Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3502677 A
Publication typeGrant
Publication dateMar 24, 1970
Filing dateJun 17, 1963
Priority dateJun 17, 1963
Publication numberUS 3502677 A, US 3502677A, US-A-3502677, US3502677 A, US3502677A
InventorsWilliam M Le Sner
Original AssigneeLubrizol Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Nitrogen-containing and phosphorus-containing succinic derivatives
US 3502677 A
Images(15)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 3,502,677 NITROGEN -CONTAINING AND PHOSPHORUS- CONTAINING SUCCINIC DERIVATIVES I William M. Le Suer, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wicklifie, Ohio, a corporation of Ohio No Drawing. Filed June 17, 1963, Ser. No. 288,481 Int. Cl. C07d 51/70, 49/34, 87/02 U.S. Cl. 260268 14 Claims This invention relates to substituted polyamines and to processes for preparing the same. The substituted polyamines of this invention are useful as anti-wear agents, anti-rust agents, insecticides, plasticizers, detergents, etc. They are especially useful as additives in lubricating compositions, fuels, hydrocarbon oils, and power-transmitting fluids.

Deterioration of lubricating oils, especially mineral oils, has been a great concern in the formulation of lubricating compositions for internal combustion engines, transmissions, gears, etc. Deterioration of the oil results in the formation of products which are corrosive to the metal surfaces with which the oil comes into contact. It also results in the formation of products which agglomerate to form sludgeand varnish-like deposits. The deposits cause sticking of the moving metal parts and obstruct their free movement. They are a principal cause of malfunctioning and premature breakdown of the equipment which the oil lubricates.

It is known that water is a common contaminant in the crankcase lubricant of an engine. It may result from the decomposition of the lubricating oil or come from the combustion chamber as a blow-by product of the burning of the fuel. The presence of water in the lubricant seems to promote the deposition of a mayonnaise-like sludge. This type of sludge is more objectionable because it is tenacious to metal surfaces and is not removed by the oil filter. If the engine is operated under conditions such that the crankcase lubricant temperature is cotninuously high, the water will be eliminated about as fast as it accumulates and only a very small amount of the mayonnaise-like sludge is formed. On the other hand, if the crankcase lubricant temperature is intermittently high and low or consistently low, the water will accumulate and a substantial quantity of the mayonnaiselike sludge will be deposited in the engine.

High operating-temperatures are characteristic of an engine that is consistently run at relatively high speed and continuously for a lengthy period. However, where an automobile is primarily used for trips of short distance such as is characteristic of urban, home-to-work use, a significant portion of the operation occurs before the engine has reached its optimum, high temperature. An ideal environment thus obtains for the accumulation of water in the lubricant. In this type of operation, the problem of mayonnaise sludge has been especially troublesome. Its solution has been a proached by the use in the lubricant of detergents such as metal phenates and sulfonates which have been known to be effective in reducing deposits in engines operated primarily at high temperatures. Unfortunately, such known detergents have not been particularly effective in solving the problems associated with low temperature operation, particularly those problems which are associated with crankcase lubricants in engines which are operated at low or alternating high and low temperatures.

It is accordingly a principal object of this invention to provide novel compositions of matter.

It is also an object of this invention to provide compositions which are adapted for use as additives in hydrocarbon oils.

It is also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.

It is another object of this invention to provide novel compositions which are effective dispersants in lubricant compositions intended for use in engines operated at low or alternating high and low temperatures.

It is another object of this invention to provide improved lubricating compositions.

It is another object of this invention to provide improved fuel compositions.

These and other objects are attained in accordance with this invention by providing a process for preparing substituted polyamines comprising the reaction of 1 mole of an alkylene amine with at least about 0.25 mole of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent and at least about 0.001 mole of a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, phosphonyl acids, phosphinyl acids, and the esters, the halides, and the anhydrides thereof.

The polyamines from which the products of this invention are derived include principally alkylene amines conforming for the most part to the formula wherein n is an integer preferably less than about 10, A is a hydrogen radical or a substantially hydrocarbon preferably having up to about 30 carbon atoms, and the alkylene radical is preferably a lower alkylene radical having less than about 8 carbon atoms. The alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines, and also the cyclic and the higher homologues of such amines such as piperazines and amino-alkyl-substituted piperazines. They are exemplified specifically by: ethylene diamine, triethylene tetramine, propylene diamine, decamethylene diamine, octamethylene diamine, di(heptamethylene) triamine, tripropylene tetramine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, di(trimethylene)triamine, 2 heptyl- 3 (2 aminopropyl)imidazoline, 4 methyl imidazoline, 1,3 bis(2 aminoethyl)imidazoline, pyrimidine, 1- (2 aminopropyl)piperazine, 1,4 bis(2 aminoethyl)- piperazine, and 2 methyl 1 (2 aminobutyl)piperazine. Higher homologues such as are obtained by condensing two or more of the above-illustrated alkylene amines likewise are useful.

The ethylene amines are especially useful. They are described in some detail under the heading Ethylene Amines in Encyclopedia of Chemical Technology, Kirk and Othmer, volume 5, pages 898-905, Interscience Publishers, New York (1950). Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia. The reaction results in the production of somewhat complex mixtures of alkylene amines, including cyclic condensation products such as piperazines. These mixtures find use in the process of this invention. On the other hand, quite satisfactory products may be obtained also by the use of pure alkylene amines. An especially useful alkylene amine for reasons of economy as well as effectiveness of the products derived therefrom is a mixture of ethylene amines prepared by the reaction of ethylene chloride and ammonia and having a composition which corresponds to that of tetraethylene pentamine.

HydroXyalkyl-substituted alkylene amines, i.e., alkylene amines having one or more hydroxyalkyl substituents on Higher homplogues such as are obtained by condensation of the above illustfated alkylene amines or hydroxy alkyl-substituted alkylene amines through amino radicals or through hydroxy radicals are likewise useful. It will,

be appreciated that condensation through amino radicals results in a higher amine accompanied with removal of ammonia arid that..condensation through the hydroxy radicals results in products containing ether linkages accompanied with removal of water. g

The substantially hydrocarbon-substituted succinic acidproducing compounds used in the above process include the succinic acids, anhydrides, halides, and esters. An important aspect of this invention is the size of the substantially hydrocarbon substituent on the succinic acid-producing compound. Thus, only the substituted succinic acid-producing compounds having at least about 50 aliphatic carbon atoms in' the substantiallyhydrocarbon substituent are contemplated as being within the scope of this invention. This lower limit is based not onlyupon a consideration .of the oil-solubility of the substituted polyamines but also upcgn the effectiveness of such compounds in application contemplated by this invention.

The substantially hydrocarbon substituent of the succinic compound may contain polar groups provided, however, that the polar groups are not present in proportions sufiiciently large to alter signifiiantly the hydrocarbon character of the substituent. The polar groups are exemplified by the chloro, bromo, keto, ether, aldehyde, nitro, etc. The upper limit with respect to the portion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent. V a V The sources of the substantially hydrocarbon substituent include principally the high molecular weight substantiallyi saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 'carbon atoms. The especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-biitene, isobutene, l-hexene, 1- octene, 2-methyl-l-heptene, 3-cyclohexyl-l-hutene, and 2- methyl-S-propyl-l-hexenefPolymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by 2- butene '3-penterfe, and 4-octene.

Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins. Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene witlr p-methyl styrene; l-hexene with 1 3-hexadiene; l-octene with l-hexene; l-heptene; with l-pentene; 3-methyll-hutene with l-octene; 3,3-dimethyl-1-pentene with ihexene; isobutene with styrene and piperylenef etc.

The relative proportions :of the mono-olefins to the other monbmers in the interpolymers influence the stability andoil-solubjlity of the final products derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably.;at least about 95%, on a Weight basis of units derived from the aliphatic monoolefins and no 4 more than about;5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of oiefinic linkages should be less than about 2% of the total nu-mber of carbon-tocarbon covalent linkages.

Specific examples of such interpolymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexehe; terpolymer of of isobutene with 20% of l-pentene and V 20% of l-octene; copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer o-f of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene.

Another source ofathe substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.

:The useof olefin polymers having molecular weightof about 750-500 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the final products of this invention. The use of such higher molecular weight olefin polymers often is desirable.

The succinic acid-producing compounds useful in the above process are preferably substantially hydrocarbonsubstituted succinic acid and anhydrides. These succinic compounds are readily. available from .the reaction of maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as the olefin polymer de- I scribed hereinabove. The reaction involves merely heating the two reactants at temperature about 100-200 C.. Theproduct from such a reaction is an alkenylgsuccinic' anhydride. The alkenyl group may be hydrogenated to an alkyl group. :The anhydride may be hydrolyzed by treat.- ment with water or steam to the corresponding acid. Either the anhydridezor the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, ;or alcohols.

In lieu of the olefins or chlorinated hydrocarbons, other hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction? with maleic acid or anhydride, may be used in the above-illustrated reactiongfor preparing the succinic compounds. Such polar "substituents may be illustrated by sulfide, disulfide, nitro,

hydrocarbon at a temperatureiusually within the range from about 100 C. to about 200 C.

The acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tri-brornide, phosphorus pentachloride or thionyl chloride. The esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadecanol, cyclohexanol, phenol, naphthol, octylphenol, etc. The ester'ification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such as sulfuric acid. The nature of the alcoholic or phenolic portion of the ester radical appears to haveilittle influence on the utility of such ester as reactant in the process described hereinabove.

The phosphorus acid-producing reactants useful in the above process for forming the substituted polyamines of this invention may be phosphorus acids, anhydrides, esters, or halides. The. phosphorus acids, as indicated previously, may be phosphoric acids, phosphorous acids, phosphinyl acids (including phosphinic acids and phosphinous acids), and phosphonyl acids (including phosphonic acids and phosphonous acids). It will be noted that the phosphorus acids include the Oxyphosphorus acids, the thiophosphorus acids, as well as the mixed oxythiophosphorus acids (i.e., those containing both oxygen and sulfur). Thus, a phosphoric acid is used in a generic sense to denote the class consisting of phosphoric acid (H PO phosphorotetrathioic acid (H PS phosphoromonothioic acid (H PO S), phosphorodithioic acid (H PO S and phosphorotrithioic acid (H POS It should be noted that the acids containing both oxygen and sulfur may be further characterized according to the manner in which the oxygen or sulfur is attached to the phosphorus atom of the acid. The nomenclature used here follows essentially that proposed by the American Chemical and Engineering News, vol. 30, No. 43, Oct. 27, 1952. According to this nomenclature, for instance, a phosphorornonothioic acid in which the sulfur atom is attached only to the phosphorus atom (i.e., P(S) (OH)) is a phosphorothionic acid whereas its isomer in which the sulfur atom is attached to both the phosphorus atom and a hydrogen atom (i.e., -P(O)(SH)) is a phosphorothiolic acid. Also according to this nomenclature, the inclusion of thio analogs is admitted only when generic expressions are used and the specific designation of dioctylphosphoric acid refers to the oxy-acids only, i.e., (OctylO) P(O)(OH). Thus, dialkylphosphoric acids, i.e., dialkyl esters of phosphoric acids, include. dialkylphosphoric acid ((AlkyI--O) P(O)(OH)); dialkylphosphorotetrathioic acid ((AlkylS) P(S) (SH) O,S-dialkylphosphorodithionic acid O,S-dialkylphosphorodithiolic acid ((AlkylO) (AlkylS) P (0) (SH) O,S-dialkylphosphorotrithioic acid ((AlkylO) (Alky1-S)P (S) (SH) etc. Similarly, diarylphosphinic acids include: diarylphosphinic acid ((Aryl P(O)(OH)); diarylphosphinodithioic acid (Aryl P(S)'(SH)); diarylphosphinothionic acid (Aryl P(S)(OH)); and diarylphosphinothiolic acid y 2 Specific examples of the organic phosphonyl and phosphinyl acids include: diphenylphosphinic acid, dinaphthylphosphinodithioic acid, diheptylphosphinic acid, di- (heptylphenyl)phosphinous acid, di(chlorodecyl)phosphinic acid, phenylphosphonic acid, phenylphosphonous acid, phenylphosphonomonothioic acid, the acid obtained by the reaction of alpha-pinene with phosphorus pentasulfide, the acid obtained by the reaction of polyisobutene having a molecular weight of 1000 with phosphorus pentasulfide, the acid obtained by the reaction of a polyisobutene having a molecular weight of 500 with phosphorus trichloride and oxygen, and bis(o,p-dichlorophenyl) phosphinornorzothioic acid.

The phosphorus acids, anhydrides, esters, and halides likewise are useful for preparing the substituted polyamines. The anhydrides of inorganic phosphorus acids are especially desirable. They are illustarted by phosphorus pentoxide, phosphorus pentasulfide, phosphorus heptasulfide, phosphorus sesquisulfide, and phosphorus oxysulfide. The anhydrides of organic phosphorus acids are exemplified by the anhydrides of diphenylphosphinic acid, 0,0'-dioctylphosphorodithioic acid, dinaphthylphosphinodithioic acid, etc. The halides of the phosphorus acids include, for instance, phosphorus trichloride, phosphorus pentachloride, phosphorothioic trichloride, phosphorus tribromide, diphenylphosphinic chloride, di(chlorophenyl) phosphinoihioic chloride, 0,0'-diphenylphosphorothioic chloride, phenylphosphonic dichloride, diphenylphosphinous chloride, diphenylphosphorus trichloride, and diphenylphosphinothioic bromide.

The esters of the phosphorus acids may be the completely esterified acids or partially esterified acids. The latter are also known as acidic esters, i.e., at least a portion of the acid is not esterified; they are illustrated by the monoor the di-esterified phosphoric or phosphorous acids and the mono-esterified phosphonic or phosphonous acids. The ester potion may be derived from a substantially hydrocarbon radical usually one having less than about 30 and preferably from about 1 to about 24 aliphatic carbon atoms. The substantially hydrocarbon radicals are exemplified by methyl, ethyl, chloromethyl, o-chlorophenyl, p-bromophenyl, alpha-chloronaphthyl, beta-heptylnaphthyl, o,p-din1ethoxyphenyl, tolyl, isobutyl, octadecyl, 4-chloro-2-heptadecyl, eicosyl, naphthyl, ben- -zyl, chlorobenzyl, 2-phenylethyl, cyclohexyl, cyclopentyl, 2-methylcyclohexyl, the hydrocarbon radical derived from polypropene having a molecular weight of 1,500, the hydrocarbon radical derived from polyisobutene having a molecular weight of 5000, behenyl, stearyl, oleyl, allyl, propargyl, o-heptylphenyl, 2,4,6-trimethylphenyl, 2- mercaptophenyl, m-nitrophenyl, methoxytetraethoxymethyl, l0-keto l-octadecyl, polyisobutene (molecular Weight of 1,000)-substituted :phenyl, xenyl, S-naphthyl- Z-decyl, lO-tolyl-l-stearyl, and 9,10-dichlorostearyl radical.

The commonly used esters are, for example, methyl ester of phosphoric acid, dimethyl ester of phosphoric acid, trirnethyl ester of phosphoric acid, methyl ester of phosphorothionic acid, O-methyl ester of phosphorothiolic acid, dicyclohexyl ester of phisphoric acid, 0,0-dicyclehexyl ester of phosphorodithioic acid, dicyclohexyl ester of phosphorotetrathioic acid, O-cyclohexyl-S-decyl ester of phosphoromonothioic acid, 0,0-diphenyl ester of phosphoromonothiolic acid, triphenyl ester of phosphoric acid, triphenyl ester of phosphorous acid, tritolyl ester of phosphoric acid, dioctadecyl ester of phosphorus acid, trinaphthyl ester of phosphorous acid, trinaphthyl ester of phosphoric acid, 0,0-dinaphthyl ester of phosphoromonothionic acid, 0,0-dinaphthyl ester of phosphorothiolic acid, di(heptylphenyl) ester of phosphoric acid, bis(dichlorophenyl) ester of phosphorous acid, S-benzyl ester of phosphoromonothiolic acid, S,S-di(phenylethyl) ester of phosphorodithioic acid, O,S-didecyl ester of phosphorotrithiolic acid, S,S-didodceyl ester of phosphorotrithiolic acid, diphenyl ester of phosphorotetrathioic acid, O-dodecyl-S-phenyl ester of phosphoromonothiolic acid, 0,0-diisooctyl ester of phosphorodithioic acid, di(nitrophenyl) ester of phosphoric acid, 0,0-di(nitrophenyl) ester of phosphorodithioic acid, 0,0-di(methoxyphenyl) ester of phosphorodithioic acid, 0,0'-di(methoxyphenyl) ester of phosphorodithioic acid,

ester of phosphoric acid, di(methyl(OC H ester of phosphoric acid, decyl octadecyl ester of phosphoric acid, di(4-keto-1-decyl) ester of phosphoric acid, methyl ester of diphenylphosphinic acid, ethyl ester of diphenylphosphinodithioic acid, cyclohexyl ester of dinaphthylphosphinomonothiolic acid, octyl ester of dicyclohexylphosphinomonothioic acid, dimethyl ester of methylphosphonic acid, dimethyl ester of ethylphosphonomono thionic acid, dodecyl ester of cyclohexylphosphonic acid, tertiary-butyl ester of di(heptylphenyl)phosphinous acid, diphenyl ester of phenylphosphonotrithioic acid, diphenyl ester of phenylphosphonous acid, di(polyisobutene (molecular weight of 1500)-substituted phenyl) ester of phosphoric acid, 0,0'-di(polypropene (molecular weight of 300)-substituted naphthyl) ester of phosphorodithioic acid, and oleyl ester of phosphoric acid.

The esters of phosphoric acid and phosphorothioic acids are obtained 'by the reaction of phenol or an alcohol with phosphoric acid or a phosphorothioic acid, or an anhydride of the acid such as phosphorus pentoxide, phosphorus pentasulfide, or phosphorus oxysulfide. The reaction is usually carried out simply by mixing the reactants at a temperature above about 50 C., preferably between about 80 C. and 150 C. In many instances, however, the esters of phosphoric acids tend to decom pose at high temperatures. Thus it is often desirable to avoid prolonged exposure of the reaction mixture to temperatures above about 150 C. A solvent may be used in the reaction to facilitate mixing of the reactants and control of the reaction temperature. The solvent may be benzene, naphtha, chlorobenzene, mineral oil, kerosene, cyclohexane, or carbon tetrachloride, A solvent capable of forming a relatively low boiling azeotrope with water further aids the removal of Water in the esterification of an alcohol or phenol with the phosphorus acid reactant. The relative amounts of the alcohol or phenol reactant and the acid reactant influence the nature of the ester obtained. For instance, equimolar amounts of an alcohol and phosphoric acid tend to result in the formation of a monoester of phosphoric acid whereas the use of a molar excess of the alcohol reactant in the reaction mixture tends to increase the proportion of the diester or triester in the product. In most instances the product will be a mixture of the mono-, di-, and tri-esters of the acid and such a mixture is desirable for use in this invention for reasons of economy.

The reaction of an alcohol or phenol with phosphorus pentasulfide ordinarily results in 0,0-diester of phosphorodithioic acid. Such a reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide and may be carried out within the temperature range from about 50 C. to about 250 C. Thus, the preparation of 0,0'-di-n-hexylphosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. Treatment of the phosphorodithioic acid with water or steam removes one or both sulfur atoms and converts the product to the corresponding phosphoromonothioic acid or phosphoric acid.

The esters of phosphorotetrathioic acid can be prepared by first the reaction of a mercaptan or thiophenol with PSCl or PSBr to produce an intermediate which is either a phosphorotrithioic halide or triester of phosphorotetrathioic acid and the subsequent reaction of the intermediate with hydrogen sulfide or sodium hydrosulfide. The esters of phosphorotrithioic acids are obtained by the treatment of the esters of the phosphorotetrathioic acids with water or steam.

The esters of phosphorous acids are obtained by the reaction of an alcohol or phenol with phosphorous acid or a phosphorus trihalide such as phosphorus tribromide or phosphorus trichloride and the above noted reaction usually requires carefully controlled conditions such as low temperature in order to give a substantial yield of the esters of phosphorous acids. Under other conditions the reaction of an alcohol or phenol with a phosphorus trihalide may result in a phosphonic acid or ester. Such esters are readily susceptible to rearrangement to phosphonic acids and esters.

The esters of phosphinic, phosphinous, phosphonic, and. phosphonous acids obtained by either direct esterification of the acid or an anhydride with an alcohol or phenol or the reaction of an acid halide with an alcohol or phenol. They are also obtained by the reaction of a salt of the acid such as sodium or ammonium salt of the acid with a suitable halogenated hydrocarbon. The methods for preparing the phosphorus acids and their anhydrides, esters, and halides are known in the art and are not discussed in further detail here.

The reaction by which the products of this invention are obtained can be effected simply by mixing a polyamine reactant with the succinic acid-producing and the phosphorus acid-producing reactants at the desired temperature. The use of an inert solvent in the reaction is not necessary but often desirable, especially when a highly viscous or solid reactant is present in the reaction mixture. The inert solvent useful in the reaction may be a hydrocarbon such as benzene, toluene, naphtha, cyclohexane, n-hexane, or mineral oil.

The chemical composition of the substituted polyamines resulting from the reaction depends primarily upon the reaction conditions employed and the nature of the reactants. Thus, a polyamine containing primaryamino groups is capable of forming salts or amides as well as imides or amidines with a succinic acid or anhydride. On the other hand, a polyamine containing secondary-amino groups is capable of forming salts and amides and a polyamine containing tertiary-amino groups is capable of forming only salts with a succinic acid or anhydride, Similarly, a polyamine having tertiary-amino groups forms salts with a phosphorus acid whereas one having primaryor secondary-amino groups may form either salts or amides with a phosphorus acid. When an ester of a succinic acid or phosphorus acid is used as the reactant with a polyamine, the reaction proceeds by replacing the ester radical with the amino group of the polyamine to form an amide or imide. A by-product of such a reaction is a hydroxyor thio-compound (e.g., alcohol or phenol) derived from the ester radical. The reaction of a polyamine with an acid halide may result in forming a salt, amide, or imide accompanied by the byproduct of hydrogen halide.

In general, a reaction temperature below about C. results in products having predominantly salt linkages, whereas at a higher temperature, the product usually contains predominantly amide, imide, amidine linkages or a mixture of such linkages. The maximum temperature for the reaction is limited by the decomposition point of the reaction mixture. It usually does not exceed about 250 C.

A convenient method of carrying out the process of this invention involves first reacting a polyamine with either one of the two acid-producing reactants (i.e., the succinic acid-producing reactant or the phosphorus acidproducing reactant) to form an intermediate and then reacting the intermediate with the other acid-producing reactant. For instance, an alkylene amine may be first partially acylated by reaction at 80 C., preferably at C. or a higher temperature, with a substantially hydrocarbon-substituted succinic acid or anhydride to form an intermediate having at least some nitrogen-succinic groups (such as succinamides or succinimide groups) and the intermediate is then reacted at 25 C. preferably at 50 C. or a higher temperature with phosphoric acid to form the final product having both nitrogen-succinic groups and nitrogen-phosphorus groups. Alternatively, the alkylene amine may be first combined with phosphoric acid at 25 C., preferably at 50 C. or a higher temperature to form an intermediate and the intermediate is then acylated at 80 C., preferably at 120 C. or a higher temperature with a substituted succinic acid or anhydride to form the final product. Still another method may be used which involves mixing the alkylene amine, the substituted succinic acid or anhyhydride, and phosphoric acid and maintaining the reaction mixture at the desired temperature such as about 10 C. or higher.

The relative proportions of the reactants to be used in the process of this invention are based on the utility of the products resulting therefrom for the purposes of this invention. For the most part, the amount of the phosphorus acid-producing reactant should be at least about 0.001 mole per mole of the alkylene amine used and the amount of the succinic acid-producing reactant should be at least about 0.25 mole per mole of the alkylene amine used. The preferred amounts of these reactants are such that there be from about 1 to 3 moles of the succinic reactant and from about 0.5 to 3 moles of the phosphorus reactant for each mole of the alkylene amine used. In most instances, the practical upper limit for the amounts of the succinic reactant and the phosphorus reactant is based on the stoichiometry for the reaction in which all of the amino groups of the alkylene amine reactant are combined with the succinic and the phosphorus reactants. Thus, such practical upper limit may be as many moles of the combined succinic and phosphorus reactants as the number of amino groups in the alkylene amine. For instance, where an alkylene amine having n number of amino groups, the practical upper limit for the total amounts of the succinic and the phosphorous reactants will be 11 moles per mole of the alkylene amine used.

It will be noted, however, that if an excess of any reactant is used in the process, the un-used reactant may be separated from the desired product by distillation, extraction, precipitation, filtration or such ordinary means; or it may be allowed to remain in the product. It will be also noted that within the above ranges for the amounts of the reactants, the process may result in partially substituted alkylene amines, i.e., products in which some of the amino groups of the alkylene amine reactant are not combined with a succinic or phosphorus reactant. The partially substituted polyamines are contemplated within the scope of this invention.

For the purposes of this invention, the molecular weight of a succinic compound is taken to be twice the equivalent weight based on its acid number as determined by an ASTM method. The molecular Weights of the alkylene amine and the phosphorus reactants likewise may be computed from the nitrogen content and the phosphorus content of such reactants, respectively.

The following examples illustrate the preparation of the compositions of this invention:

Example 1 A mineral oil solution of a partially acylated polyamine having a nitrogen content of 2.1% is prepared by adding 553 parts of a commercial ethylene amine mixture (having an average composition corresponding to that of tetra-ethylene pentamine and a nitrogen content of 34.3%) to a mixture of 5000 parts (1.67 moles per mole of the amine) of a polyisobutene-substituted succinic anhydride, having an acid number of 100 (prepared by the reaction of maleic anhydride and a chlorinated polyisobutene having a molecular weight of 1000 and a chlorine content of 4.3% at 200 C.) and 3650 parts of mineral oil and heating the mixture at 155160 C. for hours while nitrogen is bubbled through the mixture formed during the reaction is distilled ofi. An ester of phosphoric acid is prepared by heating a mixture of 119 parts (0.84 mole) of phosphorus pentoxide, 1332 parts (3.34 moles) of octylphenyl and 485 parts of toluene (solvent) at the reflux temperature (125 -130 C.) azeotropically distilling off the water formed during the reaction within a period of 6 hours, and then removing the solvent from the product by heating the reaction mixture to 140 C./30 mm. The ester is a mixture of the esters of phosphoric acid having a phosphorus content of 3.7% and an acid number of 65 (bromphenol blue indicator). A mixture of this ester (430 parts, 1.67 moles per mole of the amine) and the above partially acylated polyamine (1000 parts) is prepared at 6065 C. and then heated at 105 l10 C. for 3 hours. The product is a substituted polyamine and has a phosphorus content of 1.1% and a nitrogen con tent of 1.5%.

Example 2 A decyl ester of phosphoric acid is prepared by adding one mole of phosphorus pentoxide to 3 moles of decyl alcohol at a temperature within the range from 32 C. to 55 C. and then heating the mixture at 6063 C. until reaction is complete. The product is a mixture of the decyl esters of phosphoric acid having a phosphorus content of 9.9% and an acid number of 250 (phenolphthalein indicator). To a mineral oil solution of a partially acylated polyamine (prepared by the heating of 1021 parts of the polyisobutene-substituted succinic anhydride of Example 1, parts of the commercial ethylene amine described in Example 1, and 684 parts of mineral oil at 150 C. for 10 hours) there is added 137 parts of the above decyl ester at l45150 C. within a period of 30 minutes. The mixture is heated at 150 C. for 1 hour and filtered. The filtrate is diluted with parts of mineral oil and the final oil solution has an oil content of 40%, a nitrogen content of 1.7%, and a phosphorus content of 0.67%.

Example 3 A mineral oil solution of a partially acylated polyamine (1075 grams) having a nitrogen content of 1.9% and prepared according to the procedure described in Exampie 2 is mixed with 204 grams (1.4 moles per mole of the ethylene amine used) of the octadecyl ester of phosphoric acid prepared by the reaction of 3 moles of octadecyl alcohol with 1 mole of phosphorus pentoxide at a temperature of 80-l00 C. and having a phosphorus content of 6.4% and an acid number of 116. The mixture is heated at 6085 C. for 1 hour. The product is a 60% oil solution of a substituted polyamine having nitrogen groups attached to succinic radicals and phosphorus acid salt radicals and has a nitrogen content of 1.6% and a phosphorus content of 0.97%.

Example 4 An ester of phosphoric acid is prepared by heating 1 mole of nonyl-phenyl-polyoxyethylene-ethanol having a molecular weight of 386, 0.25 mole of phosphorus pentoxide, and 140 grams of toluene at the reflux temperature while water is removed by azeotropic distillation. Toluene is distilled off by heating the residue to C./ 30 mm. and the product is a mixture of the esters of phosphoric acid having a phosphorus content of 3.9% and an acid number of 68 (bromophenol blue indicator). A mixture of 360 grams (1.85 moles per mole of the ethylene amine used) of the ester and 840 grams of the oil solution of the partially acylated polyamine of Example 1 is prepared at 6065 C. and then heated at 1051l0 C. for 3 hours. The residue is an oil-soluble substituted polyamine having a phosphorus content of 1.1% and a nitrogen content of 1.2%.

Example 5 An ester of phosphoric acid having a phosphorus content of 0.77% is obtained by reacting a polyisobutenesubstituted propyl alcohol with phosphorus pentoxide in a molar ratio of 4 to 1, respectively, at 130140 C. and filtering the product obtained. The polyisobutene-substituted propyl alcohol is prepared by reacting a chlorinated polyisobutene having a chlorine content of 4.7% and a molecular weight of 750 with methyl acrylate at 190200 C. to form the methyl ester of polyisobutenesuhstituted propionic acid and reducing the ester so formed with sodium in the presence of hexyl alcohol and xylene at 140 C. The polyisobutene-substituted propyl alcohol has a hydroxyl content of 0.9%. An oil-soluble product is obtained by heating the oil solution of the par tially acylated polyamine of Example 1 (385 parts), the above ester of phosphoric acid (729 parts, 1.6 moles per mole of the amine reactant), and 743 parts of mineral oil at 6070 C. for 4 hours. The resulting oil solution of the substituted polyamine has a nitrogen content of 0.4% and a phosphorus content of 0.3%.

Example 6 A mixture of 190 grams (.9 mole) of a commercial ethylene amine having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pentamine and grams (0.5 mole) of tritolyl ester 1 l of phosphorous; acid having a phosphorus content of 8.9% is prepared at 25'38 C., heated to 200 *C. in 2.5 hours, and then heated at 200225 C. for 5 hours to distill off volatile components of the reaction mixture. The residue is an intermediate product having phosphorus acid amide linkages. 'Fnis intermediate is added to 1632 grams (1.5 moles) of a polyisobutene (molecular weight of 1000) substituted succinic anhydride having an acid number of 103 in 1000 cc. of toluene and 1313 grams of mineral oil at 8090 C. The mixture is heated at the reflux temperature ('ll5-128 C.) while water is removed by azeotropic distillation in 5 hours. The residue is heated to 190 C./ 9 mm. to distill off all volatile components and then filtered. The filtrate is an ,oil-soluble substituted polyamine having a nitrogen content of 2.1% and a phosphorus content of 0.4%.

Example 7 An oil-soluble substituted polyamine is obtained by reacting 1005 grams of a 60% oil solution of a partially acylated polyarnine having a nitrogen content of 2.8%

i(prepared by the reaction of 1 equivalent of a polyiso- "'butene-substituted succinic anhydride of Example 1) with 2 equivalents of a commercial ethylene amine having a nitrogen content of 34.3% and an average composition corresponding to that of tetraethylene pentamine at (150155 C.), 306 grams (2; moles per mole of the amine reactant) of an ester of phosphoric acid (prepared from '3 moles of tride'cyl alcohol and 1 mole of phosphorus pentoxide), and 203 grams of mineral oil at 65 85 C. The product is filtered and the filtrate is found to have a nitrogen content of 2% and a phosphorus content of 1.7%. a

8 Example 8 2 mole per 0.15 mole of the amine reactant) of the above mixed ester at 5578.C. The mixture is heated at 85 C. fora3 hours and filtered. The filtrate is the oil soluble product having a phosphorus content of 2.6%, a sulfur content of 3.3%, and a nitrogen content of 1.4%

:Example 9 'A mixture of 755 grams of soya lecithin having a phosphorus content of 2.1%, 491 grams of the oil solution of the partially acylated polyamine of Example '1, and 235 grams of mineral oil is heated at 165 C. for 4 hours. The residue is an oil-soluble product having a phosphorus content of 1% and a nitrogen content of 1.2%.

Example 10 A mixture of 207 grams of the dee'yl ester of phosphoric acid (prepared by' 'the procedure described in Example 2) and 1270 grams of an oil solution containing 40% of mineral oil and 60% of the partially acylated polyamine (prepared according to the procedure of Example 7) is heated at 5565 C. for 1 hour. The product has an acid number of 27 (phenolphthalein indicator). It is then 1 neutralized by treatment by barium oxide in excess of the stoichiometric amount) and water at 90100 C. The neutralized product'is dried and filtered. Thej'filtrate is the oil-soluble product having a phosphorus content of 0.8%, a nitrogen content of 1.6%, a barium sulfate ash content of 7.5%, and an acid number of 5 (phenolphthalein indicator). l

1 2 Example 1 1 A mixture of; 164 grams of the oil solution of the partially acylated polyamine (having a nitrogen content of 3.4% and prepared by the procedure of Example 3 from 1.5 moles of the polyisobutene substituted succinic anhydride and 0.8 mole of the commrecialethylene"amine) and 36 grams of a mixture of esters of phosphoric acid prepared by the reaction of 4 moles of tertiary-pentylphenol with 1 mole of phosphorus pentoxide at 150- 160 C. is heated at 95 C. for 1.5 hours. The residue is an oil-soluble product having a nitrogen content of 2.7% and a phoshorus content of 1.5%

Example 12 1:

grams of the product and 480 grams of mineral oil is heated at 8090 C. and 68 grams of boron trifiuoride is 7 bubbled into the' mixture at this temperature throughout 1 a period of 1.5 hours. The product is blown with nitrogen for 0.5 hour and the residue has a nitrogen content of 1.2%, 'a phosphorus content of 0.5%, and a boron content of 0.5% W W Example 13 A hexyl alcohol ester of phosphoric acid is prepared as follows: phosphorus pentoxide is added in small increments to 4-methyl-2-pentyl alcohol (3 moles per mole of phosphrus pentoxide) within a period of 1 hour at 1628 C. The mixture is maintained at 2853 C. for 1 hour whereupon a homogeneous solution is obtained. It is heatedto 5055 C., mixed with a filter acid, and filtered. The filtrate is a mixture of .the hexyl esters of phosphoric acid having a phosphorus content of 14% and an acid number of 293 (phenolphthalein indicator). A mixture of 67 grams of the above ester (0.3 mole), grams of mineral oil, and 1000 grams (0.3 mole of..the amine reactant) of a 60% oil solution of the partially acylated polyamine prepared as is described in Example 2 is heated at 90100 C. for 0.5 hour. The resulting homogeneous product has a nitrogen content of 1.8% and a phosphorus content of 0.8%.

Example 14 A butyl ester'of phosphoric acid is prepared bya procedure similar to that described in Example 13 except that butyl alcohol is used in place of the hexyl alcohol. The ester is a mixture of the butyl esters of phosphoric acid having a phosphorus content of 16.4% and an acid number of 420 (phenolphthalein indicator). This ester (413 grams, 2.2 moles) is added to a mixture of 275 grams of mineral oil and a 60% oil solution of a partial 1y acylated polyamine (1170 grams, 0.7 mole of the amine reactant); prepared by' reacting 1 equivalent of the polyisobutene substituted succinic anhydride of Example 1 With 4 equivalents of a cornmercial ethylene amine mixture having a nitrogen content of 34% and an average composition corresponding to that of tetraethylene pentamine at 145 f -165 C? for 6 hours and diluting the product with mineral oil. The mixture is stirred at C. for 1 hour to give a product having a nitrogen content of 3% and a' phosphorus content of 2.7%.

Example 15,

861 grams (0.33 mole of the amine reactant) of a'60% mineral oil solution of the partially acylated polyamine 13 Example 16 A mixture of 134 grams (0.35 mole) of 0,0'-di-isooctylphosphorodithioic acid having an acid number of 1-46 and 1000 grams (0.3 mole of the amine reactant) of a 60% mineral oil solution of the partially acylated polyamine prepared as described in Example 2 is maintained at 6080 C. for 0.5 hour, diluted with mineral oil to a solution having an oil content of 40% and filtered. The filtrate has a nitrogen content of 1.6%, a sulfur content of 2%, and a phosphorus content of 0.9%.

Example 17 A mixture of 18.2 grams (0.17 mole) of ethyl ester of metaphosphoric acid having the empirical formula of C H OPO and 421 grams (0.14 mole of the amine reactant) of a 60% oil solution (having a nitrogen content of 2.3%) of the partially acylated polyamine prepared as described in Example 1 is prepared at 5060 C. and heated at 7090 C. for 6 hours. The resulting product is a brown viscous liquid having a phosphorus content of 1.2% and a nitrogen content of 2.2%.

Example 18 A partially acylated polyamine is prepared by the reaction of 107 grams (0.5 mole) of a commercial ethylene amine mixture having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pent-amine and 1000 grams (1 mole) of a polyisobutene substituted succinic anhydride of Example 1 in 5 00 grams of mineral oil at 135-160 C. To this intermediate product there is added 212 grams of 0,0-di(4-methyl-2- pentyl) phosphorodithioic acid at 6980 C. The mixture is heated at 90100 C. for 1 hour, diluted with 367 grams of mineral oil and filtered at 100 C. The filtrate has a nitrogen content of 1.6%, a sulfur content 2.1%, and a phosphorus content of 1%.

Example 19 An ester of thiophosphoric acid is prepared by reacting 4 moles of a commercial mixture of alcohols consisting of about 50% of cetyl alcohol and 40% of stearyl alcohol having an average molecular weight of about 260 with 1 mole of phosphorus pentasulfide at 7087 C. and filtering the product. The product consists essentially of the 0,0-diesterified phosphorodithioic acid having a sulfur content of 9.2, a phosphorus content of 4.8%, and an acid number of 68 (bromphenol blue indicator). To 1000 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 2 there is added 290 grams of the above ester. The mixture is heated at 60- 80 C. for 0.5 hour, diluted with 193 grams of mineral oil, and filtered at 100 C. The filtrate has a sulfur content of 1.9%, a phosphorus content of 0.9%, and a nitrogen content of 1.4%.

Example 20 A mixture of 1057 grams of a 60% mineral oil solution (having a nitrogen content of 2.7%) of the partially acylated polyamine prepared as described in Example 7 and 394 grams (0.44 mole) of a 70% toluene solution of 0,0-di (heptylphenyl phosphorothiothyl succinic anhydride having a phosphorus content of 3.5% (obtained by the reaction of 0,0di(heptylphenyl)phosphorodithioic acid and maleic anhydride) is heated at 150l60 C. for 4 hours. The mixture is heated to 150 C./4 mm. to remove toluene and diluted with mineral oil to a solution containing 40% of oil. The oil solution has a sulfur content of 0.99%, a phosphorus content of 0.9%, and a nitrogen content of 1.9%.

Example 21 An oil-soluble composition is prepared by a procedure similar to that described in Example except that the maximum temperature at which the partially acylated polyamine and the 0,0'-di(heptylphenyl)phosphorodithioic acid are reacted is 60 C. The product consists essen- 14 tially of a salt of the phosphorodithioic acid with the polyamine. The product is diluted with mineral oil to a solution containing 40% of the oil and the solution has a nitrogen content of 1.6%, a sulfur content of 3.2%, and a phosphorus content of 1.1%.

Example 22 A partially acylated polyamine is prepared by the reaction of 160 grams (0.7 mole) of a commercial ethylene amine having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pentamine and 1000 grams (1 mole) of the polyisobutenesubstituted succinic anhydride of Example 1 in 500 grams of mineral oil at 148 l80 C. and removing all of the water formed from the reaction. The product is diluted with 565 grams of mineral oil to a solution having an oil content of 40% To this solution there is added 635 grams of 0,0-di(4-methyl-2-pentyl)phosphorodithioic acid at 70-85 C. An exothermic reaction occurs. The mixture is heated at 100 C. for 1 hour and filtered at 150l60 C. The filtrate has a phosphorus content of 2.1%, a sulfur content of 4.5%, and a nitrogen content of 1.6%.

Example 23 A 60% mineral oil solution (1286 grams) of the partially acylated polyamine prepared as described in Example 2 is mixed with 300 grams of mineral oil and heated to 170 C. To this solution there is added 176 grams (0.5 mole) of tritolyl ester of phosphorus acid at 75 C. The mixture is heated at 150l62 C./611 mm. for 11 hours whereupon 73 grams of a distillate is collected, which contains 67% of cresol. The residue is diluted with 373 grams of mineral oil and filtered at 160 C. The filtrate has a phosphorus content of 1.2% and a nitrogen content of 1.3%.

Example 24 A 60% mineral oil solution (1286 grams) of the partially acylated polyamine prepared as described in Example 2 is diluted with 300 grams of mineral oil and mixed with 59 grams (0.17 mole) of tritolyl ester of phosphorous acid at 154170 C./2-4 mm. for 3 hours. A total of 56 grams of distillate is collected which consists substantially of cresol. The residue is diluted with 300 grams of mineral oil and the oil solution is found to have a phosphorus content of 0.3% and a nitrogen content of 1.6%.

Example 25 A polyamine having a nitrogen content of 32% is obtained by the reaction of acrylonitrile with 216 grams of a mixture consisting of 75% (by weight) of triethylene tetramine and 25% of diethylene triamine at -130 C. for 5 hours. To 713 grams of polyisobutene substituted succinic anhydride of Example 1 there is added grams of the above polyamine at 80100 C. within a period of 1 hour. The mixture is heated at 100 C. for 5 hours and then mixed with 76 grams of tritolyl ester of phosphorous acid at C. within a period of 1 hour. The resulting mixture is heated at -200 C. for 7 hours and then to 190100 C./15 mm. A total of 71 grams of cresol is collected as the distillate. The residue is filtered. The filtrate has a nitrogen content of 2.4% and a phosphorus content of 0.4%.

Example 26 A mixture of 138 grams of tritolyl ester of phosphorus acid and 250 grams of the polyamine prepared from acrylonitrile and a mixture of triethylene tetramine and diethylene triamine by the procedure described in Example 25 is prepared at 2832 C. and then heated at 140150 C./4 mm. for 3.5 hours. A total of 99 grams of distillate is collected which consists substantially of cresol. The residue is then heated to C./9 mm. and is found to have a nitrogen content of 24.5% and a phosphorus content of 4.8%. The polyisobutene substituted succinic anhydride of Example 1 (740 grams) is then mixed With 153 grams of the above product of the polyamine with tritolyl ester of phosphorous acid and 355 grams of mineral oil at 160190 C. for 8.5 hours. A total of 11 grams of Water is collected as the distillate. The product is diluted with 214 grams of mineral oil and filtered at 160 C. The filtrate has a nitrogen content of 2.6% and a phosphorus content of 0.5%

Example 27 An imidazoline is prepared by mixing 1164 grams (5.8 moles) of lauric acid, 836 grams of an amine mixture consisting of 75% (by weight) of triethylene tetramine and of diethylene triamine, and 200 grams of toluene at 2573 C.; refluxing the mixture at l33208 C. for 22.3 hours while toluene and the water formed from the reaction is gradually removed by distillation and heating and residual product to 155 C./5 mm. A total of 1641 grams of the imidazoline is obtained, having a nitrogen content of 17%. A portion (378 grams) of the imidazoline is added at 80 C. to 1000 grams of the polyisobutene substituted succinic anhydride of Example 1 and 450 grams of toluene and the mixture is heated at 150-170 C. for 5 hours while water (17 grams) is removed by distillation. The residue is diluted with 153 grams of toluene and filtered at 100 C. The filtrate is a toluene solution of intermediate product having a nitrogen content of 3.4%. Toluene is then replaced by mineral oil and the oil solution (oil content of 40%) of the intermediate product and 472 grams of tritolyl ester of phosphorous acid is heated at 120170 C./23 mm. for 4.5 hours whereupon a total of 98 grams of cresol is collected as the distillate. The residue is found to have a phosphorus content of 2.1% and a nitrogen content of 2.3%.

Example 28 A partially acylated polyamine is prepared by the reaction of 1 equivalent of the polyisobutene substituted succinic anhydride of Example 1 with one equivalent of a commercial ethylene amine having a nitrogen content of 33% and an average composition corersponding to that of tetraethylene pentamine at 150-160 C. A mixture of 933 grams of a 60% mineral oil solution (having a nitrogen content of 1.5%) of the partially acylated polyamine and 250 grams (0.77 mole) of the decyl ester of phosphoric acid having a phosphorus content of 9.5% and prepared as described in Example 2 is heated at 50- 70 C. for 1 hour. The residue is found to have a nitrogen content of 1.2% and a phosphorus content of 2.3%.

Example 29 A mixture of 2330 grams of a 60% mineral oil solution of the partially acylated polyamine prepared as is described in Example 28 and 89 grams (0.625 mole) is heated at from 30 C. to 160 C. in 2 hours, blown with nitrogen at 160 C. for 3 hours, and filtered. The product has a nitrogen content of 1.4%, a phosphorus content of 0.8%, and an acid number of 45 (phenolphthalein indicator).

Example 30 A mixture of 825 grams (0.25 mole of the amine reactant) of the oil solution of the partially acylated polyamine of Example 1 and 26 grams (0.08 mole) of a crude di(carboxyphenyl)phosphinic acid having a phosphorus content of 9.9% is heated at 150-160 C. for 13 hours and at 160 C./ 20 mm. for 3 hours whereupon 7 grams of water is distilled off from the reaction mixture. The residue is filtered and the filtrate has a nitrogen content of 2% and a phosphorus content of 0.3%.

Example 3 1 A mixture of 55 grams of phosphorus sesquisulfide and 1040 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 7 is blown with nitrogen at 180 C. for 4 hours mixed with 272 grams of mineral 16 oil and blown with steam at 150-160 C. for 4 hours to remove unstably bound sulfur and then dried at'150 C. for 1 hour. The product is filtered. The filtrate has a sulfur content of 0.3%, a nitrogen content of 2%, and a phosphorus content of 1.4%.

Example 32 A 60% oil solution of a partially acylated polyamine having a nitrogen content of 1.14% is obtained by reacting at 160 C. 2 moles of the polyisobutene-substituted succinic anhydride of Example 1 and 0.6 mole of a commercial tetraethylene pentamine having a nitrogen content of 34% and diluting the product with mineral oil. A mixture of the solution 1230 grams) and phosphorus sesquisulfide (55 grams) is blown with nitrogen at 150 C. for 4 hours, diluted with 313 grams of mineral oil, filtered, blown with steam at 150 C. for 4 hours, dried at 150 C. for 1 hours and filtered. The filtrate has a nitrogen content of 0.9%, a sulfur content of 0.53%, and a phosphorus content of 1.4%

Example 33 A mixture of 570 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 7 and 44 grams of phosphorus oxysulfide is heated at 180 C. for 4 hours and filtered at 150 C. The filtrate has a nitrogen content of 2.4%, a sulfur content of 1.2%, and a phosphorus content of 1.6%

Example 34 A mixture of 1130 grams of the 60% oil solution of the partially acylated polyamine of Example 7 and 24 grams of phosphorus pentoxide is heated at 110 C. for 1 hour, at 150-155 C. for 6 hours, and filtered. The filtrate has a phosphorus content of 0.7% and a nitrogen content of 2.1%

' Example 35 A substituted polyamine by the procedure described in Example 31 except that 87 grams of phosphorus heptasulfide is used in place of the phosphorus sesquisulfide. The product has a nitrogen content of 1.6%, a sulfur content of 0.9%, and a phosphorus content of 2.1%.

Example 36 A mixture is prepared from 352 grams of the oil solution of the partially acylated polyamine of Example 1 and 85 grams of a nonylphenyl ester of phosphorotetrathioic acid having a phosphorus content of 5.8% and obtained by the reatcion of 135 C. for 4 moles of p-nonylthiophenol with 1 mole of phosphorus pentasulfide. The mixture is heated at 7285 C. for 4.5 hours and filtered. The filtrate has a nitrogen content of 1.6%, a phosphorus content of 1.4%, and a sulfur content of 5%.

Example 37 A mixture of 1140 grams of the 60% oil solution of the partially acylated polyamines of Example 7, 111 grams of phosphorus pentasulfide, and 324 grams of mineral oil is heated at 160-170 C. for 6 hours and filtered at 160 C. The filtrate has a nitrogen content of 1.9%, a phosphorus content of 1.6% and a sulfur content of 3.7%

Example 38 A 50% mineral oil solution of a substituted polyamine is prepared by the procedure of Example 37 except that the amount of phosphorus pentasulfide used is equal to 0.2 equivalent of phosphorus per equivalent of nitrogen of the partially acylated polyamine used.

Example 39 A mixture of 1040 grams (0.3 mole of the amine reactant) of the 60% oil solution of the partially acylated polyamine of Example 1, grams (0.53 mole) of crude diphenylphosphinodithioic acid having a phosphorus con- 17 tent of 12.1%, and 90 grams of mineral oil is heated at 90% C. for 7 hours and blown with nitrogen for 6 hours whereupon grams of water is distilled off. The residue is filtered and the filtrate has a phosphorus content of 1.2%, a nitrogen content of 1.8%, and a sulfur content of 2.7%.

Example 40 A phosphorus acid is prepared by reacting 200210 C. 2 moles of a commercial hexadecene with 1 mole of phosphorus pentasulfide and hydrolyzing the product by blowing it with steam at 160 C. and diluted with an equal weight of mineral oil. The acid is a mixture of phosphonothioic and phosphinothioic acids and has a phosphorus content of 5.4%, a sulfur content of 5% and and acid number of 146. A mixture of 384 grams (0.67 mole) and 0.4 mole of the amine as the partially acylated polyamine of Example 7 is heated at 100 C.120 C. for 1.5 hours, dissolved in 243 grams of mineral oil and filtered. The filtrate has a sulfur content of 1.2%, a phosphorus content of 1.3%, and a nitrogen content of 1.4%.

Example 41 The oil solution of the partially acylated polyamine of Example 28 is mixed with 1% of its Weight (0.006 mole) per mole of the amine as the partially acylated polyamine intermediate of phosphorus pentoxide and the mitxure is heated at 158-160 C. for 1 hour. The resulting product has a phosphorus content of 0.0045 and a nitrogen content of 1.4%

Example 42 A phosphorus acid is obtained by heating a polyisobutene having a molecular weight of 1000 with of its weight of phosphorus pentasulfide at 260 C., and then blowing the product with steam at 160 C. The acid has a phosphorus content of 2.3% and an acid number of 41 (phenolphthalein indicator). A mixture of 1550 grams of a 60% oil solution of the partially acylated polyamine prepared as is described in Example 1 and 1220 grams is heated at 140 C. for 4 hours and filtered. The filtrate has a nitrogen content of 1%, a phosphorus content of 1%, and a sulfur content of 1%.

Example 43 A substituted polyamine is prepared by the procedure of Example 2 except that the commercial ethylene amine mixture is replaced on an equivalent nitrogen basis with ethylene diamine.

Example 44 A substituted polyamine is prepared by the procedure of Example 1 except that the commercial ethylene amine mixture is replaced on an equivalent nitrogen basis with triethylene tetramine.

Example 45 The process of Example 2 is repeated except that the polyisobutene-substituted succinic anhydride used in preparing the partially acylated polyamine intermediate is replaced on a chemical equivalent basis with polypropene (molecular Weight of 5000)-substituted succinic acid.

Example 46 The process of Example 2 is repeated except that the polyisobutene-substituted succinic anhydride and in preparing the partially acylated polyamine intermediate is replaced on a chemical equivalent basis with a di-methyl ester of the anhydride.

Example 47 A substituted polyamine is obtained by first partially acylating ethylene diamine with the polyisobutene-substituted succinic anhydride of Example 1 to form a monosuccinimide of the diamine and then reacting the monosuccinimide with dioctylphosphoric acid at room temperature to form a salt between the free amino group of the mono-succinimide and the acid.

Example 48 A mixture is prepared from 1 mole of nitrogen as N- piperazinylethyl alkenylsuccinimide in which the alkenyl radical is derived from a polyisobutene having a molecular weight of 1000 and 1 mole of phosphorus as dicyclohexylphosphoric acid. The mixture is maintained at 50- 70 C. for 4 hours to form a substituted N-aminoethyl piperazine in which a nitrogen group is attached to the succinic radical by a succinimide linkage and a nitrogen group is attached to dicyclohexylphosphoric radical by ammonium-phosphoric acid salt linkage.

Example 49 A partially acylated hexamethylene diamine having a nitrogen group attached to a polyisobutene (molecular weight of 60,000)'-substituted succinic radical by an amide linkage is treated at 50-80 C. with phenylphosphoric acid (1 mole per mole of the amine as the partially acylated diamine). The product is a substituted hexamethylene diamine containing both the above-noted succinic radical and a phosphoric acid radical attached to a nitrogen group of the diamine by a salt linkage.

Example 50 A succinic anhydride is obtained by reacting at 200- 220 C. for 20 hours one mole of maleic anhydride with one mole of a copolymer having a molecular weight of 1200 and prepared by copolymerizing parts (by weight) of isobutene with 5 parts of styrene at 2S0 C. in the presence of n-hexane as the solvent and aluminum chloride as the polymerization initiator. The succinic anhydride so obtained (0.5 mole) is mixed at 200 C. with diethylene triamine (0.3 mole) for 6 hours while the Water formed by the reaction is distilled off. The product consists substantially of the mono-succinimide of the triamine. A mixture of the mono-succinimide (2 moles of the amine) and tri-tolyl ester of phosphoric acid (1 mole) dissolved in twice its weight of mineral oil is heated at -200 C./2 mm. While cresol is distilled oil from the reaction mixture. The residue is a substituted polyamine having above-described succinimide linkage and a nitrogen group attached to a ditolyphosphoric radical by an amide linkage.

Example 51 A partially acylated polyamine is obtained by heating at 7080 C. methane diamine (1 mole) and an isobutene-isoprene copolymer-substaituted succinic acid (0.5 mole, the copolymer has a molecular Weight of 2000 and is obtained by copolymerizing a mixture of 99 parts (by Weight) of isobutene and 1 part of isoprene). The product is a salt of the acid and menthane diamine having an average of one free amino group per menthane diamine radical. This product is then heated with dicyclohexylphosphinodithioic acid (1 mole per mole of the diamine reactant as the partially acylated amine) at 50 -80 C. The product is a substituted polyamine having salt linkages between the nitrogen groups with both the succinic acid and the phosphinodithioic acid groups.

Example 52 A polyisobutene (molecular weight of 6,000)-substituted N,N'-dibutyl p-phenylenediamine is obtained by the reaction of two moles of the phenylene-diamine with a suitably substituted succinic anhydride. The product comprices principally the amide derived by the amidation of one of the amino groups of the phenylenediamine. The succinamide is mixed With di-tridecyl ester of phosphoric acid (1 mole per 0.1 mole of the amine reactant) at 50-80 C. for 5 hours so that a salt is formed between the two free amino groups in the succinam-ide and the phosphoric acid. The product thus is a substituted polyamine having a nitrogen group attached to the succinoyl radicals (i.e succinic radicalthrough a succinamide lint:- age) and a nitrogen group attached to a phosphoric acid through a salt linkage).

Example 3 1 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the partially acylated polyamine is replaced with N-hydroxyethyl ethylene diamine. V I

" Example 5 4' The procedure of Example 2 is repeatedzexcept that the commercial ethylene amine used in preparing the. partially acylated polyamine is replaced with N-aminoethyl morpholine. i

Example 55 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the partially acylated polyamine is replaced with melamine.

' Example 56 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the paetially acylated polyamine is replaced with N,N,N',N- tetramethyl hexamethylene diamine.

Example 57 N Example 59 The procedure of Example'58 is repeated except that phehyl ester'of diphenylphosphinodithioic acid and that the reaction temperature is 180 200 C./ mm. The by-product is thiophenol. The'substituted polyafmine contains both succinic radicals and phosphinic radicals (amide) attached to nitrogen groups.

Example 60 A mixture of N-octadeeyl trimethylene diamine (1 mole), the polyisobutene substituted succinic anhydride of Example 1 0.5 mole) and bis(di(heptylphenyl) phosphorothioic)sulfide (i.e., the anhydride of di(heptyl)- phosphorodithioic acid obtained by heating the acid to split off hydrogen sulfide}: (1 mole) is heated at 150 200 C. for 10 hours. The product is a substituted polyamine having nitrogen groups attached to the succinic and phosphorothioic radicals through amide linkages."

The substituted polyamines of this invention are useful for a wide variety of purposes including pesticides, plasticizers, rust inhibiting agents for'treatment of metals, corrosion-inhibiting agents, extreme pressure agents, antiwear 'agents, and detergents. I. i

A principal utility ,of such products is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose their effectiveness to inpart a specific property to a lubricant is closely related to the size of the substantially hydrocarbon substituent in the succinic radical attached to the nitrogen groups of the substitued polyamines. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about aliphatic carbon atoms are effective to impart oxidationinhibiting, and detergent properties to a lubricant. It has "internal combustion engines may contain from about 0.5

also been found that the detergent properties of the products diminish sharply with a decrease in the size of the substantially hydrocarbon substituent having less than about 50 aliphatic carbon atoms so that products having less tharr about 35 aliphatic carbon atoms in this substituent are ineffective as detergent additives in lubricants. The presence of the phosphorus radicals in the substituted polyamines further enhance the effectiveness of the products even though such radicals are attached to only a portiorr of the nitrogen groups of the substituted polyamines. 7

The lubricating oils in which the substituted polyamines of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic poly esters oil such as didodecyl adipate and di-Z-ethylhexyl sebacate are often preferred as jet engine lubricants} Normally the lubricating oils preferred will be fluid oils, ranging in viscosity from about 40 Saybolt Universal Seconds at F. to about 200 Saybolt Universal Seconds at 210 -F. e V

The concentration of the substituted polyamines as additives in lubricants usually ranges from about 0.01% to about 10% by weight. The optimum concentrations for a particular application depend to ,a large measure upon the type of service to which the lubricants is to be subjected. Thus, for example, lubricants for use in gaseline to about 5% of the additive, whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive.

This, invention contemplates also the presence or other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxi-' dation and corrosion-inhibiting agents;

The ash-containing detergents are exemplified by 0il= soluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 10009 With a::phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.

The term basic salt is used to designate the 'metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly' employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or

sulfide at a temperature about 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alky-lphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2- propanol, ectyl alcohol, Cellosolve, carbotol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthylamine, and dodecylamine. A particularly eiTective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal 21 neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60-200 C.

The preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25% The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.

The substituted polyamines are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids. Combinations of the substituted polyamines of this invention with any of the above-mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.

The Group II metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenylradicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.

The availability of the phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per .mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C. Thus the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at 22 about C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. The preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficiout to cause the reaction to take place and the resulting product is sufliciently pure for the purposes of this invention.

Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilizatiton of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.

Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin. Other epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.

The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.

The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.

The lubricating compositions may contain metal detergent additives in amounts usually within the range of about 0.1% to about 20% by weight. In somev applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.

The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight).

Example I SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.

23 Example II SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.

Example III SAE W-30 mineral lubricating oil containing 0.4% of the product of Example 3.

Example IV SAE 90 mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equimolar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.

Example V SAE 30 mineral lubricating oil containing 2% of the product of Example 30.

Example VI SAE W-30 mineral lubricating oil containing 5% of the product of Example 39.

Example VII SAE 10W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.

Example VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 40 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.

Example IX SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 2, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.

Example X SAE mineral lubricating oil containing 5% of the product of Example 10, 0.1% of phosphorus as the zinc salt of a mixture of equimolar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basic barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.

Example XI SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 17, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular Weight of 60,000 With 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.

Example XII SAE 10 mineral lubricating oil containing 2% of the product of Example 25, 0.075% of phosphorus as the adduct of zinc di-cyclohexylphosphorodithioate treated with 0.3 mole of ethylene oxide, 2% of a sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly- (alkyl methacrylate) viscosity index improver, 0.02% of a poly-(alkyl methacrylate) pour point depress-ant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.

24 Example XIII SAE 10 mineral lubricating oil containing 1.5 of the product of Example 27, 0.075% of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at C., a sulfurized methyl ester of tall oil acid having a sulfur content of 15%. 6% of a polybutene viscosity index improver, 0.005% of a poly-(alkyl methacrylate) antifoam agent, and 0.5% of lard oil.

Example XIV Example XV SAE 10 mineral lubricating oil containing 25% of the product of Example 33, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a polyproplene (molecular Weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (Weight) of decyl-methacrylate and 5% (Weight) of diethylaminoethylacrylate.

Example XVI SAE 80 mineral lubricating oil containing 2% of the product of Example 20, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, 10% of a chlorinated parafiin Wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amine, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.

Example XVII SAE 10 mineral lubricating oil containing 3% of the product of Example 2, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide With an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of Water at C.

Example XVIII SAE 20 mineral lubricating oil containing 2% of the product of Example 12 and 0.07% of phosphorus as zinc di-n-octylphosphorodithioate.

Example XIX SAE 30 mineral lubricating oil containing 3% of the product of Example 14 and 0.1% of phosphorus as zinc di-(isobutylphenyl)-phosphorodithioate.

Example XX SAE 50 mineral lubricating oil containing 2% of the product of Example 35.

25 Example XXI SAE 90 mineral lubricating oil containing 3% of the product of Example 46 and 0.2% of phosphorus as the 26 lubricant sample employed in the test is a Mid-Continent, conventionally refined mineral oil having a viscosity of about 200 Saybolt Universal Seconds at 100 F.

TABLE I Sludge (mg. Bearing Te Hours per 100 cc. Weight Loss Product of This Invcntlon Procedure of Test of sample) (mg.)

A 48 250-400 A 96 800-1, 200 None. B 48 1, 2001, 600 -30 Product of Example 10 A 96 15.8 B 48 2. 1 2 Product of Example A 96 2. 3 Product of Example 28. A 96 6.1 Product of Example 21. A 48 5. 3 Product of Example 15. B 48 2. 2 Product of Example 23. A 96 2. 3 Product of Example 3... A 96 2. 6 Product of Example 9 A 96 3. 4 Product of Example 22 B 48 1. 9 Product of Example 24.- A 96 1. 5 Product of Example 26.. A 96 1. 2 Product of Example 25.. A 96 2. 7 Product of Example 27.- A 48 1.3 Product of Example 29.- A 96 2. 7 Product of Example 32 A 96 2. 6 Product of Example 33.. A 96 1.8 Product of Example 34.. A 96 1. 7 Product of Example 37.. A 96 23 Product of Example 42.. A 96 8. 8

Procedure A: Copper-lead bearing not present in test sample Procedure B: Copper-lead bearing present in test sample.

reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.

Example XXII SAE 90 mineral lubricating oil containing 3% of the product of 45 and 0.2% of 4,4-methylene-bis(2,6-di-tertbutylphenol) Example XXIII SAE mineral lubricating oil containing 2% of the product of Example 30 and 0.1% of phosphorus as phenylethyl di-cyclohexylphosphorodithioate.

Example XXIV SAE 90 mineral lubricating oil containing 5% of the product of Example 2 and 1% of the calcium salt of the sulfurized phenol obtained by the reaction of 2 moles of heptylphenol with 1 mole of sulfur.

The above lubricants are merely illustrative and the scope of invention includes the use of all the additives previously illustrated as well as others within the broad concept of this invention described herein.

The utility of the oil-soluble compositions of this invention as additives in lubricating compositions is illustrated by the results from an oxidation and detergency test in which a 350 cc. sample of a lubricant containing 0.001% of iron naphthenate and 1.5% by weight of the solvent-free additive to be tested is placed in a 2 x 15 (inches) borosilicate tube. A 1% x 5% (inches) SAE 1020 steel panel is immersed in oil. The sample then is heated at 300 F. for a specified period while air is bubbled through it at the rate of 10 liters per hour. The oxidized sample is cooled to 120 F., homogenized with 0.5% of water allowed to stand at room temperature for 24 hours, and then filtered through two layers of No. 1 Whatman filter paper at 2 0 mm. Hg pressure. The weight of the precipitate, washed with naphtha and dried, is taken as a measure of the effectiveness of the additive to inhibit oxidation and disperse the sludge formed during the test. The greater the weight of the precipitate the less effective the additive. The test is adapted to evaluate the corresiveness of the lubricant by the following modification: a clean copper-lead bearing is immersed in the lubricant during the air blowing step. After the test, the bearing is scrubbed with naphtha, dried, and weighed and its weight loss (in milligrams) and is taken as an indication of the corrosiveness of the lubricant. The results of the test are indicated in the following Table I. The base oil of the Further illustration of the effectiveness of the substituted polyamines of this invention as lubricant additives is had by the modified CRC-EX-3 engine test (the modification consists of extending the test period from the specified 96 hours to 144 hours, thus making the test more severe). This test is recognized in the field as an important test by which lubricants can be evaluated for use under relatively light duty or intermittently high and low temperature service conditions such as are encountered in the operation of automobiles in urban use. In this test, the lubricant is used in the crankcase of a 1954 6-cylinder Chevrolet Powerglide engine operated for 144-hours un der recurring cyclic conditions, each cycle consisting of: 2 hours at engine speed of 500 r.p.m. under no load, oil sump temperature of 100-125 F., and air fuel ratio of 10:1; and 2 hours at an engine speed of 2500 r.p.m. under a load of 40 brake horsepower, oil sump temperature of 240280 F., and an air:fuel ratio of 16:1. At the end of the test, the lubricant is rated in terms of (1) the extent of piston filling, (2) the amount of sludge formed in the engine (rating scale of -0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge), and (3) the total amount of engine deposits, i.e., sludge and varnish formed in the engine (rating scale of -0, 100 being indicative of no deposit and 0 being indicative of extremely heavy deposit). The results of the test are summarized in Table II.

The SAE 20 lubricating compositions referred to in Lubricants A-E are composed of a SAE 20 mineral lubricating oil containing 0.3% of barium sulfate ash as a basic barium detergent obtained by carbonating a mixture of an excess of barium hydroxide, hetylphenol (promoter), and a hydrolyzed acidic product of a chlorinated polyisobutene (chlorine content of 4.7% and a molecular Weight of 1000) hetylphenol, and phosphorus trichloride; 0.06% of phosphorus as the zinc salt of a phosphorodithioic acid obtained by the reaction of phosphorus pentasulfide with a mixture of isobutyl alcohol and primary-pentyl alcohol; and 3 parts per million of a polymeric dialkylsiloxane anti-foam agent. Such lubricating compositions are suitable for use under consistantly high temperature service conditions and are not entirely satisfactory for use under intermittently high and low temperature service conditions. By the CRC-EX-3 test, they show test results no better than: percent Ring Filling, 16%; Sludge Rating, 68.5; and Total Deposit Rating, 84.0.

The eflicacy of the substituted polyamines of this invention as detergent additives in::lubricants for diesel engines operated'cunder relatively severe conditions is demonst'rated by the results (Table III) of the CRC-L-l Engine test (also known Caterpiller 1E test). In this test, the lubricating composition is used in the crankcase of a 4-stroke diesel engine having a compression ratio of 15 :1 operated for 'l20 hours under the following conditions: speed, 1000 r.p.m.; B.t.u. input per minute, 29003000; load, 20 brake horsepower; water jacket temperature, 175- 180 F.; oii temperature, 140-150" F. A diesel fuel having a sulfur content of either 1% or 0.4% is used. The lubricant is evaluated according to (1) the piston cleanlinss (rating scale of -100,' 100 being indicative of no deposit and 0 being indicative of heavy deposit) and (2) the amount of ring filling.

TABLE 11 f Percent Total 7 Ring Sludge Deposit Lubricant Tested 7 Y. Filling Rating Rating A. SAE 20 lubricating composition containing 0.41% of the product of Example 6 2 76. 9 03. 6 B. SAE 20 lubricating composition containing 0.81% of the product of Example 18 2 73. 7 91. C. SAE 20 lubricating com io taini 1.35% of the product of Example 16 75. 1 91. 9 D. SAE 20 lubricating composition corrtaining 0.41% or the product of Example 3 67. 0 84. 5 E. SAE 20 lubricating composition containing 1.35% of the product prepared by the procedure of Example 29 except i that 0.33 equivalent of phosphorus as phosphorus pentoxide is used per equivalent of nitrogen as the partially jacy lated polyamine 2 72. 8 89. 3 F. SAE 20 mineral lubricating oil containing 2.5% of the product of Example 2, 1.2% of a sulfurized dipenteue having a sulfur content of 35%, and 3 parts per 7 'rnillion of a polymeric dialkylsiloxane anti-foam agent l 78. 3 97. 1

TABLE III Percent Piston Ring Cleanliness Lubricant Tested Filling Rating G. SAE 30 mineral lubricating eil containing 1.48% of the product of Example 2 and 1.16% of a sulfurized dipentene having a sulfur content of .I 3 96. 0 H. Same' as Lubricant E of Table II 3 97. 5 I. SAE 20 mineral lubricating oil containin 3% of the product of Exampie 32 None 94. 0 J. SAE 30 mineral lubricating oil containing the product of Example 38 2 96. 0 K. SAE 30 mineral lubricating oil containing the product of Example 6 5 07. 0

What is claimed is: n 1

1. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of one mole of an alkylene polyamine having n amino groups with a substantially hydrocarbonsubstituted' succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least aboutaliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, phosphouyl acids, phosphinyl acids, and the ester, the halides and the anhydrides thereof and the corresponding thioanalogs thereof; the amount of the succinic acid-producing compound being at least about 0.2 5 mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts of the succinic acid-producing compound and the phosphorus acidprodueing compound being no greater than 11 moles.

2. The substituted polyamine; of claim 1 wherein the alkylene polyamine is a hydroxy-alkyl substituted alkylene polyamine.

3. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of one mole of a polyamino substance having 12 amino groupsand selected from the class consisting of linear polyethylene polyamines, imidazolines, pyrimidines, and piperazines with a substantially hydrocarbonsubstituted succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least about 5-9 aliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorus acids, phosphonyl acids, phosphinyl acids, and the esters, the halides and the anhydrides thereof and the corresponding thioanalogs thereof; the amount of the succinic acid-producing compound being at least about 0.25. mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts of the succinic acid-producing compound and the phosphorus acidproducing compound being no greater than n moles.

4. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition ten perature of the process mixture of an ethylene polyamine having 11 amino groups with a substantially hydrocarbon-substituted succinic anhydride or acid having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent and a partially esterified phosphoric acid in which'the ester portion is an alkyl or alkylaryl group having from 1 to about 30 carbon atoms in the alkyl radical; the amount of the succinic anhydride or acid being at least about 0.25 mole, the amount of the partially esterified phosphoric acid being at least about 0.001 mole, and the combined amounts of the succinic anhydride or'acid and the partially esterified phosphoric acid being no greater than 11 moles.

5. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of an ethylene polyamine having :1 amino groups with an olefin polymer-substituted succinic anhydride or acid in which the olefin polymer substituent has a molecular weight of from about 700 to about 5000 and an alkylphosphoric acid obtained by the reaction of one mole of phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having up to about 30 carbonatoms;

the amount of the succinic anhydride or acid being at least about 0.25 mole, the amount of the alkylphosphoric acid being at least about 0.5 mole, and the combined amounts of the succinic anhydride or acid and the alkylphosphoric acid being no greater than n moles.

6. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of.a hydroxyalkyl-substituted ethylene polyamine having it. amino groups with an olefin polymersubstituted succinic anhydride or acid in which the olefin polymer substituent has a molecular weight of from about 700 to about 5000 and an alkylphosphoric acid obtained by the reaction of one moleof phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having up to about 30 carbon atoms; the amount. of the succinic anhydride or acid being at least about 0.25 mole, the amount of .the alkyl phosphoric acid being at least about 0.5 mole, and the combined amounts of. succinic anhydride or acid and the alkylphosphoric acid being no greater than 11 moles.

7. A substituted polyamine prepared by the process comprising (A)- forming a partially acylated polyamine intermediate by reacting at a temperature from about C. to about 250 C. one mole of an ethylene polyamine having 11 amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about C. said intermediate with from about 0.001; to about 3 moles of phosphorus pentoxide. i

8. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having 11. amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of an alkylphosphoric acid obtained by the reaction of one mole of phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having from about 8 to 24 carbon atoms.

9. The substituted polyamine of claim 8 wherein the ethylene polyamine is a polyethylene polyamine having from 2 to 11 amino groups; the olefin polymer substituent of the succinic anhydride is a polyisobutene group; the amount of the succinic anhydrodide isfrom about 1 to about 3 moles; and the amount of the alkylphosphoric acid is from about 0.5 to about 3 moles.

10. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituents has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of a phosphorus reagent selected from the class consisting of phosphorus pentasulfide, phosphorus heptasulfide, phosphorus sesquisulfide, phosphorus oxysulfide, phosphorus trichloride, phosphorus pentachlon'de, phosphorus oxytrichloride, phosphorothioic trichloride and phosphorus tribromide.

11. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of phosphorus pentasulfide.

12. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular Weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of a dialkylphosphorodithioic acid having from about 1 to about 24 carbon atoms in each alkyl group.

13. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decompositon temperature of the process mixture of one mole of an alkylene polyamine having n amino groups with a substantially hydrocarbonsubstituted succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least about aliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of (a) oxy-phosphoric acids, thio-phosphoric acids, and mixed oxy-thio-phosphoric acids, (b) oxy-phosphorous acids, thio-phosphorous acids, and mixed oxy-thio-phosphorous acids, (c) oXy-phosphinyl acids, thio-phosphinyl acids, and mixed oxy-thio-phosphinyl acids, (d) oxy-phosphonyl acids, thio-phosphonyl acids, and mixed oxy-thio-phosphonyl acids, (e) the esters, the halides, and the anhydrides of the foregoing oxy-, thio-, and mixed oxy-thio-phosphorus acids, the amount of the amount of the succinic acid-producing compound being at least about 0.25 mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts of the succinic acid-producing compound and the phosphorus acid-producing compound being no greater than n moles.

14. A reaction product obtained by reacting a phosphosulfurized hydrocarbon with a condensation reaction product of a hydrocarbon-substituted succinic anhydride and an amine selected from the group consisting of alkylene polyamines and N-aminoalkyl piperazines, said hydrocarbon substituent having at least about 50 carbon atoms.

References Cited UNITED STATES PATENTS 2,961,457 11/1960 Pohlemann et al. 25246.6 3,018,247 1/1962 Anderson et al. 260268 3,024,195 3/1962 Drummond et a1. 260268 3,185,646 5/1965 Anderson et al. 260268 3,080,222 5/1963 Cantrell et al. 25232.5 3,112,268 11/1963 Calhoun 25246.6 3,160,657 12/1964 Price et al. 25232.5 3,163,603 12/1964 Le Suer 260 -268 3,180,867 4/1965 Shapiro et al 260-268 3,184,411 5/1965 Lowe et al 26046.7 3,184,412 5/1965 Lowe et al. 25246.7 3,185,643 5/1965 Lowe 260268 3,185,645 5/1965 Clayton 260268 3,197,496 7/1965 Le Suer 25246.6 3,202,678 8/1965 Stuart et al 260268 3,209,938 9/1965 Ratner 25232.5 3,210,283 10/1965 Stuart et al 260268 3,216,936 11/1965 Le Suer 260268 3,219,666 11/1965 Norman et al. 260268 3,235,497 2/1966 Lee 25246.7 3,265,618 8/1966 Henderson et al. 25232.5 3,294,684 12/ 1966 McNich et al. 25246.7

PATRICK P. GARVIN, Primary Examiner US. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2961457 *Dec 30, 1958Nov 22, 1960Basf AgNew esters of omicron, omicron-dialkylphosphoric or omicron. omicron-dialkylthionophosphoric acids
US3018247 *Mar 15, 1960Jan 23, 1962California Research CorpLubricating oil compositions containing metal dithiophosphate-nu-dialkylaminoalkyl alkenyl succinimide blends
US3024195 *Aug 24, 1959Mar 6, 1962California Research CorpLubricating oil compositions of alkylpiperazine alkenyl succinimides
US3080222 *Feb 23, 1960Mar 5, 1963Gulf Research Development CoOxo-octyl amine salts of dioxo-octyl phosphoric acid esters
US3112268 *Feb 15, 1960Nov 26, 1963Shell Oil CoLubricating oil composition
US3160657 *Sep 26, 1963Dec 8, 1964Shell Oil CoAlkali metal-amine salt of halohydrocarbylphosphonic acid
US3163603 *Dec 11, 1963Dec 29, 1964Lubrizol CorpAmide and imide derivatives of metal salts of substituted succinic acids
US3180867 *May 17, 1961Apr 27, 1965Us Vitamin Pharm CorpPiperazine derivatives
US3184411 *Sep 28, 1962May 18, 1965California Research CorpLubricants for reducing corrosion
US3184412 *Sep 28, 1962May 18, 1965California Research CorpLubricants inhibited against oxidation
US3185643 *Sep 28, 1962May 25, 1965California Reserach CorpOxidation resistant lubricants
US3185645 *Sep 28, 1962May 25, 1965California Research CorpOxidation inhibited lubricants
US3185646 *Sep 28, 1962May 25, 1965California Research CorpCorrosion inhibited lubricants
US3197496 *Aug 9, 1961Jul 27, 1965Lubrizol CorpPolyphosphorus ester derivatives of o, o-dihydrocarbyl-s-hydroxylalkyl phosphorodithioates
US3202678 *Aug 24, 1959Aug 24, 1965California Research CorpAlkenyl succinimides of tetraethylene pentamine
US3209938 *Jun 20, 1963Oct 5, 1965De Frees Joseph HQuick opening pressure manhole
US3210283 *Jun 18, 1963Oct 5, 1965California Research CorpLubricant containing alkenyl succinimide and hydroxypolyamine
US3216936 *Mar 2, 1964Nov 9, 1965Lubrizol CorpProcess of preparing lubricant additives
US3219666 *Jul 21, 1961Nov 23, 1965 Derivatives of succinic acids and nitrogen compounds
US3235497 *Aug 23, 1962Feb 15, 1966Standard Oil CoLubricating compositions containing multi-functional additives
US3265618 *Jul 26, 1963Aug 9, 1966Shell Oil CoLubricating oil compositions
US3294684 *Jul 11, 1963Dec 27, 1966Standard Oil CoLubricant compositions containing detergency additives
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3623985 *Mar 29, 1967Nov 30, 1971Chevron ResPolysuccinimide ashless detergents as lubricating oil additives
US3723460 *Oct 10, 1969Mar 27, 1973Standard Oil CoPolymeric succinimides and their derivatives as fuel and motor oil additives
US3844957 *Jul 30, 1971Oct 29, 1974Cities Service Oil CoLubricant and fuel compositions
US3844960 *Nov 6, 1970Oct 29, 1974Shell Oil CoLubricant compositions
US3979309 *Aug 14, 1975Sep 7, 1976Uop Inc.Lubricating oil additive
US4097389 *Jul 19, 1976Jun 27, 1978Mobil Oil CorporationNovel amino alcohol reaction products and compositions containing the same
US4306984 *Jun 19, 1980Dec 22, 1981Chevron Research CompanyOil soluble metal (lower) dialkyl dithiophosphate succinimide complex and lubricating oil compositions containing same
US4329249 *Sep 27, 1978May 11, 1982The Lubrizol CorporationPhosphorus-free derivatives
US4368133 *Feb 25, 1981Jan 11, 1983The Lubrizol CorporationHydraulic fluids
US4443360 *Apr 19, 1982Apr 17, 1984Chevron Research CompanyOil-soluble zinc cyclic hydrocarbyl dithiophosphate-succinimide complex and lubricating oil compositions containing same
US4448703 *Mar 4, 1982May 15, 1984The Lubrizol CorporationSolubilizer is reaction product of polycarboxylic acid acylation agent with hydroxyl acrylic amine
US4471091 *Aug 9, 1982Sep 11, 1984The Lubrizol CorporationCombinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573 *Aug 9, 1982Dec 4, 1984The Lubrizol CorporationOil and fuel additives
US4487704 *Nov 22, 1982Dec 11, 1984Chevron Research CompanyLubricating oil compositions containing an overbased calcium sulfonate and a zinc cyclic hydrocarbyl dithiophosphate-succinimide complex
US4489194 *Aug 9, 1982Dec 18, 1984The Lubrizol CorporationCarboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460 *Aug 9, 1982Jan 14, 1986The Lubrizol CorporationHydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526 *Mar 12, 1985Mar 11, 1986The Lubrizol CorporationHydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663 *Oct 19, 1984Jun 24, 1986The Lubrizol CorporationOlefin polymer components reacted with one or more amines, alcohols, or mixtures thereof
US4613342 *Oct 16, 1985Sep 23, 1986The Lubrizol CorporationHydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4615826 *Jun 17, 1985Oct 7, 1986Chevron Research CompanyHydrocarbon soluble nitrogen containing dispersant-fluorophosphoric acid adducts
US4642330 *Mar 20, 1986Feb 10, 1987The Lubrizol CorporationPolycarboxylic acid acylating agent, polyakyleneamine, mineral acid reaction product
US4648980 *Apr 25, 1986Mar 10, 1987Chevron Research CompanyHydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts
US4666620 *Mar 13, 1986May 19, 1987The Lubrizol CorporationCarboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4713190 *Oct 23, 1985Dec 15, 1987Chevron Research CompanyModified carboxylic amide dispersants
US4747971 *Mar 6, 1987May 31, 1988Chevron Research CompanyHydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts
US4770803 *Jul 3, 1986Sep 13, 1988The Lubrizol CorporationWater based functional fluids, i.e. lubricants, hydraulic fluids, cutting fluids
US4772739 *Jun 25, 1986Sep 20, 1988The Lubrizol CorporationReaction product of acid, amine and acidic phosphorus compound; extreme pressure lubricant; hydraulic fluids; cutting oils
US4822433 *Jun 5, 1987Apr 18, 1989Imperial Chemical Industries PlcOxidizer dispersed in organic liquid; electroconductivity; storage stability
US4857214 *Sep 16, 1988Aug 15, 1989Ethylk Petroleum Additives, Inc.Oil-soluble phosphorus antiwear additives for lubricants
US5041598 *Sep 7, 1989Aug 20, 1991The Lubrizol CorporationNitrogen- and phosphorus-containing compositions and aqueous systems containing same
US5041622 *Nov 28, 1990Aug 20, 1991The Lubrizol CorporationThree-step process for making substituted carboxylic acids and derivatives thereof
US5059335 *Feb 8, 1989Oct 22, 1991The Lubrizol CorporationLubricants containing salts of hydroxyalkane phosphonic acids
US5078893 *Jun 24, 1988Jan 7, 1992Exxon Chemical Patents Inc.Hydroxylamines, aromatic phosphites, automatic transmission fluids
US5164103 *Feb 21, 1989Nov 17, 1992Ethyl Petroleum Additives, Inc.Preconditioned atf fluids and their preparation
US5185090 *Jul 31, 1990Feb 9, 1993Exxon Chemical Patents Inc.Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing same
US5198133 *Jun 22, 1992Mar 30, 1993Ethyl Petroleum Additives, Inc.Modified succinimide or sucinamide dispersants and their production
US5213697 *Apr 22, 1992May 25, 1993The Lubrizol CorporationMethod for reducing friction between railroad wheel and railway track using metal overbased colloidal disperse systems
US5242612 *Jun 22, 1989Sep 7, 1993Exxon Chemical Patents Inc.A mixture of phosphorus- and nonphosphorus products resulting from the reaction of a beta-hydroxy thioether and an organic phosphite; power transmission fluids; crankcase oils; oxidation, wear and friction resistance
US5314633 *Oct 20, 1992May 24, 1994Exxon Chemical Patents Inc.Low pressure derived mixed phosphorous- and sulfur- containing reaction products useful in power transmitting compositions and process for preparing same
US5326487 *Aug 10, 1992Jul 5, 1994Exxon Chemical Patents Inc.Mixed phosphorous- and sulfur- containing reaction products useful in power transmitting compositions
US5328619 *Jun 21, 1991Jul 12, 1994Ethyl Petroleum Additives, Inc.Oil additive concentrates and lubricants of enhanced performance capabilities
US5336439 *Aug 8, 1991Aug 9, 1994The Lubrizol CorporationSalt compositions and concentrates for use in explosive emulsions
US5360562 *Mar 15, 1993Nov 1, 1994Ethyl Petroleum Additives, Inc.Automatic transmission fluids, extreme pressure lubricants
US5380465 *Oct 1, 1993Jan 10, 1995Imperial Chemical Industries PlcEmulsifiers for polymerization process
US5389273 *Sep 3, 1993Feb 14, 1995Ethyl Petroleum Additives, Inc.An automatic transmission fluid mixture comprising a base oils , viscosity index promoters, a phosphorus-containing polyisobutylene succinimide or succinamide; wear resistance, high viscosity
US5407500 *Dec 6, 1993Apr 18, 1995The Lubrizol CorporationSalt compositions and explosives using same
US5439606 *Oct 7, 1994Aug 8, 1995Ethyl Petroleum Additives, Inc.Automatic transmission fluids; preblending a phosdphorus ester and a alkenyl succinimide or succinamide; heating in presence of water to hydrolyze ester
US5449386 *Oct 12, 1993Sep 12, 1995Institut Francais Du PetroleAmine phosphates having a terminal cyclic imide
US5472624 *Oct 6, 1994Dec 5, 1995Institut Francais Du PetroleWear resistance, extreme pressure lubricant
US5534169 *Oct 21, 1994Jul 9, 1996The Lubrizol CorporationMethods for reducing friction between relatively slideable components using metal carboxylates
US5534170 *May 18, 1995Jul 9, 1996Exxon Chemical Patents Inc.Mixed phosphorus- and sulfur-containing reaction products useful in power transmitting compositions
US5629434 *Sep 25, 1995May 13, 1997Exxon Chemical Patents IncReaction product of polymer with at least one ethylenic double bond with carbon monoxide and nucleophilic trapping agent; dispersants, viscosity modifiers
US5643859 *Jun 17, 1994Jul 1, 1997Exxon Chemical Patents Inc.Fuel dispersant
US5646332 *Jun 17, 1994Jul 8, 1997Exxon Chemical Patents Inc.Batch Koch carbonylation process
US5650536 *Jun 17, 1994Jul 22, 1997Exxon Chemical Patents Inc.Continuous process for production of functionalized olefins
US5652201 *Jul 11, 1995Jul 29, 1997Ethyl Petroleum Additives Inc.Lubricating oil compositions and concentrates and the use thereof
US5696064 *Aug 23, 1995Dec 9, 1997Exxon Chemical Patents Inc.From carbon monoxide and a nucleophilic trapping agent
US5698722 *Jun 6, 1995Dec 16, 1997Exxon Chemical Patents Inc.Blend of addition polymer, carbon monoxide and nucleophilic trapping agent
US5703256 *Dec 16, 1996Dec 30, 1997Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5717039 *Jun 6, 1995Feb 10, 1998Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5767046 *May 15, 1997Jun 16, 1998Exxon Chemical CompanyPrepared by reacting an olefin, carbon monoxide, an acid catalyst and a nucleophilic trapping agent selected from hydroxy- and thiol-containing compounds
US5811377 *Feb 3, 1997Sep 22, 1998Exxon Chemical Patents IncLow molecular weight basic nitrogen-containing reaction products as enhanced phosphorus/boron carriers in lubrication oils
US6251840Jan 14, 1997Jun 26, 2001The Lubrizol CorporationMixture of oil, 2,5-dimercapto-1,3,4-thiadiazole or derivatives, antifoam agent, and phosphoric acid; automatic transmission fluid with improved antiwear, antifoaming and low temperature viscosity properties
US6352962Apr 3, 2000Mar 5, 2002Idemitsu Kosan Co., Ltd.Additive for traction drive fluid obtained by heating at least one ester selected from acidic phosphate ester and phosphite ester and succinimide dispersant containing boron at temperature of 120 to 150 degrees c. for 5 hours or more
US6482778Aug 11, 1999Nov 19, 2002Ethyl CorporationZinc and phosphorus containing transmission fluids having enhanced performance capabilities
US6613722 *Mar 7, 1997Sep 2, 2003Exxon Chemical Patents Inc.Organic phosphite, amine salt of organophosphate and/or amide, succinimide, ethoxylated amine; steel belt continuously variable transmission
US6797678Nov 21, 2001Sep 28, 2004Idemitsu Kosan Co., Ltd.Lubricant additive
US6828286Apr 10, 2003Dec 7, 2004Nippon Mitsubishi Oil CorporationSalt formation of a succinimide derivatives; anti-shudder property, transmission capacity for a wet clutch, and shifting in automobiles
US7820602Jul 12, 2006Oct 26, 2010King Industries, Inc.Diarylamine or alkylated phenothiazine as antioxidants; for use in crankcase and transmission
US7947636Feb 27, 2004May 24, 2011Afton Chemical CorporationPower transmission fluids
US8080500Apr 3, 2008Dec 20, 2011King Industries, Inc.Amine tungstates and lubricant compositions
US8598099Feb 6, 2012Dec 3, 2013The Lubrizol CorporationMulti-dispersant lubricating composition
US8623797Jun 29, 2007Jan 7, 2014Infineum International LimitedBoron-containing lubricating oils having improved friction stability
USRE36479 *Oct 4, 1996Jan 4, 2000The Lubrizol CorporationAqueous compositions containing nitrogen-containing salts
EP0156572A2 *Mar 8, 1985Oct 2, 1985Imperial Chemical Industries PlcSurfactants for oil/water systems in which the hydrophilic component contains a specified anionic grouping
EP0351964A1Jun 23, 1989Jan 24, 1990Exxon Chemical Patents Inc.Synergistic combination of additives useful in power transmitting compositions
EP0359522A1 *Sep 12, 1989Mar 21, 1990Ethyl Petroleum Additives, Inc.Oil-soluble phosphorus antiwear additives for lubricants
EP0384639A1 *Feb 15, 1990Aug 29, 1990Ethyl Petroleum Additives, Inc.Preconditioned automatic transmission fluids and their preparation
EP0399764A1May 21, 1990Nov 28, 1990Ethyl Petroleum Additives LimitedLubricant compositions
EP0480644A1 *Oct 4, 1991Apr 15, 1992Ethyl Petroleum Additives, Inc.Ashless or low-ash synthetic base compositions and additives therefor
EP0516461A1 *May 29, 1992Dec 2, 1992Ethyl Petroleum Additives, Inc.Lubricating oil compositions and concentrates and the use thereof
EP0558835A1Jan 30, 1992Sep 8, 1993Albemarle CorporationBiodegradable lubricants and functional fluids
EP0611818A1Jul 30, 1991Aug 24, 1994Exxon Chemical Patents Inc.Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same
EP0985725A2Jul 2, 1999Mar 15, 2000Chevron Chemical Company LLCPolyalkylene polysuccinimides and post-treated derivatives thereof
EP1076087A1 *Aug 11, 2000Feb 14, 2001Ethyl CorporationZinc and phosphorus containing transmission fluids having enhanced performance capabilities
EP1142983A1 *Apr 6, 2000Oct 10, 2001Idemitsu Kosan Company LimitedLubricant additive
EP1640440A1Aug 30, 2005Mar 29, 2006Infineum International LimitedFriction and/or wear reduction in manual or automated manual transmissions
EP1964911A2Feb 11, 2008Sep 3, 2008Infineum International LimitedMethods for lubricating a transmission
EP2028256A2May 29, 2008Feb 25, 2009Infineum International LimitedLubricating oils having improved friction stability
EP2028257A2Jun 4, 2008Feb 25, 2009Infineum International LimitedBoron-containing lubricating oils having improved friction stability
WO1985003709A1 *Jan 29, 1985Aug 29, 1985Lubrizol CorpNitrogen- and phosphorus-containing compositions and aqueous systems containing same
WO1998047989A1Mar 19, 1998Oct 29, 1998Exxon Chemical Patents IncPower transmission fluids containing alkyl phosphonates
WO1999036491A1Oct 28, 1998Jul 22, 1999Exxon Chemical Patents IncAutomatic transmission fluids of improved viscometric properties
WO2011102835A1Feb 19, 2010Aug 25, 2011Toyota Jidosha Kabushiki KaishaWet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents
WO2011102836A1Feb 19, 2010Aug 25, 2011Infineum International LimitedWet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents