Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3493425 A
Publication typeGrant
Publication dateFeb 3, 1970
Filing dateFeb 1, 1967
Priority dateJan 9, 1967
Also published asDE1719356A1, DE1719365A1
Publication numberUS 3493425 A, US 3493425A, US-A-3493425, US3493425 A, US3493425A
InventorsJames K Campbell
Original AssigneeDow Corning
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lubricated fibers
US 3493425 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent OT" 3,493,425 LUBRICATED FIBERS James K. Campbell, Midland, Mich., assignor to Dow Corning Corporation, Midland, Mich., a corporation of Michigan No Drawing. Filed Feb. 1, 1967, Ser. No. 613,105 Int. Cl. C08d 13/24; C03c 25/02 US. Cl. 117138.8 4 Claims ABSTRACT OF THE DISCLOSURE The present invention relates to a process for lubricating synthetic and natural fibers which comprises applying to the fiber a coning oil which has incorporated therein a polysiloxane copolymer consisting of units of the unit formulae a)zSiO, (B) (C 3)(C11 2u+l) O, and

(C) (OH )SiO Due to the delicate balance existing between the hydrophobic and hydrophylic properties of the polysiloxane copolymer, the use of this additive enhances lubricity which facilitates production and is readily removable from the fiber by simple contact with water.

This invention relates to a process of applying a lubricant to a fiber and more particularly to a lubricant that effectively facilitates processing and which possesses the unique and added advantage of being easily and readily removed from the fiber prior to subsequent operations or ultimate use.

Under present practice, when natural or numerous synthetic fibers are processed prior to knitting or the like, the fiber must be immersed in a coning oil such as mineral oil, butyl stearate, and fatty acids among others to insure an efiicient and productive capacity. For example, following the initial or early processing stages, the fiber is wound about conical containers. The use of the coning oil serves a dual purpose; (1) it provides lubricity to increase the rate of processing, and (2) it imparts to the fiber, a surface tackiness of a consistency such that the fiber will remain in position upon the conical container and will not tend to sag or drop to the lower portion of the container which may disrupt production. In addition, the coning oil cannot provide too great a surface tackiness or when the fiber is unwound for further processing or use, it will stick and interfere with normal operations. Following the above processing stage and prior to ultimate use or subsequent operations, e.g., dying, the residual coning oil must be removed from the fiber. Removal of the coning oil is generally achieved by scouring and other cumbersome methods, however, an inherent disadvantage exists in that the coning oil is sufliciently diificult to remove so that 3,493,425 Patented Feb. 3, 1970 much of it remains on the fiber resulting in countless problems. Also, because the coning oil is especially difficult to remove, considerable expense is encountered due to the fact that removal of the coning oil requires a tremendous increase in labor costs and the like.

In accordance with the above, it is an object of the present invention to provide a lubricant for fibers which enhances processing and which can be easily removed from the fiber after said processing.

It is also an object of the present invention to provide a lubricant for fibers which can be virtually completely removed from the fiber in a rapid and simple fashion, thus alleviating the unduly high labor costs heretofore mentioned.

These and other objects will become apparent from a consideration of the following detailed description of the invention.

This invention relates to a process for lubricating fibers which comprises applying to the fiber a coning oil, the improvement comprising as an additive to the coning oil, a polysiloxane copolymer consisting of units of the unit formulae 3)3 (B) (CH3) (C H2n+1)SiO, and (C) (CHQSIQ I (C2 4 l )x in which R is a member selected from the group consisting of a hydrogen atom, a hydrocarbon radical containing less than 9 carbon atoms,

H a-fiR radical, a(|3 0R radical, and alCN R radical n has a value of at least 9, x has a value of at least 6, and

in which (A) Is present in an amount of from 18 to 32 weight percent based on the weight of (A) +(B)+(C),

(B) Is present in an amount of from 32 to 38 weight percent based on the weight of (A) +(B) +(C), and

(C) Is present in an amount of from 36 to 44 weight percent based on the weight of (A) +(B)+(C).

Illustrative examples of the R radical when it is a hydrocarbon radical containing less than 9 carbon atoms are the methyl, ethyl, propyl, isopropyl, butyl, hexyl, phenyl, tolyl, and allyl radicals, etc.

As related above, n has a value of at least 9, hence that radical can be represented as an alkyl radical such as the nonyl, decyl, hendecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, triacontyl, tetracontyl, pentacontyl, and hexacontyl radical, among others.

By the term coning oil as used herein, it is simply meant a lubricant which is applied to both natural and synthetic yarns which assists in the further processing of yarns to piece goods, i.e., knitting and weaving. The term coning oil includes material such as mineral oil, butyl stearate, polyethylene oxides, glycol esters, fatty acids and fatty amides, etc. However, for practical considerations and the like, for most operations, mineral oil is generally preferred.

It is to be noted that the polysiloxane copolymers of the present invention can be endblocked by various groups including triorganosiloxy groups wherein the organo groups are the methyl, phenyl, ethyl, vinyl, and trifluoropropyl group; hydroxyl groups, and methyl radicals bonded to the termial silicon atoms through an Si-C bond, among many others.

Due to the delicate balance that must necessarily exist between the hydrophobic and hydrophylic properites of the polysiloxane copolymer, the weight percentages of (A), (B), and (C) are especially critical if the objects of this invention are to be achieved. Since very specific properties are of prime importance, the weight percentages heretofore related are of particular significance.

The above combination provides a polysiloxane cpolymer which exhibits both lubricity and self-emulsifiable characteristics. As a result, when added to the coning oil, it enhances lubricity for purposes of processing and since it is also self-emulsifiable, it can be easily removed upon simple contact with water, thus precluding the cumbersome scouring procedures which were previously necessary. It is believed that this very specific additive, in effect, lifts the coning oil off the surface of the fiber when subjected to water and acts as an internal scouring agent itself; thus making its use both beneficial and attractive to the textile industry.

Methods for preparing the polysiloxane copolymers defined herein are well known in the art and are described in US. application Ser. No. 591,957 filed Nov. 4, 1966, which application is hereby incorporated by reference. This application is now Patent No. 3,427,271.

Among the synthetic fibers that can be so treated include acrylic fibers in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85 percent by weight of acrylonitrile units; modacrylic fibers in which the fiber-forming substance is any long chain synthetic polymer composed of less than 85 percent but at least 35 percent by weight of acrylonitrile units; polyester fibers in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85 percent by weight of an ester of a dihydric alcohol and terephthalic acid; Saran fibers in which the fiber-forming substance is any long chain synthetic polymer composed of at least 80 percent by Weight of vinylidene chloride units; azlon fibers in which the fiber-forming substance is composed of any regenerated, naturally occurring proteins; nytril fibers in which there is at least 85 percent of a long chain polymer of vinlyidene dinitrile where the vinylidene dinitrile content is no less than every other unit in the polymer chain; nylon fibers in which the fiber-forming substance is any long chain synthetic polyamide having recurring amide groups as an integral part of the polymer chain; rayon fibers in which the fiber is formed from regenerated cellulose with less than percent by weight chemically combined substituents; olefin fibers in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85 percent by weight of ethylene, propylene, or other olefin units. The above list is merely illustrative since numerous other synthetic fibers can also be so treated with equally gratifying results.

In addition, natural fibers such as cotton, wool, etc. can be so treated to derive the aforementioned advantages.

The amount of the polysiloxane additive incorporated in the coming oil is not particularly critical with the exception that it be present in a sufficient quantity to impart the desired properties. Therefore, it has been found that approximately 0.5 percent to percent of the polysiloxane additive based on the weight of the coning oil is a perfectly satisfactory amount to achieve the desired effects.

It is to be noted that the polysiloxane additive of this invention is also potentially useful when employed alone as a fiber finish where unique compatibility is required. For example, to finish tire cord yarns where the cord is placed in the rubber and the finish does not affect subsequent adhesion.

The following examples are merely illustrative and are not intended to limit the scope of the invention which is properly delineated in the appended claims.

4 EXAMPLE 1 5 parts of a polysiloxane copolymer of the formula was added to 100 parts of a commercially available mineral oil. The mixture was then applied on nylon yarn. The yarn was looped over the spindle with a tension at rest of approximately grams. The yarn traveled over the spindle at yards per minute, and it was noted that the coefiicient of friction and build-up of static electricity were appreciably less than that obtained when straight mineral oil was employed, thus indicating improved lubricity characteristics when using the lubricant of this invention.

The yarns were then subjected to simple washing by merely spraying the fibers with water. Subsequent analysis of the fiber confirmed that virtually no residual lubricant remained.

EXAMPLE 2 When the following polysiloxane copolymers were substituted for the corresponding polysiloxane copolymer of Example 1, equivalent results were obtained.

When 0.5, 2.5, 10.0, 12.0, 15.0 18.0, and 20.0 parts of the polysiloxane copolymer of Example 1 were added to 100 parts of mineral oil and a nylon fiber was coated and treated as in Example 1, equivalent results were obtained.

EXAMPLE 4 When a cotton fiber was coated and treated as in EX- ample 1, equivalent results were obtained.

That which is claimed is: 1. A fiber having on its surface a lubricant comprising (1) a coming oil, and (2) from 0.5 percent to 20 percent based upon the Weight of 1) a polysiloxane copolymer consisting in which R is a member selected from the group consisting of a hydrogen atom, a hydrocarbon radical containing less than 9 carbon 40 atoms, a

?|)R radical, a -fi|3 0R radical, and a |(l3NR radical O O O 6 n has a value of at least 9, x has a value of at least 6, and in which (A) is present in an amount of from 18 to 32 weight percent based upon the Weight of (B) is present in an amount of from 32 to 38 weight percent based upon the weight of (A)'|(B)+(C), and

(C) is present in an amount of from 36 to 44 weight percent based upon the weight of (A)'+(B)I(C).

2. The fiber as recited in claim 1 wherein the fiber is nylon.

3. The fiber as recited in claim 2 wherein the coning oil is mineral oil.

4. The fiber as recited in claim 3 wherein the polysilox-ane copolymer has the formula References Cited UNITED STATES PATENTS 1,945,959 2/1934 Williams et al 117139.5 2,664,409 12/1953 Aickin et al 26023 3,288,622 11/1966 Weiss 117139.5 X 3,423,235 1/1969 Campbell 117138.8

WILLIAM D. MARTIN, Primary Examiner T. G. DAVIS, Assistant Examiner US. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1945959 *Mar 25, 1929Feb 6, 1934Celanese CorpTreatment of yarn
US2664409 *Oct 9, 1950Dec 29, 1953British Nylon Spinners LtdTextile treating composition and method
US3288622 *Oct 2, 1964Nov 29, 1966Nathan M WeissMethod to impart suppleness to monofilament thread
US3423235 *Nov 23, 1964Jan 21, 1969Dow CorningOrganosiloxane-containing finishes for organic fibers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4076672 *Jul 29, 1976Feb 28, 1978Wacker-Chemie GmbhLubricants for organic fibres
US4105569 *Feb 7, 1977Aug 8, 1978George A. Goulston Co., Ltd.Yarn finish formulation
US4169905 *Nov 7, 1977Oct 2, 1979Rhone-Poulenc IndustriesProcess for lubricating textile threads
US4394414 *May 29, 1981Jul 19, 1983Ppg Industries, Inc.Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4455400 *Jun 25, 1980Jun 19, 1984Owens-Corning Fiberglas CorporationMigratin-free size for glass fibers
US4477524 *Sep 23, 1982Oct 16, 1984Ppg Industries, Inc.Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4530860 *Mar 8, 1984Jul 23, 1985Owens-Corning Fiberglas CorporationMigration-free size for glass fibers
US4552671 *Oct 15, 1984Nov 12, 1985Takemoto Yushi Kabushiki KaishaSpin finish compositions for polyester and polyamide yarns
US5387467 *Dec 3, 1992Feb 7, 1995Th. Goldschmidt AgMethod for modifying the surface of finely divided particles by the application of organofunctional polysiloxanes
US5672641 *Jan 23, 1995Sep 30, 1997Ppg Industries, Inc.Secondary coating compositions for glass fibers, glass fibers coated with the same and composites reinforced therewith
DE2900396A1 *Jan 8, 1979Sep 6, 1979Goldschmidt Ag ThTextilfaserpraeparationen
Classifications
U.S. Classification428/391, 252/8.84, 252/8.85, 252/8.86
International ClassificationD06M15/643, D06M23/10, D06M15/653, D06M15/647
Cooperative ClassificationD06M2200/40, D06M15/6436, D06M15/647, D06M7/00, D06M15/653, C10M2207/282, C10M2207/283, D06M23/10, C10M2207/286, C10M2207/281, C10N2240/62, D06M15/6433
European ClassificationD06M7/00, D06M15/653, D06M23/10, D06M15/643B, D06M15/647, D06M15/643D