US3512597A - Walking mechanism and control therefor - Google Patents

Walking mechanism and control therefor Download PDF

Info

Publication number
US3512597A
US3512597A US698590A US3512597DA US3512597A US 3512597 A US3512597 A US 3512597A US 698590 A US698590 A US 698590A US 3512597D A US3512597D A US 3512597DA US 3512597 A US3512597 A US 3512597A
Authority
US
United States
Prior art keywords
control
cylinder
cylinders
vector
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US698590A
Inventor
George B Baron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marion Power Shovel Co Inc
Original Assignee
Marion Power Shovel Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marion Power Shovel Co Inc filed Critical Marion Power Shovel Co Inc
Application granted granted Critical
Publication of US3512597A publication Critical patent/US3512597A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/02Travelling-gear, e.g. associated with slewing gears
    • E02F9/04Walking gears moving the dredger forward step-by-step

Definitions

  • ABSTRACT OF THE DISCLOSURE A walking mechanism for heavy equipment having fluid cylinder operated platforms at each side of the equipment base to support the major portion of the equipment :weight and slide the base forward in a series of steps, between which the platforms are raised and moved forward.
  • the fluid cylinder systems on opposite sides of the equipment comprise lift cylinders and pull cylinders operated by independent iiuid systems having means for interconnection until a predetermined amount of the equipment weight is equally supported on the platforms, whereupon the interconnection is blocked and the systems operate separately.
  • the resultant force vector of the lift and pull cylinders on each side is determined and maintained by an adjustable control which has members to simulate the forces and movements of the lift and pull cylinders joined by a floating pivot to a vector control lever which opposes movement of the floating pivot along the longitudinal axis of the lever. Movement of the pivot in other directions operates a valve control for the fluid system to maintain the desired force vector.
  • This invention relates to walking systems for heavy equipment and to controls therefor, and particularly to hydraulic walking systems and to means for ixing and/ or controlling the resultant fforces of the cylinder systems making up such a walking system.
  • Some heavy equipment particularly excavating machinery such as s used in mining operations, has been provided with shoes at each side to walk them as work progresses.
  • the mechanism for operating the shoes has been mechanical in nature, and as the capacity and weight of the machines have increased, the proportions of the shoe operating mechanism has necessarily become larger.
  • a point has been reached where the weight and size of the moving mechanical parts are so great that manufacture and practical operationv are becoming increasingly diflicult, and no Iway has been discovered to split the loads so that they could be carried by a multiplicity of small components.
  • Another disadvantage of the mechanical system is the necessity of lifting the leading edge of the base, or tub, of the machine a considerable distance above the earth each step, to insure enough height to move over obstacles, or rises in ground, and this is more than required for most moving steps.
  • the lift of the leading edge causes the trailing edge to dig in and drag heavily and accumulate a pack, or roll, of dirt, which clings to the bottom. If the ground is high under one shoe, that shoe will take its full load before the other shoe begins to take a load. This requires much heavier and more complex structure in the machine to withstand unbalanced loading conditions.
  • the rst loaded shoe begins to move the machine, it causes a sudden rotation of the machine about its vertical axis, 'which has been known to cause undesirable bending stresses in the boom.
  • the general object of the present invention is to provide a walking mechanism which is hydraulically operated and capable of control, and having a control, to determine the direction of forces applied to the walking shoes.
  • Another object is to provide such a system wherein pressures will be equalized on opposite sides of the machine regardless of ground contour.
  • a further object is the provision of mechanism using two systems of hydraulic cylinders whose operating angles vary continuously, with means for fixing and/or controlling the direction of the resulting vector of the two systems.
  • FIG. 1 is a side elevation of the base portion of an excavating machine, such as a dragline, equipped with wallking shoes which are operatively connected to the machine by means of the hydraulic system of the present invention;
  • FIG. 2 is an end view of the structure shown in FIG. l;
  • FIG. 3 is a partial top plan view of the structure shown in FIG. l, only one shoe being shown;
  • FIGS. 4A, 4B and 4C show successive positions of the shoe in making a step
  • FIG. 5 is a diagrammatic view olf the hydraulic system, only the arrangement for one side of the system being shown;
  • FIG. 6 is an elevational view of the vector control mechanism
  • FIG. 7 is a section taken on the line 7 7 of FIG. 6.
  • FIGS. 1, 2 and 3 of the drawings there is shown a portion of a dragline excavating machine 1 having a base, or tub, 2 which seats upon the ground and rotatably supports a platform 3 upon which the machinery is mounted.
  • the usual boom 4 has its foot connected to the platform 3.
  • a shoe S suspended from the platform by hydraulic cylinders 6.
  • the cylinders are attached to the platform by ball joints 7, and their piston rods are connected to the shoes by ball joints 8.
  • these cylinders will be termed lift cylinders. In the embodiment shown, they raise and lower the shoes, and lift the weight of the machine when the shoes are in contact with the ground and the machine is to be moved.
  • a third set of cylinders 12 are pivotally connected to the platform and shoes and control the side thrust imposed when moving over uneven terrain. The cylinders 12 are necessary for stability, but their operation and control are not part of the present disclosure.
  • the various operations of the lift cylinders 6 and the pull cylinder 9 are controlled by a hydraulic system (see FIG. and the step movement is determined by operation of a vector control 13 (see particularly FIGS. 6 and 7).
  • the hydraulic circuit diagram shown in FIG. 5 discloses only one side of a complete system except for an equalizing valve 14 and a relief valve 15 which serve both sides of the system.
  • the system shown would be for a relatively small machine, as each side is driven by a single pump 16.
  • the pump is of the reversible displacement type, and its stroke control is linked mechanically, or otherwise, to that of the other pump, so that the displacement of the two pumps is always the same.
  • the line 17 leading from the pump will be referred to as the outlet line and the line 18 the inlet line.
  • Lines 19 connect the several lift cylinders 6 in parallel to the outlet line 17, while line 17 continues to the equalizing valve 14.
  • An oil supply line 20 connects to line 17 and leads from tank 21.
  • a check valve 22 is in line 20 to permit ow from the tank only.
  • a second line 23 leads from the check valve to the inlet line 18 to control the check valve when the pump is operating in a reverse direction and pressure in line 18 exceeds a predetermined amount.
  • the rod ends of cylinders 6 are connected in parallel by lines I24 to a line 25 which extends to the other side of the system. Relief valve is connected into line 25 and empties into tank 26.
  • a branch line 27 runs from line 25 to a tank 28, and is controlled by a manually operable valve 29.
  • a branch 30 from line 27 is connected to a pressure operated valve 31, which is controlled by a line 32 from one of the lift cylindei feed lines 19.
  • Lines 33, from the rod end of pull cylinder 9, 34, from inlet 18, and 35, to a tank 36, are also connected to valve 31.
  • the piston end of cylinder 9 is connected by line 37 to pump inlet line 18, and by a branch 38 from line 37 to valve 39 of the vector control 13.
  • Line 18 and a branch 44 from line 25 also are connected to the valve 39.
  • a line 45 from the equalizer valve 14 to line 33 completes one side of the system, the other side being a duplicate. It will be understood that while separate tanks I21, 26, 28, 36 and 42 have been illustrated for purposes of convenience, these are in fact symbols of a single tank.
  • Vector control 13 is shown in deail in FIGS. 6 and 7 of the drawings.
  • -It consists primarily of three pivotally interconnected levers, with two of them being of variable length to enable shifting of the point of interconnection, and the valve 39, which is controlled by movement of the point of lever interconnection.
  • the three levers are a vector lever 46, a lift cylinder lever 47, and a pull cylinder lever 48.
  • the levers 47 and 48 are miniature cylinders having predetermined pressure ratios proportional to the pressure ratio between all of the cylinders 6 and all of the cylinders 9.
  • Vector lever 46 has its outer end connected to a rod 49, which may extend to a hand operated, or mechanically operated, control (not shown) while lever 47 is connected to an extension 50 of a lift cylinder 6 by rod 51, and lever 48 is connected to an extension 52 of the pull cylinder 9 by means of rod 53.
  • Vector lever 46 represents the direction of resultant Iforce of all cylinders on one side of the machine.
  • Lever 47 is composed of a small cylinder 60 having an extension 61 at one end carrying the roller 56 and connected to rod 51.
  • the rod of the cylinder is connected to the common connector 54.
  • Lever 48 includes the small cylinder 62 with extension 63 on which roller 57 is mounted and to which rod 53 is joined.
  • Roller 55 is mounted on the vector lever 46.
  • Control cylinder 60 has its head end in communication with the head end of one of the lift cylinders 6 (preferably one near the center of the shoe for most accurate response when the shoe is in a tilted position) through hose line 64, and its rod end in communication with the rod end of the same cylinder by hose 65.
  • Hose lines 66 and 67 similarly connect cylinder 62 with a pull cylinder 9.
  • the control cylinder pressures are balanced, however, when the pressures in the operating cylinders are proper for the step form being followed, so that there will be no retractive or extension movements of the control cylinders unless the selected resultant force vector is not being followed.
  • the strokes of the control cylinders 60 and 62 are not proportional to those of cylinders 6 and 9.
  • vector lever 46 is of set length, only forces effective perpendicularly to the vector lever axis will result in movement of the common connection 54 to the right or left (as viewed in FIG. 6). These movements are transmitted to valve 39 by link 68 connected to the common connection and the valve stem. Movement of the connection 54 to the left corresponds to downward movement of the valve symbol 39 in the diagram of FIG. 5. In both FIGS. 5 and 6 this movement compresses spring 69.
  • the return spring 69 must have a suflciently high rate to stabilize the servo system, thus allowing some error in the vector direction. In order to minimize the error, cylinder 60 could be tipped a little to the right with respect to the lift cylinders, or some other kind of known bias could be built into the system.
  • the shoe In operating the apparatus to move the machine to which it is attached one step, the shoe is iirst dropped from its raised, parked position, as shown in FIG. 4A, into contact with the ground, as shown in FIG. 4B. This can be done by opening valve 29 momentarily to allow discharge of oil from the rod ends of cylinders 6 into the tank, or the shoe may be pumped down by beginning oil delivery from pump 16 into outlet line 17 and cylinder head lines 19, in which case oil from the rod ends of cylinders 6 ows through lines 24, 27, 30, valve 31, line 34 and inlet line 18 to the pump. Excess oil required to fill the cylinders 6 comes from the tank 21 through replenishing pilot check valve 22.
  • valve 14 shifts and isolates the systems at the two sides of the machine, and at the same time connects the rod end of the pull cylinder in parallel with the head ends of the lift cylinders.
  • valve 39 would shift to the last block, and excess oil would return through line 18, valve 39, lines 44, 25, 27, 30, valve 31 and line 35 to tank 36. This return would be at no pressure and the pull of cylinder 9 would be maximum. Since the cylinders and walking geometry will be so proportioned that the required pull is always somewhat less than maximum, it can be seen that valve 39 would never become fully open to the tank, but would seek a position where the excess oil would be throttled at just the right pressure to keep the vector link 68 in balance. Therefore, the resultant of the lift and pull cylinder forces remains in the desired direction and the machine tub is pulled forward.
  • the operator would move the delivery control so that oil would flow through the pump in the opposite direction, and the pressure on the head ends ofthe lift cylinders would begin to reduce.
  • the discharge would go into the head end of the pull cylinder 9, but if the pressure increasedvery much there, the vector link 68 would move to the left and shift valve 39 to the last'block so that the line would be open through valve 39 to the tank 36.
  • the sum of the pressures from the two sides is reduced to the setting of valve 14, that valve shifts back to the position shown, thus permitting the two sides to equalize and disconnecting the rod end of the pull cylinder from the lift cylinders.
  • valve 39 shifts back to the position shown, so that the rod ends of the lift and pull cylinders, as well as the overflow port of valve 39, are connected to the pump discharge. Valve 39 will then be inoperative. AS discharge pressure begins to build up, pilot check valve 22 is forced open, so that the head ends of the lift cylinders 6 are connected to the tank 21.
  • the lift cylinders are exerting a forward force on the shoe, and the pull cylinder, with its large rod acting as a ram, is exerting a forward push.
  • the resultant of these forces is in such a direction that the shoe must slide on the ground in the same manner as the tub slid during the step.
  • the vector direction is not xed. Therefore, the rod size of the lift cylinders must be large enough so that the resultant stays well ahead of the vertical direction when the shoes approach the starting position, or else they will leave the ground prematurely, Also, the shoes should be so balanced that they are heavy at the right-hand end, so that the other end will not dig in.
  • Walking mechanism for equipment having a base and a control therefor comprising, a platform, rst elongatable means having ends pivotally attached to the equipment base and the platform, means to extend and contract the first elongatable means to apply a force -upon the platform in one direction, second elongatable means having ends pivotally attached to the equipment lbase and the platform and occupying a position at an angle to the rst elongatable means, means to extend and contract the second elongatable means to exert a force on the platform in a direction angularly displaced from that of the first elongatable means, and means to control the operation of the means to extend and contract the rst elongatable means and the means to eX- tend and contract the second elongatable means to maintain a resultant force vector of the two forces on the platform at a selected angle.
  • control means includes a settable vector control means and means to oppose the vector control means responsive to the resultant force vector of the iirst and second elongatable means and connected to the vector control means by a oating connection, whereby changes in the said resultant force vector direction will move the floating connection, and means responsive to movement of the oating connection to control the means to extend and contract the second elongatable means.
  • the means to oppose the vector control means includes separate means maintained in parallelism and under proportional forces respectively with the first and second elongatable means.
  • the control means includes a first elongatable control, means to maintain the first elongatable control and the first elongatable means in parallelism, a second elongatable control, means to maintain the second elongatable control and the second elongatable means in parallelism, a settable vector control, means interconnecting a common end of the first, second and vector controls, whereby the resultant of the forces exerted by the first and second controls if not directly opposed by the vector control and set position will tend to shift the common interconnecting means, means to maintain the first and second controls exerting forces respectively proportional to the first and second elongatable means, and means connected to the common interconnection to control the operation of the fmeans to extend and contract the second elongatable means, Whereby the resultant force vector of the first and second elongatable means will be maintained parallel to the set vector control.
  • the first and second elongatable means are fluid cylinder assemblies and the control means includes, a first control cylinder assembly connected at one end to the first elongatable means to maintain parallelism thereto and in connection with the cylinder of the rst elongatable means to maintain pressure proportional thereto, a second control cylinder connected at one end to the second elongatable means to maintain parallelism thereto and in communication with the cylinder of the second elongatable means to maintain pressure proportional thereto, a settable vector control lever, a floating connection interconnecting the other ends of the first and second control cylinders and one end of the vector control lever, whereby the resultant force of the first and second control cylinderswill cause movement of the floating connection unless the resultant force is longitudinally aligned with the vector control lever, and means responsive to movement of the floating connection to control operation of the cylinder assembly forming the second elongatable means.
  • control means includes vector, first and second controls interconnected by a floating pivot and radiating from the floating pivot, means to set the vector control at selected angles about the floating pivot, means to maintain the first and second controls respectively parallel and under poroportional force to the first and second elongatable means, and means responsive to movement of the floating pivot to control the means to extend and contract the second elongatable means.
  • Walking mechanism for equipment having a base comprising, a platform on each side of the base, a lift fluid cylinder on each side of the base having it ends connected to the base and to a platform to raise and lower the platform, a pull cylinder on each side of the base having its ends connected to the base and to a platform to move the platform forwardly and rearwardly, a fluid operating system for the fluid cylinders on each side of the base, intercommunicating means between the fluid operating systems to allow equalization of pressures in the two systems, and means to block the intercommunication means upon a predetermined portion of the equipment weight being imposed on the platform to allow ndependent operation of the fluid systems.
  • Walking mechanism for equipment having a base as claimed in claim 10 wherein, there is a control means for the fluid system on each side of the base operable in response to the operation of the fluid cylinders controlled by that fluid system to maintain the resultant force vector of the controlled cylinder at a predetermined angle.
  • the control means includes a lift control cylinder, means to maintain the lift control cylinder parallel to the lift cylinder, means affording fluid communication between the lift control cylinder and the lift cylinder, a pull control cylinder, means to maintain the pull control cylinder parallel to the pull cylinder, means affording fluid communication between the pull control cylinder and the pull cylinder, a vector control lever, a common floating pivot interconnecting the vector lever, lift control and pull control cylinders, and means responsive to movement of the floating pivot to control the flow of fluid through the fluid system.
  • Walking mechanism for equipment having a base as claimed in claim 12 wherein, there are means to set the positions of the vector control levers of the respective control means to change the resultant force direction of the lift and pull cylinders at the sides of the base.

Description

May 19, 1970 G. B. BARON 3,512,597
WALKING MECHANISM AND CONTROL THEREFOR Filed Jan. 17, 1968 5 Sheets-Sheet 1 ATTORNEYS May 19, 1970 G. s. BARON WALKING MECHANISM ND CONTROL THEREFOR 5 Sheets-Sheet 2 Filed Jan. l?, 1968 INVENTOR Cnosacis E BARON BY A 63 WQMQQ ATTORNEYS May 19, 1970 G. B. BARON WALKING MECHANISM. AND CONTROLv THEREFOR 5 Sheets-Sheet 4 Filed Jan. 17, 1968 /Nvgyrae Geoaae AB. E A2Q6N ATTORNEYS Wasogwuirm fum mmm@ May 19, 1970 G. B. BARON 3,512,597
WALKING MECHANISM AND CONTROL THEREFOR Filed Jan. 17, 1968 5 Sheets-Sheet 5 5o eye @2 Sofa 68/ 54 4B 57 INVENTOR GEQQGE B- BARON ATTORNEYS United States Patent Office 3,512,597 Patented May 19, 1970 3,512,597 WALKING MECHANISM AND CONTROL THEREFoR George B. Baron, Marion, Ohio, assgnor to Manon Power Shovel Company, Inc., Marion, Ohio, a corporation of Delaware Filed Jan. 17, 1968, Ser. No. 698,590 Int. Cl. B62d 57/02 U.S. Cl. 180-8 13 Claims ABSTRACT OF THE DISCLOSURE A walking mechanism for heavy equipment having fluid cylinder operated platforms at each side of the equipment base to support the major portion of the equipment :weight and slide the base forward in a series of steps, between which the platforms are raised and moved forward. The fluid cylinder systems on opposite sides of the equipment comprise lift cylinders and pull cylinders operated by independent iiuid systems having means for interconnection until a predetermined amount of the equipment weight is equally supported on the platforms, whereupon the interconnection is blocked and the systems operate separately. The resultant force vector of the lift and pull cylinders on each side is determined and maintained by an adjustable control which has members to simulate the forces and movements of the lift and pull cylinders joined by a floating pivot to a vector control lever which opposes movement of the floating pivot along the longitudinal axis of the lever. Movement of the pivot in other directions operates a valve control for the fluid system to maintain the desired force vector.
BACKGROUND OF THE INVENTION This invention relates to walking systems for heavy equipment and to controls therefor, and particularly to hydraulic walking systems and to means for ixing and/ or controlling the resultant fforces of the cylinder systems making up such a walking system.
Some heavy equipment, particularly excavating machinery such as s used in mining operations, has been provided with shoes at each side to walk them as work progresses. The mechanism for operating the shoes has been mechanical in nature, and as the capacity and weight of the machines have increased, the proportions of the shoe operating mechanism has necessarily become larger. A point has been reached where the weight and size of the moving mechanical parts are so great that manufacture and practical operationv are becoming increasingly diflicult, and no Iway has been discovered to split the loads so that they could be carried by a multiplicity of small components.
Another disadvantage of the mechanical system is the necessity of lifting the leading edge of the base, or tub, of the machine a considerable distance above the earth each step, to insure enough height to move over obstacles, or rises in ground, and this is more than required for most moving steps. The lift of the leading edge causes the trailing edge to dig in and drag heavily and accumulate a pack, or roll, of dirt, which clings to the bottom. If the ground is high under one shoe, that shoe will take its full load before the other shoe begins to take a load. This requires much heavier and more complex structure in the machine to withstand unbalanced loading conditions. Also, as the rst loaded shoe begins to move the machine, it causes a sudden rotation of the machine about its vertical axis, 'which has been known to cause undesirable bending stresses in the boom.
Some work has been done with hydraulic operating mechanism for the shoes, but problems of control to achieve practical operation under all conditions have not previously been solved.
Due to the tremendous weight of the machine being walked, it is desirable to lift the weight only so much as is necessary to permit sliding the base, or tub, on which the machine rests. Nevertheless, it is necessary at times to raise the leading end of the base a suficient height to move over an obstruction, or rise in ground. Thus, a system is required which will allow variations in step pattern if optimum eficiency is to be obtained, and this, in turn, calls for a exible control device which will cause variation in step pattern.
SUMMARY OF THE INVENTION The general object of the present invention is to provide a walking mechanism which is hydraulically operated and capable of control, and having a control, to determine the direction of forces applied to the walking shoes.
Another object is to provide such a system wherein pressures will be equalized on opposite sides of the machine regardless of ground contour.
A further object is the provision of mechanism using two systems of hydraulic cylinders whose operating angles vary continuously, with means for fixing and/or controlling the direction of the resulting vector of the two systems.
Other objects of the invention |will become apparent from the following detailed description of one practical embodiment thereof, when taken in conjunction with the drawings which accompany, and form part of, this specification.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevation of the base portion of an excavating machine, such as a dragline, equipped with wallking shoes which are operatively connected to the machine by means of the hydraulic system of the present invention;
FIG. 2 is an end view of the structure shown in FIG. l;
FIG. 3 is a partial top plan view of the structure shown in FIG. l, only one shoe being shown;
FIGS. 4A, 4B and 4C show successive positions of the shoe in making a step;
FIG. 5 is a diagrammatic view olf the hydraulic system, only the arrangement for one side of the system being shown;
FIG. 6 is an elevational view of the vector control mechanism; and
FIG. 7 is a section taken on the line 7 7 of FIG. 6.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring rst to FIGS. 1, 2 and 3 of the drawings, there is shown a portion of a dragline excavating machine 1 having a base, or tub, 2 which seats upon the ground and rotatably supports a platform 3 upon which the machinery is mounted. The usual boom 4 has its foot connected to the platform 3.
At each side of the machine, there is a shoe S suspended from the platform by hydraulic cylinders 6. The cylinders are attached to the platform by ball joints 7, and their piston rods are connected to the shoes by ball joints 8. For purposes of this disclosure, these cylinders will be termed lift cylinders. In the embodiment shown, they raise and lower the shoes, and lift the weight of the machine when the shoes are in contact with the ground and the machine is to be moved. There is one, or more, cylinder 9, pivotally connected to the platform at 10 with its rod connected to the shoes at 11, which cylinder will be termed a pull cylinder, for it moves the machine longitudinally of the shoes when the weight is on the 3 shoes. A third set of cylinders 12 are pivotally connected to the platform and shoes and control the side thrust imposed when moving over uneven terrain. The cylinders 12 are necessary for stability, but their operation and control are not part of the present disclosure.
Although four lift cylinders 6 have been shown connected to each shoe, the system is not limited to the use of this number of cylinders, nor to the specific arrangement of cylinders shown. All of the cylinders must be so located, and so connected to the resepective components, as to permit universal movement of the shoes so that they may adapt themselves to ground contour.
The various operations of the lift cylinders 6 and the pull cylinder 9 are controlled by a hydraulic system (see FIG. and the step movement is determined by operation of a vector control 13 (see particularly FIGS. 6 and 7).
The hydraulic circuit diagram shown in FIG. 5 discloses only one side of a complete system except for an equalizing valve 14 and a relief valve 15 which serve both sides of the system. The system shown would be for a relatively small machine, as each side is driven by a single pump 16. The pump is of the reversible displacement type, and its stroke control is linked mechanically, or otherwise, to that of the other pump, so that the displacement of the two pumps is always the same.
Although the pump 16 is reversible, for purposes of disclosure the line 17 leading from the pump will be referred to as the outlet line and the line 18 the inlet line. Lines 19 connect the several lift cylinders 6 in parallel to the outlet line 17, while line 17 continues to the equalizing valve 14. An oil supply line 20 connects to line 17 and leads from tank 21. A check valve 22 is in line 20 to permit ow from the tank only. A second line 23 leads from the check valve to the inlet line 18 to control the check valve when the pump is operating in a reverse direction and pressure in line 18 exceeds a predetermined amount. The rod ends of cylinders 6 are connected in parallel by lines I24 to a line 25 which extends to the other side of the system. Relief valve is connected into line 25 and empties into tank 26. A branch line 27 runs from line 25 to a tank 28, and is controlled by a manually operable valve 29. A branch 30 from line 27 is connected to a pressure operated valve 31, which is controlled by a line 32 from one of the lift cylindei feed lines 19. Lines 33, from the rod end of pull cylinder 9, 34, from inlet 18, and 35, to a tank 36, are also connected to valve 31. The piston end of cylinder 9 is connected by line 37 to pump inlet line 18, and by a branch 38 from line 37 to valve 39 of the vector control 13. There is a check valve 40 in line 37, between lines 18 and 38, operable to permit flow toward cylinder 9, and a line 41 from a tank 42 supplies line 18 when needed under control of a check valve 43. Line 18 and a branch 44 from line 25 also are connected to the valve 39. A line 45 from the equalizer valve 14 to line 33 completes one side of the system, the other side being a duplicate. It will be understood that while separate tanks I21, 26, 28, 36 and 42 have been illustrated for purposes of convenience, these are in fact symbols of a single tank.
Vector control 13 is shown in deail in FIGS. 6 and 7 of the drawings. -It consists primarily of three pivotally interconnected levers, with two of them being of variable length to enable shifting of the point of interconnection, and the valve 39, which is controlled by movement of the point of lever interconnection. The three levers are a vector lever 46, a lift cylinder lever 47, and a pull cylinder lever 48. The levers 47 and 48 are miniature cylinders having predetermined pressure ratios proportional to the pressure ratio between all of the cylinders 6 and all of the cylinders 9. Vector lever 46 has its outer end connected to a rod 49, which may extend to a hand operated, or mechanically operated, control (not shown) while lever 47 is connected to an extension 50 of a lift cylinder 6 by rod 51, and lever 48 is connected to an extension 52 of the pull cylinder 9 by means of rod 53. The respective extensions and levers, and their respective pivotal points and pivotal connections to the connecting rods, form parallelograms to maintain parallelism between lever 47 and cylinder 6 and lever 48 and cylinder 9 at all times. Vector lever 46 represents the direction of resultant Iforce of all cylinders on one side of the machine.
The three levers are mounted for arcuate movement about their common connection 54 by means of rollers 55, 56 and 57, movable along an arcuate slot 58 in a mounting board 59. Lever 47 is composed of a small cylinder 60 having an extension 61 at one end carrying the roller 56 and connected to rod 51. The rod of the cylinder is connected to the common connector 54. Lever 48 includes the small cylinder 62 with extension 63 on which roller 57 is mounted and to which rod 53 is joined. Roller 55 is mounted on the vector lever 46.
Control cylinder 60 has its head end in communication with the head end of one of the lift cylinders 6 (preferably one near the center of the shoe for most accurate response when the shoe is in a tilted position) through hose line 64, and its rod end in communication with the rod end of the same cylinder by hose 65. Hose lines 66 and 67 similarly connect cylinder 62 with a pull cylinder 9. Thus, the pressures in the control cylinders 60 and 62 will be the same as those in the lift and pull cylinders. The control cylinder pressures are balanced, however, when the pressures in the operating cylinders are proper for the step form being followed, so that there will be no retractive or extension movements of the control cylinders unless the selected resultant force vector is not being followed. Therefore, the strokes of the control cylinders 60 and 62 are not proportional to those of cylinders 6 and 9. As vector lever 46 is of set length, only forces effective perpendicularly to the vector lever axis will result in movement of the common connection 54 to the right or left (as viewed in FIG. 6). These movements are transmitted to valve 39 by link 68 connected to the common connection and the valve stem. Movement of the connection 54 to the left corresponds to downward movement of the valve symbol 39 in the diagram of FIG. 5. In both FIGS. 5 and 6 this movement compresses spring 69. The return spring 69 must have a suflciently high rate to stabilize the servo system, thus allowing some error in the vector direction. In order to minimize the error, cylinder 60 could be tipped a little to the right with respect to the lift cylinders, or some other kind of known bias could be built into the system.
In operating the apparatus to move the machine to which it is attached one step, the shoe is iirst dropped from its raised, parked position, as shown in FIG. 4A, into contact with the ground, as shown in FIG. 4B. This can be done by opening valve 29 momentarily to allow discharge of oil from the rod ends of cylinders 6 into the tank, or the shoe may be pumped down by beginning oil delivery from pump 16 into outlet line 17 and cylinder head lines 19, in which case oil from the rod ends of cylinders 6 ows through lines 24, 27, 30, valve 31, line 34 and inlet line 18 to the pump. Excess oil required to fill the cylinders 6 comes from the tank 21 through replenishing pilot check valve 22. After the shoe touches the ground, oil may flow to the system on the other side of the machine through the equalizing valve 14, unless the other shoe is already on the ground, in which case pressure begins to build up in all of the lift cylinders on both sides simultaneously. Pressure in the lines 19 is imposed upon the block of valve 31 through line 32, and a small pressure will cause the block to shift, thus isolating the rod end of the pull cylinder 9 and opening the rod ends of the lift cylinders 6 directly to the tank 36. When the pressure or, more correctly, the sum of the pressures, reaches the setting of valve 14, which may be about two-thirds of the pressure required for walking, valve 14 shifts and isolates the systems at the two sides of the machine, and at the same time connects the rod end of the pull cylinder in parallel with the head ends of the lift cylinders.
With vector control valve 39 in the position shown, no oil can ow from the head end of the pull cylinder 9 and no pull can be developed. However, such a condition would cause the vector link 68 to move to the left (as viewed in FIG. 6), thereby shifting valve 39 to the next block, so that oil can ow from the head end of pull cylinder 9 through pipe 38, valve 39 and pump inlet line 18. At the beginning of the step, all pistons would be retracting, thus decreasing the system volume so that more oil would be coming out of the pull cylinder 9 than going into the pump 16. Therefore, the inlet pressure would tend to increase without limit, thus continuing to prevent any pull from developing. Further movement of the vector link 68 to the left would then take place, so that valve 39 would shift to the last block, and excess oil would return through line 18, valve 39, lines 44, 25, 27, 30, valve 31 and line 35 to tank 36. This return would be at no pressure and the pull of cylinder 9 would be maximum. Since the cylinders and walking geometry will be so proportioned that the required pull is always somewhat less than maximum, it can be seen that valve 39 would never become fully open to the tank, but would seek a position where the excess oil would be throttled at just the right pressure to keep the vector link 68 in balance. Therefore, the resultant of the lift and pull cylinder forces remains in the desired direction and the machine tub is pulled forward.
As the step progresses, the lift cylinders 6 go over center and begin to extend (see FIGS. 4B and 4C). The required pull diminishes because the machine weight is assisting in the movement and reaches zero when the lift cylinders 6 are parallel to the vector. Finally, the required pull becomes negative (in other words, a push). The rod diameter in the pull cylinder 9 will be so selected that only in the last small fraction of the step does the system volume under pressure begin to increase. When this happens, less oil is coming out of the pull cylinder 9 than is going into the pump, the difference coming out of the tank through replenishing check valve 43, so that the inlet pressure is zero. In order to maintain equilibrium on the vector link 68, valve 39 gradually shifts back toward the position shown, where it closes just enough to -maintain the desired pressure by throttling the cylinder discharge.
The reason for staging valve 39 into both the pump inlet and the tank is to conserve hydraulic power. If this valve controlled tlow only t the tank, all of the power taken away from pull cylinder 9 would be wasted.
When the step is completed, the pump discharge is stopped. There could be a limit switch, or other device, on the pull cylinder on each side of the machine, so that step completion on either side would stop the discharge of both pumps.
After the step is completed, the operator would move the delivery control so that oil would flow through the pump in the opposite direction, and the pressure on the head ends ofthe lift cylinders would begin to reduce. Momentarily, the discharge would go into the head end of the pull cylinder 9, but if the pressure increasedvery much there, the vector link 68 would move to the left and shift valve 39 to the last'block so that the line would be open through valve 39 to the tank 36. When the sum of the pressures from the two sides is reduced to the setting of valve 14, that valve shifts back to the position shown, thus permitting the two sides to equalize and disconnecting the rod end of the pull cylinder from the lift cylinders. When the pressure finally becomes negligible, valve 39 shifts back to the position shown, so that the rod ends of the lift and pull cylinders, as well as the overflow port of valve 39, are connected to the pump discharge. Valve 39 will then be inoperative. AS discharge pressure begins to build up, pilot check valve 22 is forced open, so that the head ends of the lift cylinders 6 are connected to the tank 21.
At this stage of the movement, the lift cylinders are exerting a forward force on the shoe, and the pull cylinder, with its large rod acting as a ram, is exerting a forward push. The resultant of these forces is in such a direction that the shoe must slide on the ground in the same manner as the tub slid during the step. However, the vector direction is not xed. Therefore, the rod size of the lift cylinders must be large enough so that the resultant stays well ahead of the vertical direction when the shoes approach the starting position, or else they will leave the ground prematurely, Also, the shoes should be so balanced that they are heavy at the right-hand end, so that the other end will not dig in.
When one shoe reaches the starting position, its pull cylinder 9 is fully extended and can exert no more push. Therefore, the effective piston area acting on the shoe becomes smaller and the pressures tend to rise. Since the pump discharges are connected across the machine, the ow can be diverted to the other side to speed up the return of that shoe. When both shoes are at the starting position on the ground, the pressure would rise as they begin to lift. This rise can be used as a signal to reverse the pump and begin another step, as already described, except that it starts with the shoes on the ground. On the other hand, the operator may decide to park the shoes, in which case further pumping to the right will simply raise them from the ground until all lift cylinders are bottomed, the pull cylinders remaining fully extended. The resulting dead-end condition can be relieved either by valve 15 or by suitable known pump controls.
One reason for pressurizing both ends of the pull cylinder on the return stroke is to obtain greater return speed without requiring greater pumping capacity, It is not necessary to use vector control on the return stroke as the vector direction is not critical as it is during the step. The shoes are so light relative to the machine that there is no possibility of sliding the tub instead of the shoes during the return stroke if the vector stays above the horizontal direction.
While in the above one practical embodiment of the invention has been disclosed, it will be understood that the details of construction shown and described are merely by way of illustration and the invention may take other forms within the scope of the appended claims.
I claim:
1. Walking mechanism for equipment having a base and a control therefor comprising, a platform, rst elongatable means having ends pivotally attached to the equipment base and the platform, means to extend and contract the first elongatable means to apply a force -upon the platform in one direction, second elongatable means having ends pivotally attached to the equipment lbase and the platform and occupying a position at an angle to the rst elongatable means, means to extend and contract the second elongatable means to exert a force on the platform in a direction angularly displaced from that of the first elongatable means, and means to control the operation of the means to extend and contract the rst elongatable means and the means to eX- tend and contract the second elongatable means to maintain a resultant force vector of the two forces on the platform at a selected angle.
2. Walking mechanism and control therefor as claimed in claim 1 wherein, the control means includes a settable vector control means and means to oppose the vector control means responsive to the resultant force vector of the iirst and second elongatable means and connected to the vector control means by a oating connection, whereby changes in the said resultant force vector direction will move the floating connection, and means responsive to movement of the oating connection to control the means to extend and contract the second elongatable means.
3. Walking mechanism and control therefor as claimed in claim 2 wherein, the means to oppose the vector control means includes separate means maintained in parallelism and under proportional forces respectively with the first and second elongatable means.
4. Walking mechanism and control therefor as claimed in claim 1 wherein, the control means includes a first elongatable control, means to maintain the first elongatable control and the first elongatable means in parallelism, a second elongatable control, means to maintain the second elongatable control and the second elongatable means in parallelism, a settable vector control, means interconnecting a common end of the first, second and vector controls, whereby the resultant of the forces exerted by the first and second controls if not directly opposed by the vector control and set position will tend to shift the common interconnecting means, means to maintain the first and second controls exerting forces respectively proportional to the first and second elongatable means, and means connected to the common interconnection to control the operation of the fmeans to extend and contract the second elongatable means, Whereby the resultant force vector of the first and second elongatable means will be maintained parallel to the set vector control.
5. Walking mechanism and control therefor as claimed in claim 4 wherein, the first and second elongatable means and the first and second elongatable controls are fluid cylinder assemblies.
6. Walking mechanism and control therefor as claimed in claim 1 wherein, the first and second elongatable means are fluid cylinder assemblies and the control means includes, a first control cylinder assembly connected at one end to the first elongatable means to maintain parallelism thereto and in connection with the cylinder of the rst elongatable means to maintain pressure proportional thereto, a second control cylinder connected at one end to the second elongatable means to maintain parallelism thereto and in communication with the cylinder of the second elongatable means to maintain pressure proportional thereto, a settable vector control lever, a floating connection interconnecting the other ends of the first and second control cylinders and one end of the vector control lever, whereby the resultant force of the first and second control cylinderswill cause movement of the floating connection unless the resultant force is longitudinally aligned with the vector control lever, and means responsive to movement of the floating connection to control operation of the cylinder assembly forming the second elongatable means.
7. Walking mechanism and control therefor as claimed in claim 6 wherein, there is a mounting member, the first and second control cylinders and the vector control lever extend radially from the floating connection, and there are means mounting the first and second control cylinders and the vector control lever on the mounting member for angular movement about the floating connection.
8. Walking mechanism and control therefor as claimed in claim 7 wherein, there are means to change the angular setting of the vector control lever to change the resultant force direction of the first and second elongatable means.
9. Walking mechanism and control therefor as claimed in claim'l wherein, the control means includes vector, first and second controls interconnected by a floating pivot and radiating from the floating pivot, means to set the vector control at selected angles about the floating pivot, means to maintain the first and second controls respectively parallel and under poroportional force to the first and second elongatable means, and means responsive to movement of the floating pivot to control the means to extend and contract the second elongatable means.
10. Walking mechanism for equipment having a base comprising, a platform on each side of the base, a lift fluid cylinder on each side of the base having it ends connected to the base and to a platform to raise and lower the platform, a pull cylinder on each side of the base having its ends connected to the base and to a platform to move the platform forwardly and rearwardly, a fluid operating system for the fluid cylinders on each side of the base, intercommunicating means between the fluid operating systems to allow equalization of pressures in the two systems, and means to block the intercommunication means upon a predetermined portion of the equipment weight being imposed on the platform to allow ndependent operation of the fluid systems.
11. Walking mechanism for equipment having a base as claimed in claim 10 wherein, there is a control means for the fluid system on each side of the base operable in response to the operation of the fluid cylinders controlled by that fluid system to maintain the resultant force vector of the controlled cylinder at a predetermined angle.
12. Walking mechanism for equipment having a base as claimed in claim 10 wherein, the control means includes a lift control cylinder, means to maintain the lift control cylinder parallel to the lift cylinder, means affording fluid communication between the lift control cylinder and the lift cylinder, a pull control cylinder, means to maintain the pull control cylinder parallel to the pull cylinder, means affording fluid communication between the pull control cylinder and the pull cylinder, a vector control lever, a common floating pivot interconnecting the vector lever, lift control and pull control cylinders, and means responsive to movement of the floating pivot to control the flow of fluid through the fluid system.
13. Walking mechanism for equipment having a base as claimed in claim 12 wherein, there are means to set the positions of the vector control levers of the respective control means to change the resultant force direction of the lift and pull cylinders at the sides of the base.
References Cited UNITED STATES PATENTS 2,452,632 11/1948 Cameron 180-8 X 2,800,968 7/19574 Joy 180e-8 2,800,970 7/1957 Barrett 180-8 3,114,425 12/1963 Adams 180-8 3,249,168 5/1966` Klein et al. 180--8 3,446,301 5/1969 Thomas 18o-'8 3,375,892 4/ 1968 Kraschnewski et al. 180-8 LEO FRIAGLIA, Primary Examiner U.S. Cl. X.R.
US698590A 1968-01-17 1968-01-17 Walking mechanism and control therefor Expired - Lifetime US3512597A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US69859068A 1968-01-17 1968-01-17

Publications (1)

Publication Number Publication Date
US3512597A true US3512597A (en) 1970-05-19

Family

ID=24805878

Family Applications (1)

Application Number Title Priority Date Filing Date
US698590A Expired - Lifetime US3512597A (en) 1968-01-17 1968-01-17 Walking mechanism and control therefor

Country Status (1)

Country Link
US (1) US3512597A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738630A (en) * 1971-02-22 1973-06-12 M Stafford Low speed high torque rotary drive for turning a furnace vessel or the like
US3796276A (en) * 1971-05-28 1974-03-12 Mitsui Shipbuilding Eng Carriages for transporting heavy articles and controlling positions thereof
US3802320A (en) * 1971-02-22 1974-04-09 M Stafford Low speed high torque rotary drive for turning a furnace vessel or the like
US3853196A (en) * 1974-05-29 1974-12-10 Sprague & Henwood Inc Self-propelling mechanism
US3995907A (en) * 1973-08-22 1976-12-07 Linden-Alimak Ab Underground excavating machine having independently movable half-frames
US4005905A (en) * 1973-08-22 1977-02-01 Linden-Alimak Ab Excavating machine
US4014399A (en) * 1975-10-20 1977-03-29 Demag Aktiengesellschaft Mount for heavy servo mechanisms
US4095661A (en) * 1977-05-09 1978-06-20 Caterpillar Tractor Co. Walking work vehicle
US4406339A (en) * 1981-08-31 1983-09-27 Olympus Optical Company Limited Oversized tub for a walking dragline
US4462476A (en) * 1981-04-10 1984-07-31 Nikolay Shkolnik Walking apparatus
US4555032A (en) * 1983-03-24 1985-11-26 Fmc Corporation Heavy lift crane
WO1999015388A1 (en) * 1997-09-24 1999-04-01 Roman Gamburg Apparatus for moving over uneven terrain
US6581525B2 (en) 2001-05-09 2003-06-24 Columbia Trailer Co., Inc. Method and apparatus for transporting and steering a load
US20140014417A1 (en) * 2011-12-16 2014-01-16 Entro Industries, Inc. Alignment restoration device for load transporting apparatus
US9463833B2 (en) 2011-12-16 2016-10-11 Entro Industries, Inc. Alignment restoration device for load transporting apparatus
US9981520B2 (en) 2016-02-17 2018-05-29 Entro Industries, Inc. Removable axle assembly
US9981687B2 (en) 2016-02-17 2018-05-29 Entro Industries, Inc. Axle assembly
US9981521B2 (en) 2016-02-17 2018-05-29 Entro Industries, Inc. Articulating multi-axle assembly
US10202156B2 (en) 2014-08-20 2019-02-12 Hydraulic Systems, Inc. Stabilizer frame apparatuses and methods of using same
US10407095B2 (en) 2016-03-09 2019-09-10 Entro Industries, Inc. Detachable multi-axle assembly
US10556631B2 (en) 2011-12-16 2020-02-11 Entro Industries, Inc. Low profile roller assembly
US10793409B2 (en) 2017-07-12 2020-10-06 Entro Industries, Inc. Lifting loads with lifting devices
US10889961B2 (en) 2017-08-08 2021-01-12 Entro Industries, Inc. Automatic walking for a load transporting apparatus
US10895882B2 (en) 2017-08-01 2021-01-19 Entro Industries, Inc. Controlling load transporting devices
US10899401B2 (en) 2017-06-05 2021-01-26 Entro Industries, Inc. Yaw alignment system
US11180319B2 (en) 2017-11-22 2021-11-23 Entro Industries, Inc. Skid system for load transport apparatus
US11407460B2 (en) 2018-05-31 2022-08-09 Entro Industries, Inc. Nonlinear walking apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2452632A (en) * 1944-04-13 1948-11-02 Ransomes & Rapier Ltd Excavating machine
US2800968A (en) * 1950-02-28 1957-07-30 Joy Mfg Co Automatic stepper type transport device
US2800970A (en) * 1956-12-19 1957-07-30 Joy Mfg Co Creeper base for mining apparatus
US3114425A (en) * 1960-08-12 1963-12-17 Salem Tool Co Stepper-type tramming support for mining equipment
US3249168A (en) * 1962-12-29 1966-05-03 Beteiligungs & Patentverw Gmbh Excavating machine
US3375892A (en) * 1965-11-03 1968-04-02 Bucyrus Erie Co Stepping-type propulsion means for excavators
US3446301A (en) * 1966-01-12 1969-05-27 Esch Werke Kg Load moving striding device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2452632A (en) * 1944-04-13 1948-11-02 Ransomes & Rapier Ltd Excavating machine
US2800968A (en) * 1950-02-28 1957-07-30 Joy Mfg Co Automatic stepper type transport device
US2800970A (en) * 1956-12-19 1957-07-30 Joy Mfg Co Creeper base for mining apparatus
US3114425A (en) * 1960-08-12 1963-12-17 Salem Tool Co Stepper-type tramming support for mining equipment
US3249168A (en) * 1962-12-29 1966-05-03 Beteiligungs & Patentverw Gmbh Excavating machine
US3375892A (en) * 1965-11-03 1968-04-02 Bucyrus Erie Co Stepping-type propulsion means for excavators
US3446301A (en) * 1966-01-12 1969-05-27 Esch Werke Kg Load moving striding device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738630A (en) * 1971-02-22 1973-06-12 M Stafford Low speed high torque rotary drive for turning a furnace vessel or the like
US3802320A (en) * 1971-02-22 1974-04-09 M Stafford Low speed high torque rotary drive for turning a furnace vessel or the like
US3796276A (en) * 1971-05-28 1974-03-12 Mitsui Shipbuilding Eng Carriages for transporting heavy articles and controlling positions thereof
US3995907A (en) * 1973-08-22 1976-12-07 Linden-Alimak Ab Underground excavating machine having independently movable half-frames
US4005905A (en) * 1973-08-22 1977-02-01 Linden-Alimak Ab Excavating machine
US3853196A (en) * 1974-05-29 1974-12-10 Sprague & Henwood Inc Self-propelling mechanism
US4014399A (en) * 1975-10-20 1977-03-29 Demag Aktiengesellschaft Mount for heavy servo mechanisms
US4095661A (en) * 1977-05-09 1978-06-20 Caterpillar Tractor Co. Walking work vehicle
US4462476A (en) * 1981-04-10 1984-07-31 Nikolay Shkolnik Walking apparatus
US4406339A (en) * 1981-08-31 1983-09-27 Olympus Optical Company Limited Oversized tub for a walking dragline
US4555032A (en) * 1983-03-24 1985-11-26 Fmc Corporation Heavy lift crane
WO1999015388A1 (en) * 1997-09-24 1999-04-01 Roman Gamburg Apparatus for moving over uneven terrain
US6581525B2 (en) 2001-05-09 2003-06-24 Columbia Trailer Co., Inc. Method and apparatus for transporting and steering a load
US9862437B2 (en) * 2011-12-16 2018-01-09 Entro Industries, Inc. Mounting structure with storable transport system
US9988112B2 (en) 2011-12-16 2018-06-05 Entro Industries, Inc. Mounting structure with storable transport system
US9045178B2 (en) 2011-12-16 2015-06-02 Entro Industries, Inc. Rotation device for load transporting apparatus
US9463833B2 (en) 2011-12-16 2016-10-11 Entro Industries, Inc. Alignment restoration device for load transporting apparatus
US20170021880A1 (en) * 2011-12-16 2017-01-26 Entro Industries, Inc. Mounting structure with storable transport system
US20140014417A1 (en) * 2011-12-16 2014-01-16 Entro Industries, Inc. Alignment restoration device for load transporting apparatus
USRE46723E1 (en) * 2011-12-16 2018-02-20 Entro Industries, Inc. Alignment restoration device for load transporting apparatus
US10556631B2 (en) 2011-12-16 2020-02-11 Entro Industries, Inc. Low profile roller assembly
US10207756B2 (en) 2011-12-16 2019-02-19 Entro Industries, Inc. Mounting structure with storable transport system
US9004203B2 (en) * 2011-12-16 2015-04-14 Entro Industries, Inc. Alignment restoration device for load transporting apparatus
US10202156B2 (en) 2014-08-20 2019-02-12 Hydraulic Systems, Inc. Stabilizer frame apparatuses and methods of using same
US10308299B2 (en) 2014-08-20 2019-06-04 Hydraulic Systems, Inc. Methods and systems for controlling movement of load transporting apparatuses
US10988191B2 (en) 2014-08-20 2021-04-27 Hydraulic Systems, Llc Load transporting apparatus and methods of using same
US9981521B2 (en) 2016-02-17 2018-05-29 Entro Industries, Inc. Articulating multi-axle assembly
US9981687B2 (en) 2016-02-17 2018-05-29 Entro Industries, Inc. Axle assembly
US9981520B2 (en) 2016-02-17 2018-05-29 Entro Industries, Inc. Removable axle assembly
US10407095B2 (en) 2016-03-09 2019-09-10 Entro Industries, Inc. Detachable multi-axle assembly
US10899401B2 (en) 2017-06-05 2021-01-26 Entro Industries, Inc. Yaw alignment system
US10793409B2 (en) 2017-07-12 2020-10-06 Entro Industries, Inc. Lifting loads with lifting devices
US10895882B2 (en) 2017-08-01 2021-01-19 Entro Industries, Inc. Controlling load transporting devices
US10889961B2 (en) 2017-08-08 2021-01-12 Entro Industries, Inc. Automatic walking for a load transporting apparatus
US11180319B2 (en) 2017-11-22 2021-11-23 Entro Industries, Inc. Skid system for load transport apparatus
US11407460B2 (en) 2018-05-31 2022-08-09 Entro Industries, Inc. Nonlinear walking apparatus

Similar Documents

Publication Publication Date Title
US3512597A (en) Walking mechanism and control therefor
US3916767A (en) Hydraulic control circuit for vehicles
US2641906A (en) Mine roof support
US1615055A (en) Hydraulic leveling and moving device
US3472127A (en) Control circuit for bulldozers used in pushing
US3375892A (en) Stepping-type propulsion means for excavators
US3250028A (en) Universal bucket for a tractor mounted loader
US2891765A (en) Jack
US3407947A (en) Material-moving device for moving objects
US3411297A (en) Hydrostatic transmission
US2527943A (en) Hydraulic valve and system
US4344733A (en) Hydraulic control circuit for decelerating a swinging backhoe
US4505339A (en) Hydraulic control for a dozer blade
US3163115A (en) Horsepower limiting devices
US2338361A (en) Digging and loading machine
US3032215A (en) Loader bucket leveling control
US3122246A (en) Hydraulic circuit for tractor mounted loaders
US3648566A (en) Force vector direction control
US4359130A (en) Hydraulic system for responsive splitting of engine power
US4500250A (en) Backhoe swing mechanism
US3184869A (en) Dozer hydraulic tilt and pitch control
US3633461A (en) Hydraulic circuitry for the hoist ram and the like of the building machinery
US6763863B2 (en) Hydraulic circuits for tree-harvesting knuckle booms
US3094229A (en) Hydraulic back hoe
US4354797A (en) Front loading hydraulic excavator