Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3485245 A
Publication typeGrant
Publication dateDec 23, 1969
Filing dateJun 21, 1967
Priority dateJun 21, 1967
Publication numberUS 3485245 A, US 3485245A, US-A-3485245, US3485245 A, US3485245A
InventorsLahr Roy J, Mix Arthur L Jr, Terwilliger Herbert W
Original AssigneeIbm
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Portable fluid heater
US 3485245 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Dec. 23, 1969 R LAHR ETAL 3.485,245

PORTABLE FLUID HEATER Filed June 21, 1967 T 2 Sheets-Sheet 1 INVENTORS.

ROY J. LAHR ARTHUR L. NIX, JR. HERBERT I. TERWILLIGER ATTORNEY.

2 Sheets-Sheet 2 R. J. LAHR ETAI- PORTABLE FLUID HEATER In N Dec. 23, 1969 Filed June 21, 1967 United States Patent O 3,485,245 PORTABLE FLUID HEATER Roy J. Lahr, Penfield, N.Y., and Arthur L. Mix, Jr., and Herbert W. Terwilliger, Lexington, Ky., assignors to International Business Machines Corporation, Armonk, N.Y., a corporation of New York Filed June 21, 1967, Ser. No. 647,814 Int. Cl. A61j 1/00; F28f 7/00; A6lf 7/00 US. Cl. 128-272 Claims ABSTRACT OF THE DISCLOSURE An apparatus for heating fluids to the correct body temperature prior to their intravenous injection. The fluid flows from its cold storage container through tubing to a sterile, disposable, heat conductive, fluid impervious pouch, and from the pouch through tubing to the patient. The pouch is clamped within conduit defining heating platens which heat the fluid as it passes through the pouch in a defined path. Temperature sensing means located in the heating unit and an automatic control device insure the correct fluid temperature. When the injection is complete, the pouch is removed from the heating platens and a new pouch installed for subsequent operation.

BRIEF BACKGROUND OF THE INVENTION Field This invention relates to an improved fluid heater for heating fluid for intravenous injection, and more particularly to a fluid heater which can rapidly heat a fluid from its cold storage temperature to a temperature compatible with human injection and which can be thereafter utilized for another patient with a minimum of delay.

Description of prior art The present fluid heater is designed for use in field situations where blood transfusions are necessary on an unpredictable schedule and where the blood transfusion must be administered as quickly as possible.

Blood plasma is generally stored in cold storage at about 40 degrees Fahrenheit. In order to inject blood plasma into a human, it is necessary to heat the blood plasma from its cold storage temperature to 95 to 100 degrees Fahrenheit (the approximate body temperature of the human). The prior are fluid heaters fall into two general categories. One type of fluid heater heats the entire volume of fluid to be administered to the patient. In its most elemental form, this type of fluid heater comprises a kettle ofwater maintained at a fixed temperature in which is dropped a sealed container containing the fluid to be administered. The sealed container can be a bottle,'plastic bag, or other well known blood storage device. More sophisticated devices utilize electrical heating elements which are adapted to surround the fluid containing memher and temperature sensing devices to determine when the fluid has reached the cor-rect temperature. In either instance, it is necessary to heat the entire volume of fluid to be administered to the correct temperature prior to its administration. While such fluid warmers are satisfactory in non-emergency situations where it has been previously determined that the fluid will be required, they are not readily adaptable to emergencies or unpredictable situations where itis necessary to administer the fluid as quick- 1y as possible. v i

The second prior art approach is to heat the fluid as it is being utilized. Devices which accomplish this generally comprise elongated tubular members through which the fluid flows. Surrounding the tubular member are heating elements and temperature sensing devices which cause the fluid flowing through the tubular member to be heated 3,485,245 Patented Dec. 23, 1969 to the correct temperature at its exit point whereupon it is applied to the patient. While such devices prove satisfactory for emergency situations, they are not readily adaptable for reuse. In order to reuse such a device, it is necessary to insure that all of the fluid from a previous intravenous injection has been removed from the tubular member prior to introducing the fluid to be injected into a second patient. It is also necessary to insure that the tubing and containers are sterile. Thus, once such a device has been utilized, it may not again be reused until it has been thoroughly cleansed. Such devices are not practical where it is necessary to treat a plurality of patients within a short time period.

SUMMARY In order to overcome the above problems of prior art and to provide a portable fluid heater which can rapidly heat fluid from its cold storage condition to a temperature compatible with human injection and which can be reutilized for a plurality of patients without necessitating cleansing or sterilizing procedures, the fluid heater of the present invention is provided with a novel, sterile, disposable, fluid impervious heat conductive pouch which is clamped within a conduit defining heating member.

The fluid to be administered is introduced into the pouch from the cold storage container through a disposable sterile tube which is inserted into the pouch. The conduit defining heating member causes the fluid to pass through the pouch in a predetermined path to an exit point. As the fluid passes through the pouch, it is heated by the conduit defining heating member to be at the correct temperature when it exits from the pouch. Since it is necessary that the fluid be at the correct temperature only at the exit point, it is unnecessary to first heat the entire volume of fluid in the pouch to the correct temperature prior to injecting the fluid. A second disposable tube is inserted into the pouch at the exit point and serves to connect the pouch with the patient.

When the injection is complete, the pouch and the tubing are disposed of, a new pouch is inserted into the conduit defining heating member, and the portable fluid heater is then ready to be reused.

The foregoing and other features and advantages of the invention will be apparent from the following more particular description of the preferred embodiment of the invention as illustrated in-the accompanying drawings.

In the drawings:

FIGURE 1 is a top perspective view of the portable fluid heater.

FIGURE 2 is a cross-sectional side view of the fluid heater of FIGURE 1 showing a conduit forming heating platen.

FIGURE 3 is a side view of the disposable pouch and its associated tubing as it would appear when filled with fluid andlocated between the conduit forming members of the heater of FIGURE 1.

FIGURE 4 is an exaggerated partial cross-sectional viewof the disposable pouch of FIGURE 3.

FIGURE 5 is a schematic diagram of an electronic automatic control device which can be utilized to insure that the fluid reaches the correct temperature for injec tion.

The portable fluid heater of the present invention consists of two parts, a permanent heating unit and a disposable pouch. The pouch is adapted to fit within the heating unit and contain the fluid. The heating unit heats the fluid in the pouch and additionally, defines the path which the fluid takes through the pouch. Referring now to FIGURE 1, there is shown a top perspective view partially in section of the heating unit. The heating unit .11 is shown as a box-like structure having a front panel 13, side panels 15 and 17, a back panel (not shown), a bottom panel (not shown) and top panels 19 3 and 21. The panels are joined to one another by fasteners 23. Joined to the heating unit 11 is a structure 25 which contains the electrical circuits necessary to regulate the fluid heating.

Adjustable clamping screws 27 and 29 are threadably mounted through the front panel 13 and engage a movable wall 31. Rotation of the clamping screws causes the movable wall 31 to move in a direction perpendicular to the front panel 13. The movable wall 31 has four heating elements 32-33 mounted thereon. Spacing members 35 and 37 are fixedly attached to the two heating elements 32 and to a conduit forming member 39. Movement of the movable wall 31 thus results in corresponding movement of the heating elements 32 and 33, spacing the members 35 and 37, and the conduit forming member 39. In addition to forming a mechanical connection, the spacing members 35 and 37 cause the conduit forming member 39 to be spaced away from the heating elements 32 and 33 to insure an even distribution of heat in the conduit forming member which is made of a heat conducting material such as aluminum.

A complementary conduit forming member 41 is mounted in a similar manner to a spacing member 43 and to a spacing member not shown. The spacing members are mounted to heating elements 45 which along with heating elements 46 are fixedly mounted to a stationary wall47.

The conduit forming member 41 has located therein a continuous channel 51-53 which has been hollowed out of the solid member. The conduit forming member 39 has a complementary continuous channel 55-57 located therein. Referring now to FIGURE 2, a cross-sectional side elevation view along lines 2-2 of FIGURE 1 shows the conduit forming member 41 resting upon the bottom panel 60. As can be seen, the elongated channel 51-53 is continuous and winds throughout the conduit forming member. Channel 55-57 of the conduit forming member 39 shown in FIGURE 1 is the mirror image of the channel 51-53 and it complements the channel 51-53 to form a conduit which is oval or circular in cross section when the two conduit forming members are brought together.

Referring once again to FIGURE 1, the heating unit 11 is depicted as being of relatively rugged construction in order to facilitate a field use such as battlefield use. The outer panels 13, 15, 17, 19, 21, 60 (FIGURE 2) and the back panel (not shown) of the heating unit 11 can be made of a durable material, such as, for example, rolled steel. The movable wall 31 and the stationary wall 47 can also be made of the same material. The spacing members 35, 37, and 43 are preferably made of a heat resistant insulating material such as asbestos while the conduit forming members 39 and 41 are made of a heat conducting material such as aluminum. The heating elements are commercially available electrical resistance heating units.

In operation, the adjustable clamping screws 27 and 29 are rotated in a direction to cause their movement to be away from front panel .13. Since the clamping screws are attached to the movable wall 31, withdrawal of the clamping screws causes the movable wall 31 and the forming member 39 which is mechanically coupled thereto to move toward the front panel 13 and away from the conduit forming member 41.

The resulting separation of the conduit forming members 39 and 41 leaves a void in which a pouch filled with fluid (see FIGURES 3 and 4) is inserted. The top plates 19 and 21 are separated by a sufficient distance to allow the pouch to be inserted therebetween. Once the pouch is so located between the conduit forming members 39 and 41, the adjustable clamping screws 27 and 29 are tightened down causing the movable wall 31 and conduit forming member 39 to move toward the conduit forming member 41. Movement of the conduit forming member 39 traps, clamps, and embraces the pouch be- 4 tween the conduit forming members and causes the fluid located within the pouch to conform to the shape of the conduit thus formed.

Referring now to FIGURES 3 and 4, a pouch 61 is shown as it would appear when clamped between the two conduit forming members ofjFl GURE l. The pouch 61 is made of a thin (2 mils nominal) metal foil layer 63, the inner surface of which is coated with a thin plastic coating 65 which is compatible with the temporary storage of blood. The metal foil 63 utilized should have good heat transfer characteristics and be flexible while the plastic coating 65 must be thin enough so that the pouch has superior heat transfer characteristics, For example, the metal foil could be aluminum foil and the plastic coating could be polyethylene.

Two rubber-like plugs 67 and 69, similar to those utilized on medical vaccine bottles, are inserted into the uppermost surface 71 of the pouch 61 and serve as connector points which define the entrance and exit ports of the pouch. When ready for use, hollow needles 73 associated with sterile tubing 75, 77 may be inserted into the rubber-like plugs 67, 69. Thereafter, fluid can flow from a supply (not shown) through tubing 75 to the pouch 61, then through tubing 77 to the patient (not shown). The path that the fluid takes through the pouch is determined by the conduit forming members of FIG- URE 1 and is denoted as conduit 79-81 in FIGURE 3.

When manufactured, the interior plastic coating of the pouch is sterilized and all edges of the pouch except uppermost surface 71 are heat sealed. A measured quantity of sterile fluid 83 such as saline water, glucose water solution, or other human blood compatible fluid is inserted into the pouch through the opening in uppermost surface 71. The rubber-like plugs 67, 69 are then put in place and the uppermost surface 71 is sealed. The fluid 83 serves to hold the pouch 61 in shape and forces the pouch to conform with the channeled surfaces of the conduit forming members when placed in use. The fluid excludes air from the pouch and can also be utilized when the pouch is placed in use to remove air from the connector tubing 75, 77.

Referring once again to FIGURE 1, the heating elements 32, 33, 45 and 46 must be supplied with a suflicient amount of electrical energy to heat the fluid to its proper temperature. The amount of electrical energy supplied depends upon the rate of flow of the fluid, upon the efficiency and heat transfer characteristics of the device, and upon the cold storage temperature of the fluid. Assuming a flow rate of /2 pint of fluid per minute, a 50% heat transfer efficiency, a fluidinput temperature of 5 C. and a fluid exit temperature of 40 C., it has been found that a 1200 watt heating circuit will supply the requisite heat.

Of course, the cold storage temperature of the fluid and efiiciency of the device vary from situation to situation thereby necessitating an automatic control device to regulate the heat dissipated by the heating elements and to thereby insure that the fluid exits at the proper temperature, Many types of automatic control devices could be utilized. Structure 25 is shown for housing such a device.

In the embodiment illustrated, two temperature responsive elements 101, 103 are embedded in conduit forming member 41 (see FIGURE 2) with one preferably located near the conduit exit and the other located near the center of the conduit forming member.

Referring now to FIGURE 5, there is shown a schematic diagram of an electronic automatic control device utilized to regulate the amount of heat imparted to the fluid to be warmed. Alternating current is supplied to terminals 104 and 105. Switch 106 allows for ready operator control and fuse 107 prevents circuit overload. Load 109 represents the heating elements shown in FIGURE 1. The remaining circuitry shown in FIGURE 5 located within blocks 111 and 113 controls the amount of current available at terminals 104 and that will be utilized by the load 109. The circuitry located within block 111 is identical to that located within block 113, one block controlling the amount of current utilized during the positive half cycle of the alternating current input while the other controls the current utilized during the negative half cycle.

The circuitry in block 111, which is operative during positive half cycles to regulate the current delivered to the load 109 comprises a control transistor 115 which is turned on and off by positive and negative going pulses respectively. When the transistor 115 is on, the current flowing through its emitter gates a silicon control rectifier (SCR) 116. When the SCR 116 is on, a current path is provided through the SCR from terminal 104 through the load 109 to terminal 105 during positive half cycles. The point in time during the positive half cycle that the control transistor 115 turns on determines the length of time that current will flow through the load 109 during the positive half cycle. This in turn is determined by the voltage appearing on base electrode 117 of the transistor.

The voltage at the base electrode 117 of the transistor 115 is a function of the values of the resistor 119 and the variable resistor 121 which form a series connection from the fuse 107 to the base electrode 117 and the resistive value of the temperature responsive element 101 which is connected to the base electrode 117 to form a voltage divider network with the resistors 119 and 121.

The variable resistor 121 is set in accordance with the value of the input voltage appearing across terminals 104 and 105 and in accordance with the desired output temperature. Once this resistor is set, the voltage appearing at the base electrode 117 becomes a function of the resistive value of the temperature responsive element 101, The resistive value of the temperature responsive element decreases when its temperature increases and increases when its temperature decreases. This action causes the control transistor to conduct for a shorter time period when the temperature of the temperature responsive element 101 is relatively high and for a longer time period when the temperature is relatively low.

A thermal control 123 and a resistor 125 are connected in series and shunt the temperature responsive element 101. When the temperature of the device exceeds a predetermined maximum, the thermal control 123 closes and forms a low resistance shunt path to the temperature responsive element 101 thereby biasing the control transistor 115 out of conduction. This device thus forms a safety feature which prevents overheating in case there is a malfunction in the voltage divider network or in the temperature responsive element 101.

A capacitor 126 connected between resistor 119 and the load 109 forms an RC network with the resistor 119 to integrate the input sine wave to allow control of the SCR 116 through a high percentage of its half cycle. A diode 127 and resistors 129 and 131 connected to the collector electrode of the control transistor 115 provide a DC bias for the control transistor. A resistor 132 is connected between the emitter electrode of the transistor 115 and load 109.

The circuitry appearing in block 113 is a duplicate of that in block 111 and operates during the negative half cycles to control the amount of current supplied to the load 109. This circuitry includes temperature responsive element 103.

Typical operating values are shown in the following table:

Voltage at terminals 104, 105 117 volts AC. Resistor 119 K.

Resistor 121 10K.

Resistor 125 100 ohms. Capacitor 126 1 microfarad. Resistor 129 39 K.

Resistor 131 1K.

Resistor 132 1K. Temperature sensitive element 101 100 ohms to 1K.

It is of course recognized by those skilled in art that many such control devices could be utilized in accordance with the circumstances. In the particular embodiment shown, it has been assumed that an AC supply of approximately 117 volts is available. A control circuit responsive to DC voltages could also be utilized.

Further, the mechanical construction of the heating unit can be Widely varied. For example, the heating platens could be hingedly connected and operate in the manner that a waflle iron does. Also, the pouch could partially extend from the confines of the heating platens.

While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it should be understood by those skilled in the art thatthe foregoing and other changes in form and detail may be made therein without departing from the scope of 'the invention.

What is claimed is:

' 1. A fluid heater comprising:

a fluid impervious flexible pouch having an entrance port and an exit port, the interior of said pouch being compatible with the temporary storage of blood, the exterior of said pouch having good heat transfer characteristics;

a first conduit forming member having an elongated channel located Within one surface thereof;

a second conduit forming member for cooperatively embracing said fluid impervious pouch between said second conduit forming member and said first conduit forming member to effect the formation within said pouch of a continuous conduit leading from said entrance port to said exit port;

heating means for heating the pouch so embraced between said conduit forming members.

2. The portable fluid heater set forth in claim 1 wherein said first and second conduit forming members are made of heat conductive material and wherein said heating means heats said first and said second conduit forming members to thereby heat said pouch.

3. The fluid heater set forth in claim 1 further comprising:

temperature sensing means located closely adjacent to said pouch for indicating the temperature of said pouch;

control means responsive to said temperature sensing means to control the amount of heat supplied by said heating means.

4. The fluid heater set forth in claim 3 wherein said second conduit forming member having a second elongated channel located within one surface thereof adapted to cooperate with the elongated channel of said first conduit forming member to embrace said pouch and form a continuous channel within said pouch leading from said entrance port to said exit port.

5. The fluid heater set forth in claim 4 wherein said second conduit forming member is adapted to cooperatively embrace the entire pouch between the first conduit forming member and the second conduit forming member.

References Cited UNITED STATES PATENTS 1,995,302 3/1935 Goldstein 128254 XR 2,760,630 8/ 1956 Lakso.

3,042,086 7/ 1962 Winchell 128214 XR 3,140,716 7/1964 Harrison et al. 128214 XR 3,158,283 11/ 1964 Rinfret et a1 220-64 3,293,868 12/1966 Gonzalez 46 XR 3,370,153 2/1968 Du Fresne et al. 128214 XR 3,411,630 11/1968 Alwall et al. 210-321 RICHARD A. GAUDET, Primary Examiner M. F. MAJESTIC, Assistant Examiner US. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1995302 *Nov 24, 1933Mar 26, 1935Harold GoldsteinAdjustable heating infusion apparatus
US2760630 *Dec 8, 1954Aug 28, 1956Sterling Drug IncFoil covered ampoule
US3042086 *Jan 30, 1961Jul 3, 1962Chelwin Productions IncDevice for filling blood containers
US3140716 *Jun 26, 1961Jul 14, 1964Baxter Laboratories IncHeat exchanger for blood
US3158283 *Apr 24, 1961Nov 24, 1964Union Carbide CorpCorrugated contained for the low temperature preservation of biological substances
US3293868 *Feb 16, 1965Dec 27, 1966Medical Electroscience IncFluid cooling apparatus
US3370153 *Mar 6, 1964Feb 20, 1968Dupaco IncElectric heating apparatus for warming a parenteral fluid
US3411630 *Jun 27, 1966Nov 19, 1968Gambro AbDialysis device for purifying blood or other liquids
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3590215 *Mar 27, 1969Jun 29, 1971Thermolyne CorpClinical fluid warmer
US3612059 *Mar 5, 1970Oct 12, 1971Ersek Robert AHeat exchanger for blood during transfusions
US3846614 *May 2, 1973Nov 5, 1974Schick IncElectric fluid heating unit
US4019020 *Aug 13, 1975Apr 19, 1977The Gorman-Rupp CompanyControlled temperature fluid heater
US4117881 *Jun 14, 1977Oct 3, 1978The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationSystem for and method of freezing biological tissue
US4154245 *Jul 11, 1977May 15, 1979Daily Pat OApparatus for local hypothermia
US4191646 *Oct 13, 1977Mar 4, 1980Gambro AbApparatus for conducting fluids in a dialysis system
US4230175 *Feb 13, 1978Oct 28, 1980Hoechst AktiengesellschaftHeat exchanger element
US4293762 *Nov 30, 1978Oct 6, 1981Genshirou OgawaTemperature-controlled electric heating device for heating instillation or transfusion liquids
US4309592 *Jan 25, 1979Jan 5, 1982Guy Le BoeufElectric heating device for heating sterilized fluids, such as blood
US4356383 *Nov 20, 1979Oct 26, 1982Gambro AbThermostatically controlled electric fluid heating apparatus
US4464563 *Aug 28, 1981Aug 7, 1984Jewett Warren RIntravenous fluid warmer
US4532414 *May 4, 1981Jul 30, 1985Data Chem., Inc.Controlled temperature blood warming apparatus
US4680445 *Sep 6, 1985Jul 14, 1987Genshiro OgawaElectronically-controlled heating device for infusion liquids
US4735609 *Jul 24, 1986Apr 5, 1988Medical Industrial Technologies, Inc.IV fluid warmer
US4772778 *Mar 24, 1987Sep 20, 1988Genshiro OgawaTemperature-controlled electric device for heating transfusion fluids
US4782212 *Nov 17, 1986Nov 1, 1988Bakke Allan PElectric blood warmer utilizing a metallic ribbon-flow cartridge
US4803466 *Sep 11, 1987Feb 7, 1989U.S. Products, Inc.Cleaning machine for carpet, upholstery and draperies
US4847470 *Dec 14, 1987Jul 11, 1989Bakke Allan PElectric blood warmer utilizing metallic ribbon flow cartridge and low thermal mass heating units
US4919134 *Mar 2, 1989Apr 24, 1990Becton, Dickinson And CompanyThermoelectric chiller and automatic syringe
US5245693 *Mar 15, 1991Sep 14, 1993In-Touch Products Co.Parenteral fluid warmer apparatus and disposable cassette utilizing thin, flexible heat-exchange membrane
US5381510 *Jul 21, 1993Jan 10, 1995In-Touch Products Co.In-line fluid heating apparatus with gradation of heat energy from inlet to outlet
US5729653 *Jun 7, 1995Mar 17, 1998Urosurge, Inc.Fluid warming system
US5846224 *Oct 1, 1996Dec 8, 1998Baxter International Inc.Container for use with blood warming apparatus
US5875282 *Oct 21, 1996Feb 23, 1999Gaymar Industries, Inc.Medical apparatus for warming patient fluids
US6047108 *Oct 1, 1996Apr 4, 2000Baxter International Inc.Blood warming apparatus
US6175688Jul 10, 1998Jan 16, 2001Belmont Instrument CorporationWearable intravenous fluid heater
US6236809May 2, 2000May 22, 2001Belmont Instrument CorporationWearable intravenous fluid heater
US6259067Oct 15, 1999Jul 10, 2001Medical Solutions, Inc.Temperature control system and method for heating and maintaining medical items at desired temperatures
US6294762Oct 6, 1999Sep 25, 2001Medical Solutions, Inc.Warming system and method for heating various items utilized in surgical procedures
US6376805Mar 19, 2001Apr 23, 2002Medical Solutions, Inc.Warming system and method for heating various items utilized in surgical procedures
US6384380Oct 6, 2000May 7, 2002Medical Solutions, Inc.Temperature controlled cabinet system and method for heating items to desired temperatures
US6464666Oct 8, 1999Oct 15, 2002Augustine Medical, Inc.Intravenous fluid warming cassette with stiffening member and integral handle
US6467953Mar 30, 2000Oct 22, 2002Medical Solutions, Inc.Method and apparatus for monitoring temperature of intravenously delivered fluids and other medical items
US6480257Dec 11, 2000Nov 12, 2002Belmont Instrument CorporationHeat exchanger useable in wearable fluid heater
US6566631Oct 23, 2001May 20, 2003Medical Solutions, Inc.Method and apparatus for monitoring temperature of intravenously delivered fluids and other medical items
US6660974Apr 23, 2002Dec 9, 2003Medical Solutions, Inc.Warming system and method for heating various items utilized in surgical procedures
US6722782Oct 23, 2001Apr 20, 2004Medical Solutions, Inc.Method and apparatus for monitoring temperature of intravenously delivered fluids and other medical items
US6768085Feb 15, 2002Jul 27, 2004Medical Solutions, Inc.Medical solution warming system and method of heating and maintaining medical solutions at desired temperatures
US6824528Mar 3, 1998Nov 30, 2004Medical Solutions, Inc.Method and apparatus for pressure infusion and temperature control of infused liquids
US6869538May 24, 2002Mar 22, 2005Baxter International, Inc.Automatic dialysis system; determination, calibration
US6901216Mar 4, 2004May 31, 2005Gaymar Industries, Inc.Insertable fluid warming cassette unit
US7010221Jul 31, 2002Mar 7, 2006Arizant Healthcare Inc.Intravenous fluid warming cassette with stiffening member, fluid container and key mechanism
US7031602Oct 14, 2003Apr 18, 2006Patented Medical Solutions, LlcMethod and apparatus for controlling temperature of infused liquids
US7041941Mar 22, 2004May 9, 2006Patented Medical Solutions, LlcMedical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
US7090658Oct 11, 2001Aug 15, 2006Medical Solutions, Inc.Temperature sensing device for selectively measuring temperature at desired locations along an intravenous fluid line
US7153285Jan 17, 2002Dec 26, 2006Baxter International Inc.Medical fluid heater using radiant energy
US7153286May 24, 2002Dec 26, 2006Baxter International Inc.For draining/pumping the peritoneal cavity during sleep
US7208092Jul 17, 2003Apr 24, 2007Baxter International Inc.Systems and methods for peritoneal dialysis
US7232457Aug 8, 2002Jun 19, 2007Arizant Healthcare Inc.Fluid warming cassette with a tensioning rod
US7238171Mar 12, 2002Jul 3, 2007Medical Solutions, Inc.Method and apparatus for controlling pressurized infusion and temperature of infused liquids
US7276675Aug 8, 2006Oct 2, 2007Patented Medical Solutions, LlcMedical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
US7307245Jul 21, 2006Dec 11, 2007Patented Medical Solutions, LlcMedical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
US7316666Apr 12, 2004Jan 8, 2008Arizant Healthcare Inc.Fluid warming cassette with rails and a stiffening member
US7326882Oct 29, 2003Feb 5, 2008Patented Medical Solutions, LlcWarming system and method for heating various items utilized in surgical procedures
US7394976Mar 25, 2003Jul 1, 2008Arizant Healthcare Inc.Fluid warming cassette and system capable of operation under negative pressure
US7417205Jan 17, 2006Aug 26, 2008Patented Medical Solutions, LlcMedical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
US7419597 *Apr 3, 2007Sep 2, 2008Nxstage Medical Inc.Fluid, circuits, systems, and processes for extracorporeal blood processing
US7458951Dec 26, 2006Dec 2, 2008Baxter International Inc.Method of structuring a machine to heat dialysis fluid using radiant energy
US7520295 *Jan 24, 2004Apr 21, 2009Cequr Aps.Capillary carrier with leak supervision
US7540864May 20, 2004Jun 2, 2009Medical Solutions, Inc.Temperature sensing device for selectively measuring temperature at desired locations along an intravenous fluid line
US7611504Mar 9, 2004Nov 3, 2009Patented Medical Solutions LlcMethod and apparatus for facilitating injection of medication into an intravenous fluid line while maintaining sterility of infused fluids
US7715700 *Feb 17, 2004May 11, 2010Genshirou OgawaMethod, device, and bag for warming infusion liquid
US7731689Feb 15, 2007Jun 8, 2010Baxter International Inc.Dialysis system having inductive heating
US7740611Oct 17, 2006Jun 22, 2010Patented Medical Solutions, LlcMethod and apparatus to indicate prior use of a medical item
US7789849Dec 21, 2006Sep 7, 2010Baxter International Inc.Automated dialysis pumping system using stepper motor
US7809254Jul 5, 2007Oct 5, 2010Baxter International Inc.Dialysis fluid heating using pressure and vacuum
US7815595Dec 21, 2006Oct 19, 2010Baxter International Inc.Automated dialysis pumping system
US7853131Oct 25, 2005Dec 14, 2010Arizant Healthcare Inc.Intravenous fluid warming cassette
US7867214Jul 17, 2003Jan 11, 2011Baxter International Inc.includes patient fluid loop having first pump and multiple patient lumens, second fluid loop including second pump and medical fluid regenerator, membrane device placed in fluid contact with and separates patient and second fluid loops; continuous flow regenerative dialysis
US7922686Jul 17, 2003Apr 12, 2011Baxter International Inc.Systems and methods for performing peritoneal dialysis
US7922911May 29, 2009Apr 12, 2011Baxter International Inc.Systems and methods for peritoneal dialysis
US7942851Aug 9, 2004May 17, 2011Medical Solutions, Inc.Method and apparatus for pressure infusion and temperature control of infused liquids
US8066671Oct 13, 2010Nov 29, 2011Baxter International Inc.Automated dialysis system including a piston and stepper motor
US8070709Jul 21, 2009Dec 6, 2011Baxter International Inc.Peritoneal dialysis machine
US8075526Oct 13, 2010Dec 13, 2011Baxter International Inc.Automated dialysis system including a piston and vacuum source
US8078333Jul 5, 2007Dec 13, 2011Baxter International Inc.Dialysis fluid heating algorithms
US8172789Oct 13, 2010May 8, 2012Baxter International Inc.Peritoneal dialysis system having cassette-based-pressure-controlled pumping
US8206338Jul 3, 2007Jun 26, 2012Baxter International Inc.Pumping systems for cassette-based dialysis
US8206339Mar 20, 2009Jun 26, 2012Baxter International Inc.System for monitoring and controlling peritoneal dialysis
US8226293Feb 22, 2007Jul 24, 2012Medical Solutions, Inc.Method and apparatus for measurement and control of temperature for infused liquids
US8226605Dec 17, 2001Jul 24, 2012Medical Solutions, Inc.Method and apparatus for heating solutions within intravenous lines to desired temperatures during infusion
US8313462Jan 7, 2010Nov 20, 2012Medical Solutions, Inc.Method and apparatus for pressure infusion and temperature control of infused liquids
US8323231Dec 28, 2006Dec 4, 2012Baxter International, Inc.Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US8357113Sep 18, 2009Jan 22, 2013Baxter International Inc.Systems and methods for performing peritoneal dialysis
US8376999Nov 23, 2011Feb 19, 2013Baxter International Inc.Automated dialysis system including touch screen controlled mechanically and pneumatically actuated pumping
US8403880Oct 20, 2009Mar 26, 2013Baxter International Inc.Peritoneal dialysis machine with variable voltage input control scheme
US8444599May 10, 2010May 21, 2013Patented Medical Solutions, LlcMethod and apparatus to indicate prior use of a medical item
US8487738Mar 20, 2007Jul 16, 2013Medical Solutions, Inc.Method and apparatus for securely storing medical items within a thermal treatment system
US8506522Jan 28, 2011Aug 13, 2013Baxter International Inc.Peritoneal dialysis machine touch screen user interface
US8529496Jun 9, 2010Sep 10, 2013Baxter International Inc.Peritoneal dialysis machine touch screen user interface
US8597227Aug 19, 2011Dec 3, 2013Baxter International Inc.Weight/sensor-controlled sorbent system for hemodialysis
US8620149Jun 15, 2007Dec 31, 2013Arizant Healthcare Inc.Fluid warming cassette and system capable of operation under negative pressure
US8636691May 10, 2010Jan 28, 2014Patented Medical Solutions, LlcMethod and apparatus to indicate prior use of a medical item
US8679054Jun 20, 2012Mar 25, 2014Baxter International Inc.Pumping systems for cassette-based dialysis
US8684971Jan 30, 2013Apr 1, 2014Baxter International Inc.Automated dialysis system using piston and negative pressure
US8740836Dec 4, 2013Jun 3, 2014Baxter International Inc.Pumping systems for cassette-based dialysis
US8740837Dec 4, 2013Jun 3, 2014Baxter International Inc.Pumping systems for cassette-based dialysis
US8803044Jul 5, 2007Aug 12, 2014Baxter International Inc.Dialysis fluid heating systems
US20120000566 *Jun 28, 2011Jan 5, 2012Millipore CorporationRigid disposable flow path
CN100463151COct 14, 2005Feb 18, 2009富士通株式会社Heat exchanger for liquid cooling
EP1459777A1Mar 4, 2004Sep 22, 2004Gaymar Industries Inc.Insertable fluid warming cassette unit
WO1983000814A1 *Aug 25, 1982Mar 17, 1983Jewett Warren RElectric intravenous fluid warmer, particularly for pediatric use
WO1995003680A1 *Jul 20, 1994Feb 2, 1995In Touch Prod CoIn-line fluid heating apparatus
WO2001026719A1 *Feb 2, 2000Apr 19, 2001Randall Charles ArnoldPressure tolerant parenteral fluid and blood container for a warming cassette
Classifications
U.S. Classification604/114, 392/470, 219/201, 392/479, 607/106, 604/408, 604/262, 165/46, 138/177
International ClassificationG05D23/20, A61M5/44, G05D23/24, F24H9/20, B01L7/00
Cooperative ClassificationG05D23/241, F24H9/2014, A61M5/44, A61M2205/3653, B01L7/00
European ClassificationB01L7/00, F24H9/20A2, A61M5/44, G05D23/24C1