Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3492463 A
Publication typeGrant
Publication dateJan 27, 1970
Filing dateOct 19, 1967
Priority dateOct 20, 1966
Also published asDE1690665B1, DE1690665C2
Publication numberUS 3492463 A, US 3492463A, US-A-3492463, US3492463 A, US3492463A
InventorsMeindert W Brieko, Petrus H J De Wringer
Original AssigneeReactor Centrum Nederland
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrical resistance heater
US 3492463 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Jan. 27, 1970 P. H. J. DE WRINGER E AL 3,492,453

ELECTRICAL RESISTANCE E TER Filed Oct. 19, 1967 INVENTORS United States Patent 3,492,463 ELECTRICAL RESISTANCE HEATER Petrus H. J. de Wringer and Meindert W. Brieko, Schagen,

Netherlands, assignors to Reactor Centrum Nederland, The Hague, Netherlands, an institute of the Netherlands Filed Oct. 19, 1967, Ser. No. 676,595

Claims priority, application Netherlands, Oct. 20, 1966,

6614751 Int. Cl. HOSb 3/10 US. Cl. 219553 3 Claims ABSTRACT OF THE DISCLOSURE DISCLOSURE This invention relates to resistance heating elements and in particular to heating elements having high heat emission characteristics due to tight engagement between the insulating layer and an inner conductor and between the insulating layer and an outer jacket.

In practice, heating elements of the conductor-insulation-jacket type often suffer from the disadvantage that the thermal loading capacity as expressed in watts/cm. is not sufficiently high for a variety of applications. According to the present invention it is possible to obtain a high thermal load, actually a thermal load of the order of about 500 watts/cmF, at a temperature of about 600 C., because the heating element is constructed in such a way that even at the working temperature of the element there is maintained a contraction joint or shrink fit, and hence a surface pressure, between the outer jacket and the insulating layer. This surface pressure at the working temperature is of great importance, as it constitutes the only way in which the emission of the heat produced is ensured. This pressure furthermore ensures, in conjunction with the close fit of the contraction joint, that the basic geometry of the heating body is maintained. This is an important improvement as compared with electrical heating elements of prior art, which often showed local cavities due to deficient surface contact, or asymmetrical geometry, as a result of the swaging process to which the element had been subjected. Such asymmetrical configurations and local cavities invariably gave rise in practice to local overheating (hot spots), which adversely affected the loading level.

It is, moreover, desirable that measures be taken to provide a further contraction joint between the resistance conductor and the insulating layer surrounding it, which contraction joint should already exist at room temperature. It is pointed out by way of information that the first-mentioned, or outer contraction joint is particularly important. As the contact. surface on which the outer contraction joint acts is situated more toward the outer side of the heating element, the temperature gradient there has already lost some of its importance. In order to allow for possible inequalities in the coeificients of thermal expansion of the materials exerting pressure upon each other thereabouts, it is advisable to ensure a continual surface pressure at this particular location by providing a firm contraction joint.

This provision is necessary to a somewhat lesser extent at the contact between the resistance conductor and ice the insulating material, situated more toward the center of the heating element. Owing to the high temperature of the resistance conductor itself it will as a rule expand so much more than the insulating layer around it that it generally creates a surface pressure due to difference in thermal expansion even without the aid of a contraction joint.

The condition for this, however, is that even when cold there shall be close contact between the resistance conductor and the insulating layer. On this account it is advisable, according to the second preferred embodiment, to make a slight contraction joint between the resistance conductor and the insulating material.

According to a preferred embodiment, the insulating layer is made of boron nitride, while both the resistance conductor and the metal outer jacket are made of molybdenum, tantalum or columhium, or of alloys of these metals. The advantageous effect that is obtained in this Way, especially with the preferred materials boron nitride and molybdenum, is enhanced by the fact that the coeificients of thermal expansion of boron nitride and molybdenum are of approximately the same magnitude. The result is that, when the heating element has heated up, its temperature gradient gives rise to such an expansion of the component materials that a mutual surface pressure is maintained.

Although the coefficients of expansion of boron nitride and tantalum differ somewhat from each other it is quite possible to make serviceable use of this combination of materials if the contraction measures are matched with this inequality in coefficient of expansion.

Instead of boron nitride, beryllium oxide may be used to advantage as an electrical insulating material.

The most efficacious way of obtaining the said contraction joint in a heating element is by first selecting a tube of molybdenum, tantalum or columhium or of alloys of these metals, after which this tube is firmly shrunk around a solid cylinder of the electrical insulating material consisting essentially of boron nitride or beryllium oxide. Owing to the fact that this cylinder is solid, the required contraction joint or shrink fit may 'be elfected so as to have a firm contraction fit at about 700 to 800 C., without there being any need to fear that the boron nitride or the beryllium oxide might show dislocations. After the structure described has cooled down, the central part of the cylinder made of the electrical insulating material is drilled out, with consequent formation of a cylindrical jacket of the electrical insulating material which is surrounded, via a contraction joint, by a cylindrical jacket of molybdenum, tantalum, columhium or alloys of these metals.

Then, after the inner side of the cylindrical jacket of the electrical insulating material has been subjected to precise after-machining, this structure of coaxial cylinder and jacket is shrunk at a temperature of C. with a light contraction fit around a resistance conductor which is likewise composed of molybdenum, tantalum, columhium or an alloy of these metals.

Attention is drawn here to the fact that the highly loaded electrical heating elements of prior art have sometimes failed. This was generally caused either by the formation of local cavities due to differences in thermal expansion, or by chemical reactions, either because in many cases the thickness of the insulating layer was not uniform or because the insulating material was not homogeneous in its qualities. By applying the method described above for making a heating body according to the invention, the drawbacks attaching to heating elements of prior art are surmounted, because the structure taken as basis is a cylindrical tube of the insulating material made out of full bodied material. To this is added the advantage arising from the possibility of obtaining the desired and necessary surface pressures, as a result of correct selection of the contraction measurements which have to be obtained with a high degree of precision.

The heating element made in this way proves capable of emitting a very high heating current, resulting in a thermal load up to about 500 watts/cm. at temperatures in the neighborhood of 600 C.

This heating element is very well adapted for heating liquid metals such as sodium, potassium, lithium or alloys thereof.

It is particularly suitable for heat transfer tests with cooling by liquid sodium, to be carried out in a nuclear reactor or in a plant other than a nuclear reactor but designed to simulate the latter. This is because the metal outer jacket of molybdenum, tantalum or columbium or alloys of these metals is in no way attacked by the said liquid metals.

In many cases the heating elements according to the invention will have an external diameter of about mm. or slightly higher. With this diameter it is possible to obtain a length of such a heating body of about 50 cm.

The invention will be further understood from a consideration of the drawings in which:

FIGURE 1 is a transverse cross-sectional view of one form of a heating element embodying the principles of the present invention; and

FIGURE 2 is a similar view of a modified form of heating element.

In FIGURE 1 there is shown a heating element constructed of a central rod-shaped resistance conductor 1, a surrounding layer of insulating material 2, such as boron nitride or beryllium oxide and an outer metal jacket 3 of molybdenum, tantalum, columbium or alloys thereof. The heating element is fabricated by the steps previously described.

The embodiment of FIGURE 2 differs from the embodiment represented in FIGURE 1 only insofar as the central resistance conductor 1 possesses the form of a cylindrical jacket having inside it a cylinder 4 in which other possible components (not shown in the drawing) may be incorporated. In this cylinder 4 may be fitted, for instance, channels for electrical conductors or for a fluid. Cylinder 4 may be made of a material having qualities suitable for this purpose.

While preferred embodiments of the present invention have been described, further modificationsmay be made without departing from the scope of the invention. Therefore, it is to be understood that the details set forth or shown in the drawings are to be interpreted in an illustrative, and not in a limiting sense, except as they appear in the appended claims.

What is claimed is:

1. An electrical resistance heating element comprising: an elongated resistance conductor having a closed cylindrical outer layer and constructed of a metal selected from the group consisting of molybdenum, tantalum and columbium and alloys thereof, a solid tube of solid insulating material concentrically surrounding said resistance conductor and being shrink-fitted in tight engagement therewith so as to establish a contraction joint at room temperature, said insulating material being selected from the group consisting of boron nitride and beryllium oxide, and an outer tubular jacket concentrically surrounding said layer of insulating material and shrink-fitted in tight engagement therewith so as to establish a contraction joint at the working temperature of said heating element in the range of 700 to 800 C., said jacket being constructed of a metal selected from the group consisting of molybdenum, tantalum and columbium and alloys thereof.

2. An electrical resistance heating element as in claim 1 wherein said conductor is a solid cylindrical body.

3. An electrical resistance heating element as in claim 1 wherein said conductor is a tubular cylindrical body.

References Cited UNITED STATES PATENTS 1,981,878 11/1934 Ruben 29-195 3,121,154 2/1964 Menzies et a1 2l9'-5'52 X 3,205,467 9/1965 Ganci 338-268 3,217,280 11/1965 Norton 338268 3,254,320 5/1966 Hill et a1. 338-241 3,356,834 12/1957 Mekjean 219-530 VOLODYMYR Y. MAYEWSKY, Primary Examiner US. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1981878 *Sep 23, 1929Nov 27, 1934Sirian Lamp CoLamp, filament, and process of making the same
US3121154 *Oct 30, 1959Feb 11, 1964Babcock & Wilcox LtdElectric heaters
US3205467 *Jul 27, 1962Sep 7, 1965Ward Leonard Electric CoPlastic encapsulated resistor
US3217280 *Nov 29, 1962Nov 9, 1965Thermel IncHeating element
US3254320 *Aug 15, 1963May 31, 1966Babcock & Wilcox CoElectric heaters
US3356834 *May 11, 1964Dec 5, 1967Hooker Chemical CorpProcess and apparatus for storing heat
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3665598 *Dec 17, 1970May 30, 1972Brieko Meindert WillemMethod of making a heating body
US4998006 *Feb 23, 1990Mar 5, 1991Brandeis UniversityElectric heating elements free of electromagnetic fields
US5976333 *Jan 6, 1998Nov 2, 1999Pate; Ray H.Collector bar
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7831133Apr 21, 2006Nov 9, 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8257112Sep 4, 2012Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8356935Oct 8, 2010Jan 22, 2013Shell Oil CompanyMethods for assessing a temperature in a subsurface formation
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8485256Apr 8, 2011Jul 16, 2013Shell Oil CompanyVariable thickness insulated conductors
US8485847Aug 30, 2012Jul 16, 2013Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US8502120Apr 8, 2011Aug 6, 2013Shell Oil CompanyInsulating blocks and methods for installation in insulated conductor heaters
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8586866Oct 7, 2011Nov 19, 2013Shell Oil CompanyHydroformed splice for insulated conductors
US8586867Oct 7, 2011Nov 19, 2013Shell Oil CompanyEnd termination for three-phase insulated conductors
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8732946Oct 7, 2011May 27, 2014Shell Oil CompanyMechanical compaction of insulator for insulated conductor splices
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8816203Oct 8, 2010Aug 26, 2014Shell Oil CompanyCompacted coupling joint for coupling insulated conductors
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857051Oct 7, 2011Oct 14, 2014Shell Oil CompanySystem and method for coupling lead-in conductor to insulated conductor
US8859942Aug 6, 2013Oct 14, 2014Shell Oil CompanyInsulating blocks and methods for installation in insulated conductor heaters
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8939207Apr 8, 2011Jan 27, 2015Shell Oil CompanyInsulated conductor heaters with semiconductor layers
US8943686Oct 7, 2011Feb 3, 2015Shell Oil CompanyCompaction of electrical insulation for joining insulated conductors
US8967259Apr 8, 2011Mar 3, 2015Shell Oil CompanyHelical winding of insulated conductor heaters for installation
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9048653Apr 6, 2012Jun 2, 2015Shell Oil CompanySystems for joining insulated conductors
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9080409Oct 4, 2012Jul 14, 2015Shell Oil CompanyIntegral splice for insulated conductors
US9080917Oct 4, 2012Jul 14, 2015Shell Oil CompanySystem and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9226341Oct 4, 2012Dec 29, 2015Shell Oil CompanyForming insulated conductors using a final reduction step after heat treating
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US20060289536 *Apr 22, 2005Dec 28, 2006Vinegar Harold JSubsurface electrical heaters using nitride insulation
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20080035347 *Apr 20, 2007Feb 14, 2008Brady Michael PAdjusting alloy compositions for selected properties in temperature limited heaters
US20090090158 *Apr 18, 2008Apr 9, 2009Ian Alexander DavidsonWellbore manufacturing processes for in situ heat treatment processes
US20090194286 *Oct 13, 2008Aug 6, 2009Stanley Leroy MasonMulti-step heater deployment in a subsurface formation
US20090200022 *Oct 13, 2008Aug 13, 2009Jose Luis BravoCryogenic treatment of gas
US20090200290 *Oct 13, 2008Aug 13, 2009Paul Gregory CardinalVariable voltage load tap changing transformer
US20090272526 *Nov 5, 2009David Booth BurnsElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20090272536 *Apr 10, 2009Nov 5, 2009David Booth BurnsHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100071903 *Mar 25, 2010Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100126727 *Dec 8, 2008May 27, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US20110124223 *May 26, 2011David Jon TilleyPress-fit coupling joint for joining insulated conductors
US20110124228 *Oct 8, 2010May 26, 2011John Matthew ColesCompacted coupling joint for coupling insulated conductors
US20110132661 *Oct 8, 2010Jun 9, 2011Patrick Silas HarmasonParallelogram coupling joint for coupling insulated conductors
US20110134958 *Oct 8, 2010Jun 9, 2011Dhruv AroraMethods for assessing a temperature in a subsurface formation
CN1954131BApr 22, 2005Feb 8, 2012国际壳牌研究有限公司使用氮化物绝缘的地下电加热器
EP0057172A2 *Jan 26, 1982Aug 4, 1982Walther Dr. MenhardtSelf-regulating heating element
EP1145842A2 *Apr 13, 2001Oct 17, 2001Saint-Gobain Glass FranceLaminated glazing
WO2005103445A1Apr 22, 2005Nov 3, 2005Shell Oil CompanySubsurface electrical heaters using nitride insulation
Classifications
U.S. Classification219/553, 174/102.00R, 219/548, 338/244, 338/230
International ClassificationH05B3/00, H05B3/42, H05B3/10
Cooperative ClassificationH05B3/10, H05B3/42, H05B3/00
European ClassificationH05B3/00, H05B3/10, H05B3/42