together by means of bolts 34.

The liquid urethane mixture set in approximately one hour, and hardened overnight to the point where demolding was feasible. The so-produced screen panel 35 was easily stripped from the open mold.

The completed panel was a square slab 12 inches on a side, and comprised 72 parallel wedge-shaped screening bars 37, 37 supported by 32 diagonally disposed supporting bars 39 and by a somewhat larger dimensioned peripheral supporting rib 40.

A stationary fine screening deck was fabricated by fixing the above-described screen panel to a support frame characterized by an array of parallel arcuate metal support rods, spaced apart on two inch centers, and joined at top and bottom by transverse beam members. The same was then associated with conventional adjustable means for positioning the curved screening deck at a suitable angle for use in screening an aqueous slurry or pulp of finely divided solid oxidic iron ore particles of various sizes the panel was secured to the frame by suitable clamps engaging the peripheral supporting ribs 40.

The above-described screening deck was used in classifying an aqueuos slurry of finely subdivided particles of iron oxide ore material varying in sizes between 100 mesh and microns. A sharp split was realized.

Molded or cast screens of the sort above described have an advantage over welded metal screens in that the cant or attitude of the wedge-shaped bar can be more accurately controlled. The top surface of each wedge-shaped screening bar should be parallel to the screening surface so that the screen panel can be reversed with respect to the direction of slurry flow.

A screen panel embodying principles of this invention can be constructed such that in its use a controlled amount of screening bar flutter or movement will result which movement minimizes the tendency for the slots to become blinded or plugged. The flutter or movement of the bars can be controlled by selecting the appropriate stiffness of the wedge section, the distance between the supports or ribs, and the method of inducing flutter. The flutter may be induced by slurry flow, by sound waves, by machine vibration, or by mechanical shock.

A screen panel made in accordance with this invention can be used as a flat screening surface or as a curved screening surface merely by substitution of spaced metal frame members, called support rods, which are straight or curved to any radius. Furthermore, by the use of semiflexible support rods, the curvature of the screen can be varied from straight to any desired curvature while the screen is in operation. This feature allows an additional means of performance control as slurry characteristics change.

Another unique feature of a screen panel made under this invention utilizing elastomers consists in the fact that the panel can be made so that the width of the screen opening is variable. The variation is obtained by stretching the panel in a direction parallel to the screening slots. ln this manner, the width of the slots is controllably adjustable.

In the manufacture of stationary fine screens heretofore the parallel-wedge-shaped bars were fastened to the support bars by welding each individual joint which resulted in an extremely high fabrication cost. An outstandingly unique feature of the present method resides in the fact that as the simple casting is made all of the intersections (of screening bars with support bars) are formed simultaneously and automatically. The forming of the joints is made possible by making a draft angle on the support bars so that the cross section of the support bars is the same as that of the wedge-shaped screening bars.

The removal of the casting from the mold is facilitated by the fact that the screening bars and the support ribs are in the same plane and all interconnecting members have a positive draft. In the traditional method of fabricating fine stationary screens the screening bars were welded on top of the support bars, and hence the two sets of bars lay in different planes. The mold grooves having been cut with care, the screening bars were unvarying in straightness and in cross-sectional dimensions, and their spacing was exact. The individual panels were repeatedly duplicated (in the same mold) with no variation in any measurement. The exactness of these dimensions and of this spacing and the uniformity of panels could not be duplicated by the most painstaking welding of individual metal bars to metal support members. Notwithstanding this superiority, the cost of manufacturing the screening panels was very significantly less than was the cost of manufacturing a similar metal screening panel.

The chief advantage of the cast elastomeric screens of the present invention is that they are made of a material that outwears steel (traditional material for this type of screen) by a factor of 10-100 times, and outwears natural rubber by a factor of 2-5 times.

The efficiency with which fine stationary screens operate depends largely on the sharpness of screening openings. By the present method an extremely sharp screening opening is produced as the metal parallelogram-shaped openings on the surface of the mold protrude up into the Teflon. Furthermore, as Teflon has memory and returns to normal shape when the pressure is removed, it is usable over and over again.

It is to be appreciated that the data of the above specific example are not limitative of the scope of the present invention. Thus, the screening panels have been cast using Du Ponts Adiprene, Thiokols Solithane and Devcons Flexane, all of which are urethane liquid elastomers. This description is not intended to be restrictive to the materials just enumerated, since other plastics and elastomers could be used as well.

Nor are the specific angles between screening bars and support bars critical. While the invention has been illustrated through disposing first and second series of bars at approximately 45 to each other, it is a fact that any angle between about 90 and about will be found to be operable, depending upon the particular slurry involved and other variables.

Moreover, the particular widths of the screening bars and the particular sizes of the screen openings or slots are matters of engineering and experience.

Production of the screens may be accomplished by pressure forming, liquid casting, and injecting casting. With increased draft angle on the mold and the mold actually on a roller, the screen material can be manufactured in continuous rolls (i.e., by continuous casting techniques).

I claim:

1. A screening panel for a screen of the D.S.M. (Dutch State Mines) type, said screen comprising a rigid screen frame and at least one screening panel removably secured to said frame, said panel consisting essentially of a flexible unitary slab of synthetic organic material, selected from the group consisting of moldable elastomers and moldable plastics, comprising interconnecting screening bars and support bars, said screening bars being parallel to each other and spaced to provide screen openings therebetween, said support bars being parallel to each other and disposed at an angle of less than 90 to said screening bars, said screening bars and said support bars lying in the same plane, each of said screening bars and support bars having a width which is at least no greater than is its height, the cross-section of said screening bars and said support bars constituting substantially symmetrical truncated pyramids whose angles of inclination from the bases of said pyramids coverage and are substantially equal to each other, the bases of the pyramids lying in a single plane and constituting in toto a screening surface a substantial portion of the periphery of the slab being provided with a supporting rib, constituting a clamping flap, laterally projecting from an edge of said slab rearwardly beyond the bars, for clamping the panel to the frame of the screen.

2. A screening panel as defined in claim 1, which is formed of urethane rubber.

References Cited UNITED STATES PATENTS 2,617,600 11/1952 Cole 209-397 X 2,719,524 10/ 1955 Brinkley 209-399 X 2,740,525 4/ 1956 Wenner 209-399 3,081,874 3/1963 Corbin 209408 3,194,397 7/1965 Taege 209398 X 3,352,418 11/1967 Swallow 209403 1,916,393 7/1933 Smith 209--397 2,419,155 4/1947 Orton 209397 2,689,379 9/1954 Nissel 264292 2,712,159 7/1955 Ter Marsch 264292 2,267,372 12/ 1941 Calkins 264 3,228,665 1/1966 Dolan 210499 X FOREIGN PATENTS 108,053 8/ 1939 Australia.

475,428 11/ 1937 Great Britain.

767,619 10/ 1952 Germany.

969,768 9/ 1964 Great Britain.

HARRY B. THORNTON, Primary Examiner R. HALPER, Assistant Examiner U.S. Cl. X.R.

2 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION P n 34, 3,97 Dated December 16, 1 969 Inventor M It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Claim 1, line 18, the word "coverage" should be: converge SIGNED NND SEALED Attest:

Edward M. Fletcher, 1!. mm ES 38.

Dominican or hunt! Attcsfing Officer

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1916393 *Sep 23, 1931Jul 4, 1933Richmond W SmithPulp screen plate
US2267372 *Sep 5, 1940Dec 23, 1941Chrysler CorpPowdered metal product
US2419155 *Feb 19, 1944Apr 15, 1947Union Screen Plate CompanyWood pulp screen plate
US2617600 *Jul 26, 1950Nov 11, 1952Viking Mfg CompanyScreen with slot-and-circular opening-pattern for hammer mills
US2689379 *Apr 25, 1951Sep 21, 1954Union Carbide & Carbon CorpMethod of producing riddled thermoplastic sheets
US2712159 *Dec 28, 1950Jul 5, 1955Marsch Jacob TerMethod and device for manufacturing articles of latex rubber material provided with openings
US2719524 *Nov 17, 1952Oct 4, 1955Brinkley James RSeed screen attachment for strawwalkers of a combined harvester
US2740525 *May 18, 1954Apr 3, 1956Brueckenbau Flender GmbhScreen bottoms
US3081874 *Jun 27, 1960Mar 19, 1963Orville Simpson CompanyScreen tensioning device
US3194397 *May 24, 1962Jul 13, 1965H G Schauenburg Verwaltung UndAdjustable sieves
US3228665 *Oct 4, 1963Jan 11, 1966Melvin C DolanWater purification device
US3352418 *Oct 17, 1966Nov 14, 1967Southwestern Eng CoRemountable separator screen
AU108053B * Title not available
DE767619C *Dec 23, 1938Nov 24, 1952Ig Farbenindustrie AgSiebgewebe oder -geflechte
GB475428A * Title not available
GB969768A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3811570 *May 20, 1971May 21, 1974Goodyear Tire & RubberPolyurethane screen with backing member
US3900628 *Jun 13, 1973Aug 19, 1975Linatex Corp Of AmericaPretensioned screen panel
US3905894 *Oct 2, 1973Sep 16, 1975Murskauskone OyApparatus for wet fine screening
US3970550 *Jun 7, 1974Jul 20, 1976Bba Group LimitedMoulded elastomeric screen mat for sieving devices
US4062769 *Nov 20, 1975Dec 13, 1977Durex Products, Inc.Elastomer screen units for shaker-screen bodies
US4213855 *Aug 22, 1977Jul 22, 1980Bennigsen Mackiewicz A VonSifting equipment for fine-grained bulk material, particularly flour
US4265742 *Jun 25, 1979May 5, 1981Hermann Screens Manufacturing Company (Proprietary) LimitedScreen element
US4374169 *Sep 14, 1981Feb 15, 1983Uop Inc.Abrasion resistant, reinforced screen panel member
US5944197 *Apr 24, 1997Aug 31, 1999Southwestern Wire Cloth, Inc.Rectangular opening woven screen mesh for filtering solid particles
US6736271 *Jun 18, 2002May 18, 2004Peter C. HallScreen apparatus and method
US7211209 *Jul 29, 2002May 1, 2007Surface Logix, Inc.Method of making device for arraying biomolecules and for monitoring cell motility in real-time
US20030030184 *Jul 29, 2002Feb 13, 2003Enoch KimMethod of making device for arraying biomolecules and for monitoring cell motility in real-time
U.S. Classification209/395, 209/399, 209/274, 210/499
International ClassificationB07B1/46
Cooperative ClassificationB07B1/4618
European ClassificationB07B1/46B2