Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3499491 A
Publication typeGrant
Publication dateMar 10, 1970
Filing dateJun 28, 1968
Priority dateJun 28, 1968
Also published asCA934772A1, DE1909919A1, DE1909919B2, DE1909919C3
Publication numberUS 3499491 A, US 3499491A, US-A-3499491, US3499491 A, US3499491A
InventorsDyke Orien Van, Wyant Reece E
Original AssigneeDresser Ind
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and composition for cementing oil well casing
US 3499491 A
Abstract  available in
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

auu"' LMI'I Ll hll United States Patent 0 f ABSTRACT OF THE DISCLOSURE A process of cementing a string of pipe in a borehole by gombining a properly treated aqueous drilling fluid with a cemefititious mmre comprising hy iraul c ement and powdered sodiugi g licateifia ssl'to forma mud concrTe."'lli incr'asEd temperature of the borehole triggers the setting reaction of the mud concrete= BACKGROUND The general procedure for drilling an oil well includes setting a relatively short string of casing in the borehole soon after the start of the operation. This casing is emplaced either by drilling the hole and running the casing or driving the pipe. This first string of casing is normally referred to a conductor pipe, and theannulus between the outside of the pipe and the inside of the borehole is filled with a mixture of portland cement and water. A slightly smaller hole is then drilled below the conductor pipe, and another string of casing is run and cemented. This is referred to as surface casing. It is usual practice after running the casing to pump the mixture of cement and water down the inside of the casing and up around the outside displacing drilling fluid in the annulus between the casing and the hole. In the Gulf Coast oil producing area of the United States, it is usual to set surface casing at about 3,000 ft. when starting relatively deep holes. In other areas, surface casing may be set as shallow as 500 ft. or as deep as 6,000 ft.

The next string of casing that is set in the hole isv usually referred to as an intermediate string or a protection string if it is in a deep hole. The next string might be to case the hole to its total depth, in which case it would be referred to as the production string. This invention relates primarily to cementing intermediate and production strings.

The principal objective in cementing surface casing is to secure the casing in the borehole so that the vibration and hammering of the whipping drill pipe will not damage the casing. Occasionally, the bottom joints of pipe break free and drop, obstructing further drilling. Another reason for properly cementing the surface casing is to seal otf communication of the borehole with upper water sands preventing a loss of heavier drilling fluids that might be required for drilling the deeper portion of a hole. When running the intermediate and production string into a hole, a good primary cement job is extremely important to the proper drilling and completion of a well. Basically, the purpose of cementing at the lower levels is to secure the casing and prevent communication between water, oil and gas-producing zones and other porous zones.

Failure of a well to produce may be a result of a faulty cement job, which is not known to be faulty. It is only recently that surveys such as bond logs have been available to give indications as to the quality of a primary cement job. When it is evident that the primary cement job after running casing is not good, as indicated by communication between water, gas or oil zones or by failure of the hole to hold pressure, or by other testing devices, such as the bond log, temperature log, etc., it is necessary to attempt some type of remedial work (secondary 3,499,491 Patented Mar. 10, 1970 cementing). In the case of deep protection casing or the production string, it may be necessary to perforate the casing and squeeze cement under high pressure through the perforations into the annulus hoping that it will fill the zones that were not properly cemented during the primary operation. Sometimes squeeze cementing is successful, and sometimes many attempts to correct a faulty primary cement job by squeeze cementing have resulted in failure which eventually led to abandoning of the hole.

The problem of obtaining a good cementing job is a problem of displacing substantially all the drilling fluid or mud in the annulus with cement. Unfortunately, drilling fluids and oil well cements are not compatible with one another. A slurry of cement will flocculate and thicken most water base muds. Furthermore, most water base muds, when added to cement, will either cause flash setting or act as a retarder that will greatly decrease the strength of the cement and substantially increase the setting time. Hydrated shale and clay, such as most water muds contain when mixed with cement, greatly decrease its strength. Muds used in deeper holes not only contain colloidal clays and shale that decrease the strength of cement, but they also contain organic chemicals such as quebracho, starch, carboxymethyl cellulose, calcium lignosulfonates, chrome lignosulfonates, or other organic materials. These chemicals in small quantities are considered retarders that substantially increase the setting time of cements, but in larger quantities are cement-destroying retarders. One solution to this very problem is proposed in U.S. Patent 3,190,356, entitled Methods of Cementing Wells, issued to H. I. Beach. Lignosulfonates, which are currently considered to be one of the most useful and most widely used treating chemicals for drilling mud, are' one of the prominent members of the group of organic compounds that are considered in small quantities (e.g. 0.5% based upon the weight of the cement) to be a powerful retarder, or in larger quantities a cement-destroying retarder. A drilling fluid that is both physically and chemically stable is required for the .drilling of deep holes in most areas, and chemicals such as lignosulfonate are required in concentrations of 6 to 20 lbs./bbl. to provide a fluid with the desired properties.

One of the principal causes of a faulty cement job is the comingling of the incompatible oil well cementing slurry and the drilling fluid in the hole and especially the fluid that has formed a filter cake on the sides of the hole in permeable zones. Numerous attempts have been made to use special wash fluids to displace the mud and wall cake, but these have given very limited success. Sometimes relatively large quantities of water are used as a separating slug between the cement and the mud that is being displaced by the cement slurry. Other times a special chemical solution, or sometimes a viscous slurry is used. To the best of our knowledge there is no separating slurry that has given consistent results of improving primary cement jobs. The diflicult displacement problem is complicated when the cement slurry and drilling fluid are antagonistic; that is, the cement slurry flocculates and gells the drilling fluids and the drilling fluid inhibits or prevents the set of the cement. It is easy to visualize that as the cement is pumped out of the bottom of the casing and starts to rise in the annulus, it may break flow channels through relatively large sections of flocculated drilling mud.

Experts in the oil drilling industry consider a cement with a compressive strength of between 400 and 500 lbs. in 24 hours as being sufliciently strong to serve any requirement that might be placed upon it. Some authorities state that strength even lower than these values would be satisfactory; however, there are some who favor higher strengths.

In view of the incompatibility of drilling fluids and cements, it is indeed surprising that we have invented a cementitious material for securing oil well casings which incorporates drilling muds available at the drilling site as an aggregate.

BRIEF SUMMARY OF THE INVENTION A process of cementing a string of pipe in a borehole comprising an aqueous drilling fluid treated with dispersants such as lignite, tannins, lignosulfonates, and mixtures thereof, adding to the drilling fluid a cementitious combination of hydraulic cement and powdered sodium silicate glass, pumping the resulting mixture into the annular space between the string of pipe and the walls of the borehole, and allowing the temperature of the borehole to harden the mixture. Also, a process of treating aqueous drilling fluids to make same cementitious in the presence of increased temperature comprising adding to the drill' ing fluid a dispersant as above defined and also a cementitious combination of hydraulic cement and powdered sodiuin silicate glass. Further, a cementitious mixture for addition to equeous drilling fluids which have been treated with a dispersant as above defined said mixture comprising hydraulic cement and powdered sodium silicate glass.

It is an object of this invention to provide an oil well cement which incorporates drilling fluid as an aggregate, thereby saving cement costs. It is a further object of this invention to provide a cementitious material which is .compatible with highly treated drilling mud. It is yet another object of this invention to provide a cementitious material incorporating drilling fluids that has suflicient thickening time to enable it to be pumped down a string of pipe and up the annular space between the string of pipe and the walls of a borehole. It is yet another object to provide a cementitious material which has little tendency to thicken or set until it is placed in the borehole and subjected to the higher temperatures present therein It is yet another object to provide a cementitious material which has adequate strength after about 24 hours. It is yet another object of this invention to provide a cementitious material which has reduced tendency toward retrogression of strength at elevated temperatures. It is a further object of this invention to provide a method of cementing strings of casing in boreholes. It is an object of this in vention to convert water base drilling fluids into cementitious materials suitable for cementing oil well casing.

BRIEF DESCRIPTION OF THE INVENTION According to a broad aspect of this invention, there is provided a process of cementing a string of pipe in a borehole by combing a properly treated aqueous drilling fluid with a cementitious mixture comprising hydraulic cement and powdered sodium silicate glass. The dfilling ui witha e cementi 10115 mi after referred to as mud concrete,,is pumped down the string of pipe and up the annular space between the pipe and the walls of the borehole. The increased temperature of the borehole triggers the setting reaction of the mud concrete.

Most aqueous drilling fluids can be made suitable for use according to this invention. Additions of oil in the mud do not affect the suitability of the mud for the purposes of this invention. Light mud such as those having a density less than about 10 lbs/gal. are not considered suitable for direct additions of cementitious mixture. For example, light muds such as those having a density of less than 9.6 lbs./ gal. may require solids to be added, as well as chemical conditioning. By properly treated, it is meant that the mud must be treated with organic dispersants such as lignites, tannins, lignosulfonates, or mixtures theieof. The drilling fluid must contain sufficient organic dispersants to make it resistant to the gelling effect of cement additions. Most muds can be properly conditioned with any or a mixture of any of the dispersants mentioned above.

4 Lignites used as dispersants are humates or derivatives of humic acid. One especially effective lignite is a chrome reacted potassium humate sold under the trade name XP-ZO by Dresser Industries, Inc. Another lignite product is sold under the trade name TannAthin by Dresser Industries, Inc. The lignosulfonates which can be used to treat drilling fluids are well known. They include the lime neutralized lignosulfonates described in US. Patent 2,491,437 issued to Barnes and the heavy metal oxide or heavy metal lignosulfonates described in US. Patent 3,126,291 entitled Hydraulic Cement Composition issued to E. G. King et a1. Tannins are derived from the bark and wood of certain trees, The most notable tannin used as a drilling fluid treating agent is quebracho.

According to this invention, properly treated drilling fluids are converted to a mud concrete by addition of approximately 100 to 200 lbs. of the cementitious mixture per barrel (42 gallons). Sodium silicate suitable must have a soda (Na O) to silica (SiO weight ratio between 1:1.6 and 1:4.5. By glass, it is meant that the sodium silicate contains less than about 5% water. The hydraulic cement and powdered sodium silicate should be mixed in a ratio between 6:1 and 1:1. By powdered, it is meant that the sodium silicate is crushed or ground to substantially all pass 65 mesh Tyler.

By hydraulic cement, this invention intends to include all compositions of lime, silica and alumina or of lime and magnesia, silica and alumina and iron oxide as are commonly known as hydraulic cements. Hydraulic cements include hydraulic limes, grappier cements, pozzolan cements, high alumina and portland cements. Car-i, tain materials, such as volcanic ash, fly ash and some? C113 s have pozzolanic properties and are commonly used' in cements. Because of its wide availability and superio strength, portland cement is preferred. It is also preferable to include 10 to by weight of the cementitious mixture of a pozzolanic material.

The thickening time of cementitious fluids, according to this invention, varies with the ratio of sodium silicate to cement. Also, sodium silicates having a lower silica to soda ratio have a greater tendency to accelerate gelling and shorten thicking times. In some boreholes, the pressure and temperature conditions may necessitate the addition of a retarding agent to cementitious fluids, according to this invention. We have found that certain alkaline materials including caustic soda, hydrated lime, soda ash, lithium carbonate, lithium hydroxide, and lithium chloride are effective in retarding the set without appreciably reducing set strength. These materials are especially effective when combined. For example, soda ash and lithium hydroxide together are very effective retarding agents.

DETAILED DESCRIPTION Further features and other objects and advantages of this invention will become clear to those skilled in the art by a careful study of the following examples and detailed description. In the specification and appended claims, all percentages and ratios and parts are by weight, unless indicated otherwise. The designations used to describe some of the sodium silicates are trade names of commercial products sold by Philadelphia Quartz Co.

A standardv mud was prepared for the following laboratory tests which is typical of the highly treated muds used for drilling for the Gulf Coast area. It had a density of approximately 16 lbs/gal. and a composition as follows:

STANDARD MUD The ingredients combined provided one oil field barrel (42 gallons) of mud. This mud is a properly treated mud within the concepts of this invention as it is resistant to the gelling effects caused by additions of cements. n the other hand, as it is highly treated with organic additives,

of our invention where arelatively short thickening time is desired at 190 F. Example F was similar to the other examples of Table I, except that the sodium silicate used as part of the cementitious mixture had a soda to silica ratio of 1:2 and was ground to all pass 200 mesh. In

it prevents the set of cement with which it became mixed 5 Example G, the cementitious mixture contained a sodium in relatively small quantities. silicate having a soda to silica ratio of 1:4.5. It should To this standard mud we added various cementitious be noticed that the standard mud with addition of this mixtures. Table I contains the composition of the cementicementitious mixture did not thicken in the laboratory tious additive to exemplary mixes A through I. The consistometer at 190' F. in 5.5 hours. Hence, this mixture efiects of this cement on the standard mud are recorded would only be suitable for use in very deep wells where in the table. the temperature of the borehole exceeded about 200 F.

TABLE I Example A B o D F o H J Drilling fluid standard mud, barrel 1 l -1 1 1 v 1 1 1 Cementitious mixture, pounds 130 130 130 130 120 130 130 120 Cement, percent 60 70 80 6B 76 68 65 75 Sodium Silicate:

SS 65, percent 17 7 20 SS 0-200, per n 20 SS Ratio 4.5, permnt l7 l0 Pozzolan, percent"... 16 16 Soda Ash, percent-. 3 Kaolin, percent 5 5 Relative breakover viscosity None None No'rle None None None None None Apparent viscosity, after mixing centipoise 180 163 210 53 ltB Thickening time, minutes to 100 poise:

(130 F.) N/I. F 248 (172 43 (190 F). 40 (206 Compressivestrength, after aging, p.s.i.:

(20 hours) (136 F.)

1 N .1. means not tested. 1 None at 5-hours.

3 Never thickened.

4 Approximately 200.

The cementitious mixtures were combined with the standard mud using high shear blenders, which was analogous to the mixing provided by the pumps adjacent to the mud pits 'in oil fields. The tendency, if any, of cement to gel the mud is apparent at this time and .is referred to in this application as relative breakover viscosity. After the cementitious mixture and drilling fluid were combined and mixed for 10 minutes, the apparent viscosity of the resulting mud concrete was measured with a direct indicating rotational type viscometer. The thickening time of the mud concrete was determined with the use of a Halliburton consistometer. The time for the mud concrete to reach a viscosity of 100 poises at a selected testing temperature is referred to as thickening time. Other portions of the mud concrete being tested wei'e placed into molds and aged for noted periods of time at selected test temperatures prior to testing for crushing strength.

Referring now to the examples in Table I, which are all according to this invention, it should be noted that no example had a breakover viscosity. In other words, because of the proper treatment of the drilling fluids prior to the addition of cementitious mixture, the fluids were not highly gelled by the mixture. All examples after mixing had apparent viscosities within an acceptable range for pumping them down the casing string and up through the annulus between the outside of the casing and sides of the borehole. In Examples A, B, and C, the cementitious mixture comprised only cement and sodium silicate glass having a soda to silica ratio of 1:3.22. The glass was ground to all pass 65 mesh. Example D is similar to Examples A, B, and C, except that the cementitious mixture included 17% of a pozzolan material of the volcanic ash type. The suitability of a cementitious mixture, according to this invention, depends on the particular borehole being cased and the cementing practice employed. Example D is a suitable mixture for the practice In Example H, the cementitious mixture comprised two types of sodium silicate and a small addition of soda ash which applicants have found to be an effective retarder for the cementitious mixture. Example H had an ample working time at a temperature of 206 F. Example I demonstrates that the setting reaction of cementitious mixtures according to this invention must be triggered by an appropriate temperature. Example J,showed no tendency to thicken in the consistometer after 5 hours at 136 F. However, when the temperature was raised to 190 F., the mixture thickened to poises in 52 minutes.

The examples in Table II are not according to the teachings of this invention as they did not develop adequate strength.

N.T. means not tested. 1 Soft gel, no set. Firm gel, no set.

Examples L and M contain no sodium silicate glass. The data established that the highly treated drilling mud destroys the ability of the cement to set up in the absence of sodium silicate. Examples N and O establish that sodium silicate without cement, however, does not develop adequate strength.

The examples in Table III are not according to the teachings of this invention. They are included to show that the mud aggregate must be properly treated and ater, gallons Special ud A (14 lbs/gal), barrels SpecialMud B (11.51bs./gal.), barrels...

8 having a soda to silica of 113.22 and comprising 37.6% solids. Examples S, T, and U establish that even with the properly treated standard mud, the metso anhydrous, D brand, and N brand sodium silicate were not suitable for use in this invention because they react too fast.

that only sodium silicate glasses having a silica to soda Examples V and W establish that G brand powder, ratio t n 2 and 5 are Suitable g nts to v ra hydrated sodium silicate having a soda to silica ratio come the effects of the chemical introduced by the highly of 1:322 and containing 19% water and GD brand treated muds Two special muds of the gyp-type were powder, a sodium silicate having a soda to silica ratio prepared having the following composition: of 1:2 and containing 18% water are also unsuitable for use in this invention as they also react too fast. It should be noted that because of the very rapid thickening of most of the examples in Table III, it was difficult to distinguish high breakover viscosity from Spwal MudA special MudB 15 rapid cement reaction. Both are equally bad, however. Density, gal 14.5 11.5 Drilling muds present at all drilling sites are not gfg g g fbg gf'gm $5 fl ffig highly treated. Therefore, to make them suitable for High Yield Clny,lbs-- 41.5 30.0 the purposes of this invention, it may be-necessary to i'fiilosl aarsamadman 321 treat the muds prior to the addition of the cementitious cellulose), lbs .t 0.2 0.2 20 mixture. Examples X and Y, described m Table IV, are 6 4 prepared from the special gyp-type muds (special muds Ca t c o g A and B) already described. Example Z was prepared $3,832, 53; i gg gy-- 5 using a special untreated mud having the following comlbs 6 position:

SPECIAL MUD 0 Density 14.1 lbs/gal. Water 0.76 bbl. (266 lbs). These special muds and the standard mud described Wyoming bentonite 21.5 lbs.

above were used in the examples of Table III. Barite 275.0 lbs.

TABLE III Example I Q R s '1 U V w Drilling fluid:

Standard mud (16 lbs./gal.), barrels.-. 1 1 1 1 1 Cementitious mixture, cement, lbs 470 470 8A 5 84. 5 84. 5 84. 5 84. 5

S um Silicate:

Metso Anhydrous, lb D Brand Sodium Silicate 2.5 gal. 0 10 bbl N Brand Sodium Silicate 8.1 gal. 0 l2 bbl. Pozzolan, lbs 19. 5 19. 5 19. 5 19. 5 19. 5 Soda Ash, lbs 3. 9 3. 9 3. 9 3. 9 3. 9 Relative breakover viscosity None None None None N.T. Agparent viscosity, after mixing cent 0 200 N .I. N.'I. 183 N.'l T ickening time, minutes to 100 poise: F.) N.T. N.T. N.'l,. N.T. N.TJ N.'l.

Compressive stren th, alter aging p.s.i 20 hours) (18o F.) (44 hours) (180 F.)

1 Slurry thickened too fast to obtain test. 2 Too thick to measure.

a Very in h. 4 Never tiickened. 5 Firm ge no set.

Examples P, Q and R demonstrate that lightly treated gyp-type muds gel immediately upon mixing or else have a very high breakover viscosity when combined with the cementitions mixture comprising metso anhydrous silicate, D brand sodium silicate, or N brand sodium silicate. Metso anhydrous sodium silicate has a soda to silica ratio of 1:1. D brand is a liquid sodium silicate having a soda to silica ratio of 1:2 and comprising 44% silicate solids. N brand is a liquid sodium silicate Table IV establishes that even with applicants cementitious mixture comprising a powdered sodium silicate glass having a soda to silica ratio between 1:2 and 1:45, muds that are not highly treated are not suitable (Examples X, Y and Z). On addition of 4 lbs/bbl. of quebracho and 2 lbs/bbl. of caustic soda to special mud A, it became a properly treated mud (Example XA). Addition of 4 lbs./ bbl. of Uni-Cal (a chromium lignosulfonate) and 1 lb./ bbl. of caustic soda also made mud A a properly treated TABLE IV Example X XA XB XC Y YA YB YC Z ZA Z8 Z ZD ZE Drilling Fluid:

Spec. Mud A (14.5#/gal. Gyp

Mu 1 l 1 l S .Mud B (11.5#/gal. Gyp

u 1 1 1 1 StfieMud C (MM/gal. Untreated ud) bbl 1 1 1 1 l 1 Additional Treatment Quebraeho, lbs. 8 6

14 14 14 14 14 14 14 14 14 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 None None None None None None None 27 30 45 130 158 150 188 210 N.T.' NIP. Nil) N.T. N31. N.T. N.l. N.T. NIP.

Kembreak, lbs.

TannAthin', lbs

Caustic, lbs 2 1 0. CementitiousMixture, Total ffbbl. 130 130 130 130 130 Cement, percent 65. 5 65. 5 65 65 65. 5 88-65, Sodium Silicate, percent 17 17 17 17 17 Pozzolan, percent 14 14 14 14 Soda Ash, percent 3. 5 3. 5 3. 5 3. 5 3. 5 Relative Breakover Vis None None None g Agpt. Vise. Alter Mixing, C p 178 165 165 T ickening Time,Minutes- Nil! NIP. NIP. Nil. N.T. Compressive Strength Tests:

Aging Temp, F 190 190 190 Strength, p.s.i. 725 560 802 Aging Time, hours... 20 44 V. High.

1 Too thick.

1 N .T. means not tested.

4 Too thick to test.

mud (Example XB). It should be noted that this mud originally contained 6 lbs./bbl. of TannAthin (lignite) and 6 lbs./bb1. of Spersene (a chrome lignosulfonate). It was found that special mud B could be made a properly treated mud by addition of 8 lbs./bbl. of Kembreak (calcium lignosulfonate), 8 lbs./bbl. of TannAthin, or 8 lbs./ bbl. of quebracho and a small addition of caustic soda (Ex- TABLE V Example AA AB AC AD AE AF A G AH AI Drilling fluid, standard mud barrels... 1 1 1 1 1 1 1 1 1 Cementitious mixture; pounds..... 120 190 190 130 130 130 130 Cement; reent 75 70 78 63 68 68 68 65 65 Sodium S lcate; 58-65; percent. 20 20 17 16.5 17 17 17 17 17 Pozzolan; percent ":5. i5 14. 5 15 l5 15 15 15 6Y8 61 i Relative breakover ty... None None None None None N one None None None Agparent viscosity, after mixing centipoise 2,10 148 203 200 183 200 '1 ickening time, minutes to 100 poise F.) 21 173 38 90 36 85 255 114 Compressive strength, after aging, p.s.i.:

(20 hours) (190 F.) (40 hours) (190 F.) (68 hours) (190 F.) (90 hours) (190 F.)

1 Did not thicken in 400 minutes.

amples YA, YB and YC). Special mud C, which is an untreated mud, could be made properly treated by the addition of as little as 4 lbs./bbl. of Spersene plus 1 lb./ bbl. of caustic soda or 4 lbs./bbl. of Kembreak plus 6 lbs./bbl of caustic soda (Examples ZA and Z8). Example ZE was treated with additional quebracho, but still had a very high breakover viscosity. This particular mud could be made suitable, however, by a small addition of water. Those skilled in the art of working with drilling muds can determine suitable treatments.

In order for additions of lignite, tannins, lignosulfonates, etc, to be effective, it is necessary to add a proper amount of caustic soda. As an example, we normally add one pound of caustic soda for each four pounds of Spersene added. When using a tannin like qnebracho, it is usual practice to add about one pound of caustic soda for every two pounds of quebracho. In the case of TannAthin, we normally add about one pound of caustic soda for each six pounds of TannAthin.

The examples in Table V are according to the teachings of this invention and demonstrate the effectiveness of certain compounds for lengthening the thickening time of cementitious mixtures and drilling fluid. The retarding agents would be used in deep wells having higher tem- Examples AA and AB demonstrate the effectiveness of hydrated lime as a retarding agent. Examples AC and AD demonstrate the effectiveness of soda ash as a retarding agent. Examples AE and AF demonstrate the effectiveness of lithium carbonate as a retarding agent. Examples AE and AG demonstrate the effectiveness of lithium hydroxide as a retarding agent. Examples AH and AI demonstrate the effectiveness of a combination of soda ash and lithium hydroxide as retarding agents. With the exception of large additions of lithium hydroxide, the re-' tarding agents extend the thickening time without greatly reducing the compressive strength after 20 hours. Summarizing, we have found that materials including caustic soda, hydrated lime, soda ash, lithium carbonate, lithium hydroxide and lithium chloride are effective in retarding the set of our cementitious mixtures. These materials are especially eifective when combined. For example, soda ash and lithium hydroxide together are very effective retarding agents.

Cementitious mixtures, according to this invention, have reduced tendency to lose strength after extended times at elevated temperatures. For example, mix AD in Table V would have a comprissive strength of about 1623 p.s.i. after aging 500 hours at 190 F. If the aging temperature 1 1 were raised 350 F., the strength would be reduced to 750 psi. It is usual for conventional oil well cements containing bentonite to show a retrogression in strength of between 75 and 90% after long periods of aging at high temperatures.

We have found that the following well known set retarders were either ineffective or acted as accelerators in our cementitious mixtures: sugar, NaCl, CMC, sodium gluconate, tartaric acid, borax, gallic acid, maleic acid, pyrogallic acid, sodium phosphates.

It should be understood that mud concretes according to the teachings of this invention are suitable for use not only in primary cementing but in secondary cementing, plugging and other oil and gas well applications.

Having thus described the invention in detail, and with sufiicient particularity as to enable those skilled in the art to practice it, what is desired to have protected by Letters Patent is set forth in the following claims.

We claim:

1. A process of cementing a string of pipe in a borehole comprising:

( 1) preparing an aqueous drilling fluid comprising clay minerals treated with alkali and organic dispersants selected from the group consisting of lignites, tannins, lignosulfonates, and mixtures thereof, there being suflicient dispersants to make the fluid resistant to the gelling effect of cement additions, said fluid having a density of at least 10 lbs./gal.,

(2) adding to said drilling fluid to form a mud concrete 100 to 200 lbs./bbl. of a cementitious combination compirising hydraulic cement and powdered sodium silicate glass in a ratio between 6:1 and 2: 1, said sodium silicate glass having an Na O: SiO ratio from 121.6 to 1:4.5,

(3) pumping the mud concrete into the annular space between the string of pipe and the walls of the borehole, and

(4) allowing the mud concrete to set due to the increased temperature of the borehole.

2. A process according to claim 1 in which there is added an amount of alkaline material suflicient to retard the set of the drilling fluid with added cementitious mixture while it is pumped into the annular space between the string of pipe and the walls of the borehole.

3. The process according to claim 1 in which a suflicient amount of a mixture of at least one of the materials in the group consisting of calcium hydroxide, lithium chlomentitious mixture includes up to about pozzolan material.

5. The process according to claim 1 in which the cementitious mixture comprises 65% portland cement, 17% powdered sodium silicate glass having a soda to silica ratio of 123.22, 15% ground volcanic ash with pozzolanic properties and 3% soda ash.

6. The process according to claim 1 in which the cementitious mixture comprises 65 percent portland cement, 17 percent powdered sodium silicate glass having a soda to silica ratio of 1:2, 15 percent ground volcanic ash with pozzolanic properties and 3 percent soda ash.

7 A process of treating aqueous drilling fluids containing clay minerals to make said fluids cementitious in the presence of increased temperature comprising the steps of:

(1) adding suflicient caustic and dispersant selected from the group consisting of lignites, lignosulfonates, tannins and mixtures thereof suflicient to make the fluid resistant to the gelling effect of cement additions,

-(2) adding to said drilling fluid 100 to 200 lbs./bbl. of

a cementitious combination comprising hydraulic cement and wdered 'icate lass a ratio ml and 1:1, said sodium s1 icate g ss having a soda to silica ratio from 1:16 to 1:4.

8. The method of claim 7 in which the fluid is treated with between 4 and 20 lbs./bbl. of dispersant.

9. A cementitious mixture for addition to aqueous drilling fluids containing clay minerals which fluids have been sufliciently treated with organic dispersants selected from the group consisting of lignites, tannins, lignosulfonates, and mixtures thereof to make the fluids resistant to the gelling eflect of cement additions ,comprisi'ng h draulic cement and uered sodim sicate lass in a ratio between :1 an 1:1, sai sodium s1 icae gass having a soda to silica ratio from 1:16 to 114.5.

10. A mixture according to claim 9 wherein said mixture includes an amount of alkaline material suflicient to retard the set of the drilling fluid with added cementitious mixture while it is being pumped down the string of pipe and up the annular space between the string of pipe and the walls of the borehole.

11. The mixture according to claim 9 wherein said mixture includes a suflicient amount of a mixture of at least one of the materials in the group consisting of calcium hydroxide, lithium chloride, lithium hydroxide, lithium carbonate, sodium hydroxide and soda ash to prevent set while the drilling fluid with cementitious mixture is being pumped down the string of pipe and up the annular space between the string of pipe and the walls of the borehole.

12. The mixture according to claim 9 comprising up to about 25% pozzolan material.

13. The mixture according to claim 9 in which the cementitious mixture comprises percent portland cement, 17 percent powdered sodium silicate glass having a soda to silica ratio of 1:322, 15 percent ground volcanic ash with pozzolanic properties and 3 percent soda ash.

14. The process according to claim 9 in which the cementitious mixture comprises 65 percent portland cement, 17 percent powdered sodium silicate glass having a soda to silica ratio of 1:2, 15 percent ground volcanic ash with pozzolanic properties and 3 percent soda ash.

References Cited UNITED STATES PATENTS 2,188,767 1/ 1940 Cannon et al. 166-31 2,287,411 6/ 1942 Boller et al 106--84 2,646,360 7/1953 Lea 166--3l X 2,705,050 3/ 1955 Davis et al. 166-31 2,786,531 3/1957 Mangold et al 166-29 X 3,168,139 2/1965 Kennedy et al. 166-29 CHARLES E. OCONNELL, Primary Examiner I. A. CALVERT, Assistant Examiner U.S. c1. X.R. 106--76,

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2188767 *Jul 25, 1936Jan 30, 1940Standard Oil Dev CoCement and cementing operation
US2287411 *Dec 19, 1940Jun 23, 1942Du PontAdhesive
US2646360 *Aug 29, 1949Jul 21, 1953Phillips Petroleum CoLow-water-loss cement slurry
US2705050 *May 25, 1953Mar 29, 1955Stanolind Oil & Gas CoSettable drilling fluid
US2786531 *Jun 11, 1954Mar 26, 1957Petroleum Engineering AssociatWell completion with permeable concrete
US3168139 *May 8, 1961Feb 2, 1965Great Lakes Carbon CorpConverting drilling muds to slurries suitable for cementing oil and gas wells
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3835926 *Aug 13, 1973Sep 17, 1974Halliburton CoMethods for sealing subterranean earth formations
US3887009 *Apr 25, 1974Jun 3, 1975Oil BaseDrilling mud-cement compositions for well cementing operations
US3902911 *Sep 28, 1973Sep 2, 1975Mobil Oil CorpLightweight cement
US3928052 *May 6, 1974Dec 23, 1975Halliburton CoMethods and compositions for sealing subterranean earth formations
US4519452 *May 31, 1984May 28, 1985Exxon Production Research Co.Using heat deactivatable deflocculant
US4883125 *Dec 11, 1987Nov 28, 1989Atlantic Richfield CompanyCementing oil and gas wells using converted drilling fluid
US5016711 *Feb 24, 1989May 21, 1991Shell Oil CompanyCement sealing
US5038863 *Jul 20, 1990Aug 13, 1991Altantic Richfield CompanyCementing oil and gas wells
US5058679 *Mar 19, 1991Oct 22, 1991Shell Oil CompanySolidification of water based muds
US5076852 *Apr 29, 1991Dec 31, 1991Atlantic Richfield CompanyDrilling fluid, sulfonated styrene copolymers asdispersants; p romoters of acetic acid, esters thereof
US5095992 *Mar 22, 1991Mar 17, 1992Parco Mast And Substructures, Inc.Process for installing casing in a borehole
US5207831 *Jan 27, 1992May 4, 1993Shell Oil CompanyCement fluid loss reduction
US5213160 *Oct 15, 1992May 25, 1993Shell Oil CompanyCementing a well with a water setting hydraulic slurry, displacement and hardening
US5226961 *Jun 12, 1992Jul 13, 1993Shell Oil CompanyHigh temperature wellbore cement slurry
US5269632 *Oct 22, 1992Dec 14, 1993Shell Oil CompanyMethod for strengthening the structural base of offshore structures
US5275511 *Oct 22, 1992Jan 4, 1994Shell Oil CompanyMethod for installation of piles in offshore locations
US5277519 *Oct 22, 1992Jan 11, 1994Shell Oil CompanyWell drilling cuttings disposal
US5284513 *Oct 22, 1992Feb 8, 1994Shell Oil CoCement slurry and cement compositions
US5285679 *Oct 22, 1992Feb 15, 1994Shell Oil CompanyQuantification of blast furnace slag in a slurry
US5301752 *Oct 22, 1992Apr 12, 1994Shell Oil CompanyDrilling and cementing with phosphate-blast furnace slag
US5301754 *Oct 22, 1992Apr 12, 1994Shell Oil CompanyWellbore cementing with ionomer-blast furnace slag system
US5302695 *Sep 10, 1993Apr 12, 1994Shell Oil CompanyPolycondensation of epoxy alcohols with polyhydric alcohols and thermal condensation to form polyethercyclicpolyols
US5305831 *Feb 25, 1993Apr 26, 1994Shell Oil CompanyWellbore cementing process
US5307876 *Oct 22, 1992May 3, 1994Shell Oil CompanyMethod to cement a wellbore in the presence of carbon dioxide
US5307877 *Oct 22, 1992May 3, 1994Shell Oil CompanyUsing a water soluble polymer
US5309997 *Oct 22, 1992May 10, 1994Shell Oil CompanyWell fluid for in-situ borehole repair
US5309999 *Oct 22, 1992May 10, 1994Shell Oil CompanyCement slurry composition and method to cement wellbore casings in salt formations
US5311944 *Oct 22, 1992May 17, 1994Shell Oil CompanyBlast furnace slag blend in cement
US5311945 *Oct 22, 1992May 17, 1994Shell Oil CompanyCombining water, calcium, magnesium, or zinc oxides, and phosphorus acid to produce cementitious slurry
US5314022 *Oct 22, 1992May 24, 1994Shell Oil CompanyDilution of drilling fluid in forming cement slurries
US5314031 *Oct 22, 1992May 24, 1994Shell Oil CompanyDirectional drilling plug
US5322124 *Oct 22, 1992Jun 21, 1994Shell Oil CompanyForcing slurry through casing slits; proton acceptor metal compound and polymer
US5325922 *Oct 22, 1992Jul 5, 1994Shell Oil CompanyRestoring lost circulation
US5327968 *Dec 30, 1992Jul 12, 1994Halliburton CompanyUtilizing drilling fluid in well cementing operations
US5330006 *Feb 25, 1993Jul 19, 1994Shell Oil CompanyOil mud displacement with blast furnace slag/surfactant
US5332040 *Oct 22, 1992Jul 26, 1994Shell Oil CompanyProcess to cement a casing in a wellbore
US5335725 *Jul 23, 1993Aug 9, 1994Shell Oil CompanyWellbore cementing method
US5337824 *Jun 28, 1993Aug 16, 1994Shell Oil CompanyCoal slag universal fluid
US5341882 *Feb 10, 1993Aug 30, 1994Shell Oil CompanyWell drilling cuttings disposal
US5343947 *Oct 22, 1992Sep 6, 1994Shell Oil CompanyAnchor plug for open hole test tools
US5343950 *Oct 22, 1992Sep 6, 1994Shell Oil CompanyDrilling and cementing extended reach boreholes
US5343951 *Oct 22, 1992Sep 6, 1994Shell Oil CompanyDrilling and cementing slim hole wells
US5343952 *Oct 22, 1992Sep 6, 1994Shell Oil CompanyCement plug for well abandonment
US5351759 *Oct 22, 1992Oct 4, 1994Shell Oil CompanySlag-cement displacement by direct fluid contact
US5355954 *Nov 2, 1993Oct 18, 1994Halliburton CompanyUtilizing drilling fluid in well cementing operations
US5358044 *May 27, 1993Oct 25, 1994Shell Oil CompanyActivator system; components of drilling fluid have dual functionality as promoters and thereafter in being constituents of cementitious slurry
US5358049 *Feb 14, 1994Oct 25, 1994Shell Oil CompanyConversion of emulsion mud to cement
US5361841 *May 27, 1993Nov 8, 1994Shell Oil CompanyDrilling and cementing with blast furnace slag/polyalcohol fluid
US5361842 *May 27, 1993Nov 8, 1994Shell Oil CompanyDrilling and cementing with blast furnace slag/silicate fluid
US5363918 *Aug 4, 1993Nov 15, 1994Shell Oil CompanyCombining drilling fluid consists of metal oxide and water with polymerizable monomer in presence of peroxide to form cementitious slurry to cement the well
US5370185 *Sep 8, 1993Dec 6, 1994Shell Oil CompanyMud solidification with slurry of portland cement in oil
US5371243 *Jul 13, 1993Dec 6, 1994Shell Oil CompanyPolyethercyclicpolyols from epihalohydrins, polyhydric alcohols, and metal hydroxides
US5371244 *Aug 13, 1993Dec 6, 1994Shell Oil CompanyControlling process conditions to avoid substantial undesirable degeneration
US5379840 *Aug 19, 1993Jan 10, 1995Shell Oil CompanyHigh temperature well cementing with low grade blast furnace slag
US5379843 *Apr 22, 1994Jan 10, 1995Shell Oil CompanySide-tracking cement plug
US5382290 *Apr 17, 1994Jan 17, 1995Shell Oil CompanyConversion of oil-base mud to oil mud-cement
US5398758 *Nov 30, 1993Mar 21, 1995Halliburton CompanyUtilizing drilling fluid in well cementing operations
US5423379 *Feb 4, 1994Jun 13, 1995Shell Oil CompanyMethod for drilling and cementing a well
US5436227 *May 27, 1993Jul 25, 1995Shell Oil CompanyPolyetherpolycyclicpolyol condensation polymer of glycerol and dihydroxy alcohol
US5439056 *Jun 28, 1993Aug 8, 1995Shell Oil CompanyUsing cementitious composition comprising drilling fluid, coal slag and lime
US5464060 *Apr 12, 1994Nov 7, 1995Shell Oil CompanyMixing with Portland cement and pozzolana; applying settable filter cake on walls; activating to harden
US5476144 *Sep 20, 1994Dec 19, 1995Shell Oil CompanyConversion of oil-base mud to oil mud-cement
US5499677 *Dec 23, 1994Mar 19, 1996Shell Oil CompanyEmulsion in blast furnace slag mud solidification
US5515921 *Dec 23, 1994May 14, 1996Shell Oil CompanyMethod for cementing a directional well
US5580379 *Dec 12, 1995Dec 3, 1996Shell Oil CompanyEmulsion in blast furnace slag mud solidification
US5673753 *Apr 20, 1995Oct 7, 1997Shell Oil CompanyIn-situ cementation by addition of blast furnace slag
US7204310Apr 11, 2006Apr 17, 2007Halliburton Energy Services, Inc.Methods of use settable drilling fluids comprising cement kiln dust
US7284609Nov 10, 2005Oct 23, 2007Halliburton Energy Services, Inc.Methods of using settable spotting compositions comprising cement kiln dust
US7337842Oct 24, 2005Mar 4, 2008Halliburton Energy Services, Inc.Above ground or subterranean formation cementing using partially calcined kiln feed that is removed from a gas stream and collected in a dust collector during the manufacture of cement and soluble phosphate
US7338923Apr 11, 2006Mar 4, 2008Halliburton Energy Services, Inc.Settable drilling fluids comprising cement kiln dust
US7353870Sep 9, 2005Apr 8, 2008Halliburton Energy Services, Inc.cementing with an additive comprising at least one material selected shale, zeolite, slag cement, metakaolin into a well bore or in a subterranean formation; vitrified shale provides compressive strengths; free of Portland cement to reduce cost, eliminate waste
US7357834 *Apr 11, 2006Apr 15, 2008Halliburton Energy Services, Inc.Cement composition for use with a formate-based drilling fluid comprising an alkaline buffering agent
US7381263Oct 24, 2005Jun 3, 2008Halliburton Energy Services, Inc.Cement compositions comprising high alumina cement and cement kiln dust
US7387675Sep 9, 2005Jun 17, 2008Halliburton Energy Services, Inc.Foamed settable compositions comprising cement kiln dust
US7395860Sep 9, 2005Jul 8, 2008Halliburton Energy Services, Inc.Methods of using foamed settable compositions comprising cement kiln dust
US7441609 *Oct 31, 2005Oct 28, 2008Newpark Drilling Fluids,LlcMethod of decreasing the disintegration of shale-containing cuttings and drilling fluid therefor
US7445669Sep 9, 2005Nov 4, 2008Halliburton Energy Services, Inc.Settable compositions comprising cement kiln dust and additive(s)
US7478675Feb 21, 2008Jan 20, 2009Halliburton Energy Services, Inc.Extended settable compositions comprising cement kiln dust and associated methods
US7607482Sep 11, 2008Oct 27, 2009Halliburton Energy Services, Inc.such as butadiene-styrene block copolymers; hydraulic cements; subterranean formations
US7607484Nov 3, 2008Oct 27, 2009Halliburton Energy Services, Inc.For subterranean formations
US7631692Apr 8, 2009Dec 15, 2009Halliburton Energy Services, Inc.Settable compositions comprising a natural pozzolan and associated methods
US7674332Jan 7, 2009Mar 9, 2010Halliburton Energy Services, Inc.Subterranean applications such as primary cementing, remedial cementing, and drilling operations, surface applications, for example, construction cementing
US7743828Oct 27, 2009Jun 29, 2010Halliburton Energy Services, Inc.Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US7789150Oct 30, 2009Sep 7, 2010Halliburton Energy Services Inc.cementing well; rapid strength development; terpolymer rubber of 2-acrylamido-2-methylpropanesulfonic acid and butadiene and styrene
US7927419Sep 11, 2009Apr 19, 2011Halliburton Energy Services Inc.Subterranean applications such as primary cementing, remedial cementing, and drilling operations, surface applications, for example, construction cementing
US8030253Aug 20, 2009Oct 4, 2011Halliburton Energy Services, Inc.Foamed cement compositions comprising oil-swellable particles
US8261827Apr 16, 2012Sep 11, 2012Halliburton Energy Services Inc.Methods and compositions comprising kiln dust and metakaolin
US8281859Feb 17, 2012Oct 9, 2012Halliburton Energy Services Inc.Methods and compositions comprising cement kiln dust having an altered particle size
US8297357Jun 28, 2010Oct 30, 2012Halliburton Energy Services Inc.Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8307899Jun 23, 2010Nov 13, 2012Halliburton Energy Services, Inc.Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8318642Jun 27, 2012Nov 27, 2012Halliburton Energy Services, Inc.Methods and compositions comprising kiln dust and metakaolin
US8324137Jul 27, 2010Dec 4, 2012Roddy Craig WLatex compositions comprising pozzolan and/or cement kiln dust and methods of use
US8327939May 24, 2012Dec 11, 2012Halliburton Energy Services, Inc.Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8333240Nov 3, 2008Dec 18, 2012Halliburton Energy Services, Inc.Reduced carbon footprint settable compositions for use in subterranean formations
US8399387Sep 14, 2012Mar 19, 2013Halliburton Energy Services, Inc.Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8403045Dec 21, 2010Mar 26, 2013Halliburton Energy Services, Inc.Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8434553Sep 7, 2012May 7, 2013Halliburton Energy Services, Inc.Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8440596Sep 7, 2012May 14, 2013Halliburton, Energy Services, Inc.Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8476203Jan 4, 2010Jul 2, 2013Halliburton Energy Services, Inc.Cement compositions comprising sub-micron alumina and associated methods
US8486868Nov 5, 2012Jul 16, 2013Halliburton Energy Services, Inc.Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8486869Jul 27, 2012Jul 16, 2013Halliburton Energy Services, Inc.Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8505629Jun 27, 2012Aug 13, 2013Halliburton Energy Services, Inc.Foamed spacer fluids containing cement kiln dust and methods of use
US8505630Dec 21, 2012Aug 13, 2013Halliburton Energy Services, Inc.Consolidating spacer fluids and methods of use
US8522873Sep 30, 2010Sep 3, 2013Halliburton Energy Services, Inc.Spacer fluids containing cement kiln dust and methods of use
US8544543Mar 27, 2013Oct 1, 2013Halliburton Energy Services, Inc.Consolidating spacer fluids and methods of use
US8551923May 8, 2013Oct 8, 2013Halliburton Energy Services, Inc.Foamed spacer fluids containing cement kiln dust and methods of use
US8555967Apr 26, 2013Oct 15, 2013Halliburton Energy Services, Inc.Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8586512Sep 27, 2009Nov 19, 2013Halliburton Energy Services, Inc.Cement compositions and methods utilizing nano-clay
US8603952Mar 27, 2012Dec 10, 2013Halliburton Energy Services, Inc.Cement compositions and methods utilizing nano-clay
US8608405Nov 24, 2010Dec 17, 2013Baker Hughes IncorporatedMethods for disposing of produced water recovered during hydrocarbon drilling, production or related operations
US8609595Oct 26, 2012Dec 17, 2013Halliburton Energy Services, Inc.Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8672028Jul 11, 2011Mar 18, 2014Halliburton Energy Services, Inc.Settable compositions comprising interground perlite and hydraulic cement
US8685903Mar 21, 2011Apr 1, 2014Halliburton Energy Services, Inc.Lost circulation compositions and associated methods
US8691737Mar 27, 2013Apr 8, 2014Halliburton Energy Services, Inc.Consolidating spacer fluids and methods of use
US8741818Apr 11, 2012Jun 3, 2014Halliburton Energy Services, Inc.Lost circulation compositions and associated methods
US20060166834 *Mar 24, 2006Jul 27, 2006Halliburton Energy Services, Inc.Subterranean treatment fluids comprising substantially hydrated cement particulates
EP0146171A1 *Nov 26, 1984Jun 26, 1985Etudes et Fabrication Dowell SchlumbergerProcess and composition for cementing wells passing through salt formations
WO1992019568A1 *Apr 23, 1992Nov 12, 1992Shell Canada LtdMethod of cementing a well
Classifications
U.S. Classification166/292, 106/607
International ClassificationC09K8/20, C04B28/26
Cooperative ClassificationC09K8/203, C04B28/26
European ClassificationC09K8/20B, C04B28/26
Legal Events
DateCodeEventDescription
Feb 24, 1987AS02Assignment of assignor's interest
Owner name: DRESSER INDUSTRIES, INC.,
Owner name: MI DRILLING FLUIDS COMPANY, HOUSTON, TX. A TX. GEN
Effective date: 19861211
Feb 24, 1987ASAssignment
Owner name: MI DRILLING FLUIDS COMPANY, HOUSTON, TX. A TX. GEN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DRESSER INDUSTRIES, INC.,;REEL/FRAME:004680/0403
Effective date: 19861211