Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3514910 A
Publication typeGrant
Publication dateJun 2, 1970
Filing dateFeb 14, 1968
Priority dateFeb 14, 1968
Publication numberUS 3514910 A, US 3514910A, US-A-3514910, US3514910 A, US3514910A
InventorsComm Daniel
Original AssigneeDano Modules Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Modular building construction
US 3514910 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

June 2, 1970 D. COMM MODULAR BUILDING CONSTRUCTION 4 Sheets-Sheet 1 Filed Feb. 14. 1968 2 WWEQ nvuav 7'0 Dmz'e f er 29% W W M arrawvsm //////////////&w?// r 6 v 4 D. COMM MODULAR BUILDING CONSTRUCTION June 2, 1970 4 Sheets-Sheet 2 Filed Feb. 14, 1968 June 2, 1970 D. COMM MODULAR BUILDING CONSTRUCTION 4 Sheets-Sheet 5 Filed. Feb. 14. 1968 QNN WW QR nv we 7'02 June 2, 1970 D, coM 3,514,910

MODULAR BUILDING CONSTRUCTION Filed Feb. 14, 1968 4 Sheets-Sheet 4 3,514,910 MODULAR BUILDING CONSTRUCTION Daniel Comm, Highland Park, Ill., assignor to Dano Modules, Inc., a corporation of Delaware Filed Feb. 14, 1968, Ser. No. 705,391 Int. Cl. E041) 1/348; E04c 3/34 US. Cl. 52-79 12 Claims ABSTRACT OF THE DISCLOSURE A building constructed from a number of prefabricated modules. Each of the modules has solid spacing ribs on its outer surface, which ribs cooperate with similar ribs on adjacent modules to define a series of spaces between adjacent modules. The modules are stacked and arranged according to a predetermined building plan, and selected spaces defined *by adjacent sets of cooperating spacing ribs are filled with poured concrete to form support columns for the building.

This invention relates to a building construction in which a number of building modules are arranged to form the structure.

ADVANTAGES OF THIS INVENTION There are numerous advantages to a system in which prefabricated building modules are arranged to form a building structure. For example, conventional building structures require the erection of forms, the insertion of reinforcing steel and the pouring of concrete to construct the building framework at the site. The modular construction of the present invention requires only a basic support underlying the entire building, and a conventional build ing framework is not required or used.

Additionally, the modular building construction of the present invention obviates the problem of damage to mechanical facilities which often occurs with prior art reinforced concrete systems. For example, in prior art systems, piping, conduit and duct work are generally installed in the concrete forms before the concrete is poured. Often these components will be damaged during the pouring of the concrete, and in order to repair the damage after pouring, it is necessary to tear up the concrete. In contrast, as is described below, with the modular building construction of the present invention, the mechanical facilities are installed after the modules are in place. In this manner, alterations or repairs to mechanical facilities are simplified and can be made without tearing up the concrete.

Furthermore, in accordance with the illustrative embodiment of the present invention, the modules are cast of concrete so that all interior surfaces are completely finished. Hence, there is no need to apply plaster or other wall surfacing to the interior walls of the modules. Such modules are fireproof, and the arrangement of-the modules according to the present invention provides excellent soundproof qualities.

In the illustrative embodiment, some of the modules are the size of a small room so that they can be finished and equipped as a complete room unit subsequent to casting thereof. Thus, these modules can be assembled at the site without need to install additional interior equipment. The only remaining installation required is the connecting of mechanical facilities.

Various other advantages of the modular building construction of the present invention will become apparent from the following description thereof.

United States Patent SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a building comprising a number of prefabricated building modules having a horizontal wall member and at least two opposing, vertically disposed side walls. Each of the modules has solid spacing means extending outwardly from the exterior surface of at least one of the opposing side walls to provide space between the sides of adjacent modules. The solid spacing means of each module is in contact with the adjacent module to define chases for receiving a flowable, hardenable material, such as concrete. A flowable, hardenable material fills some but not all of the chases to connect adjacent modules to each other and to provide support columns for the building.

The spacing means in the illustrative embodiment of the invention comprise ribs having the same lateral location on respective sides of modules. When modules are placed vertically, one above the other, the contacting ribs of adjacent modules will form continuous vertical chases for receiving the flowable, hardenable material.

The use of support columns formed by pouring a flowable, hardenable material in selected chases defined between adjacent modules is unique and offers a modern structure with much air space between adjacent modules. Hence, ready access between adjacent modules is provided so that it is not necessary to drill through a thick wall if a service connection is subsequently necessary between the modules. In contrast, prior art prefabricated systems such as disclosed in US. Pat. No. 3,331,170 and French Pat. No. 1,269,080 require that concrete be poured to fill all air spaces between adjacent modules. In such prior art systems the modules must be relatively close to each otherotherwise the amount of concrete required to fill all air spaces would be very large and prohibitively expensive. The relative closeness of adjacent modules of such prior art systems does not allow much space for mechanical facilities, and in addition limits the soundproofing qualities of the structure.

In the illustrative embodiment, the exterior surfaces of the opposing sides of the modules are bevelled with respect to a vertical plane. This expedient achieves a positive mechanical purchase between the modules and the hardened material between adjacent modules, and makes it possible to provide the hardened material in only selected chases between adjacent modules.

THE DRAWINGS A more detailed explanation of the invention is provided in the following description and claims, and is illustrated in the accompanying drawings, in which:

FIG. 1 is a perspective view of a building constructed in accordance with the principles of the present invention;

FIG. 2 is a fragmentary perspective view of a single module about to be positioned on a base structure;

FIG. 3 is an isometric view, partially exploded and partially in phantom, of a portion of the building of FIG. 1;

FIG. 4 is an enlarged fragmentary end elevation of a pair of building modules in position adjacent each other;

FIG. 5 is a fragmentary end elevation of a number of building modules after they have been arranged and stacked to form a portion of a building structure;

FIG. 6 is a side elevation of a building construction with the modules in place;

FIG. 7 is an enlarged fragmentary side elevation, taken partially in section, of a portion of the building construction of FIG. 6;

FIG. 8 is a top sectional view of a portion of one floor of a building of FIG. 1;

FIG. 9 is an enlarged fragmentary end elevation of four adjacent modules in position with respect to each other with a transverse beam being utilized; and

FIG. 10 is an enlarged fragmentary side elevation of a floor and ceiling connection according to the principles of the present invention.

DESCRIPTION OF SPECIFIC EMBODIMENT The building illustrated in FIG. 1 is formed of a number of modules 22 which are stacked vertically and aligned horizontally. 'Each of these modules 22 is formed of pre-cast reinforced concrete and has solid spacing ribs 24, 26 and 28 (best seen in FIGS. 4-6) integrally cast therewith and extending outwardly from the side walls 30, 32 and top wall 34. The spacing ribs of each module have the same lateral location on respective side walls 30 and 32 and on top Wall 34. In this manner, spacing ribs of adjacent modules can be placed in contact with each other and vertical chases will be formed between adjacent modules. Such chases provide air space to achieve soundproofing qualities and also within selected chases there is poured concrete which, when hardened, provides support columns 110 for the structure.

The internal corners 36, 37, 38 and 39 are coved to achieve maximum strength. The external surfaces 40 and 41 of side walls 30 nd 32 are bevelled with respect to a vertical plane (surface 41 being bevelled upwardly and outwardly), as shown most clearly in FIG. 4. This expedient is useful to provide a positive mechanical purchase when the concrete is poured between the side walls of adjacent modules.

In the illustrative embodiment, the spacing ribs on the top wall 34 of the modules contact the exterior surface of the bottom wall, i.e., the fiat undersurface 45, of the module directly thereabove. The air spaces between vertically adjacent modules provide excellent soundproofing qualities and mechanical facilities can be provided in both the vertical and horiontal chases formed between adjacent modules. If desired, concrete may be poured to fill some of the horizontal chases and thus form horizontal beams extending between and supported by vertical support columns formed in vertical chases located on opposite sides of a given module, which horizontal beams provide additional lateral stability for the vertical columns and, when the beams are in direct contact with the fiat undersurfaces 45 of the modules immediately above, help to support those vertically adjacent modules. As shown in FIG. 7, inserts 46 are provided to close the openings defined by vertically adjacent modules. Trim 47 is connected to the otherwise exposed ends of inserts 46 at the building facade, to provide an attractive appearance.

As best seen in FIGS. 4 and 9, the walls of each module define four apertures 48, 49, 50 and 51 which extend the entire length of the module, and are preferably located near the corners formed by adjoining walls of the module. These apertures are provided in a manner so that when the modules are aligned end to end, the apertures defined by one module will register with the apertures defined by the adjacent modules, thereby providing openings for tie rods (see FIG. 6) connecting end to end modules to each other. Nuts 62 are screwed onto the ends of the tie rods to retain them within the apertures. Such tie rods provide additional support for the structure.

Where a hallway is desired, floor planks 66 and ceiling planks 68 may be inserted as shown most clearly in FIGS. 3 and 10. The floor and ceiling planks also define apertures for receiving the tie rods 60; and the ends 69 of the planks are cemented to the ends of the contacting modules (FIG. 10).

A typical floor plan is illustrated in FIG. 8, in which twelve modules are aligned to provide an efficiency apartment 70 and a two-bedroom apartment 72-. The efiiciency apartment 70 includes a living room-sleeping area 76, a dining room-kitchen 78, an entrance hall and a bathroom 82 The two-bedroom apartment 72 includes a living room-dining room area 84, a kitchen 86, two bedrooms 88, 89, an entrance hall 90, two bathrooms 92, 93 a large walk-in closet 94 and a balcony 96.

The modular units are formed by pouring concrete into molds in which are positioned the necessary reinforcing steel rods. After the modular units are formed, certain special components, including kitchen and bathroom cabinets, counter tops, plumbing fixtures, heating and air-conditioning systems, windows and doors, ceramic tile, lighting fixtures, etc., are installed. The module can now be shipped to the site of construction and it can be placed in a predetermined position with all of the interior fixtures already in place.

The construction of the building commences with the preparation of the underlying support structure 42, as shown most clearly in FIG. 2. In the embodiment shown, structure 42 is poured in monolithic form. The first module is then set in place, and any mechanical facilities which are to be connected to the first unit or adjoining units are set in place. Reinforcing steel 98 is set in the areas in which structural columns will be provided. In some in stances, transverse horizontal beams are required. To this end, some of the modules are formed with sections of the spacing ribs omitted, as shown in FIG. 9. In this manner, when two rows of adjacent modules have been aligned, mold members 101 and 102 are placed in opening at the bottom thereof, reinforcing rods 103 are placed in the opening, and concrete is poured in the opening to provide transverse horizontal beams 104 that extend between and are supported by vertical support columns formed in vertical chases between horizontally adjacent modules. To facilitate placement of the mold members, member 101 may be trapezoidal in cross section and member 102 may be a parallelogram in cross section. They may be formed of any suitable fire-proof material.

Once the first unit is set in place, adjacent units are then set around it. Concrete is thereupon poured in the areas where reinforcing has previously been installed, to form support columns (best seen in FIGS. 1, 3 and 6). Additional units are subsequently added, as called for in the plans.

As a specific example, in the illustrated embodiment of the invention, the modules are twelve feet wide by eight feet high by ten feet deep. These dimensions can of course be varied without departing from the invention. In the illustrative embodiment, each module is pro-cast of reinforced concrete as a single monolithic unit. Such construction provides excellent fireproof quality and production efiiciency.

It is to be understood that the embodiment shown is for illustrative purposes only, and many modifications or substitutions may be made without departing from the spirit and scope of the present invention.

What is claimed is:

1. A building which comprises: a gridwork of horizontal beams extending throughout the area underlying said building; means for supporting said gridwork upon the ground; a plurality of horizontal rows of prefabricated building modules at each of a plurality of floor levels in said building, each of said prefabricated building modules having a horizontal wall member and at least two opposing, vertically disposed side Walls, said horizontal wall member and vertical side walls enclosing habitable space therebetween, the bottom rows of said prefabricated building modules being supported at the first floor level by said gridwork of horizontal beams, modules at all floor levels having solid spacing means extending outwardly from the exterior surface of at least one of said opposing side walls to provide spaces between the side walls of all building modules and the immediately adjacent modules in all of said horizontal rows, solid spacing means on modules in each of said horizontal rows being in contact with adjacent modules to define vertical chases that extend continuously from the bottom to the top of said building, some of said continuous vertical chases being filled with a fiowable, hardenable material to form vertical support columns rising from said gridwork to the top of the building, the remainder of said continuous vertical chases being devoid of said fiowable, hardenable material, selected ones of said latter chases containing utility lines for servicing said building; and a plurality of horizontal beams extending between and supported by said vertical support columns at each floor level of the building above said first floor level to provide additional lateral stability for said vertical columns.

2. The building of claim 1 in which all said prefabricated building modules in said building have solid spacing means as there described extending outwardly from the exterior surface of at least one of their said opposing side walls.

3. The building of claim 1 in which some of said prefabricated building modules in said building have solid spacing means as there described extending outwardly from the exterior surfaces of both their said opposing side walls.

4. The building of claim 1 in which all said prefabricated building modules in said building have said solid spacing means extending outwardlyfrom the exterior surfaces of both their said opposing side walls.

5. The building of claim 4 in which each of said solid spacing means is in contact with the solid spacing means of adjacent prefabricated building modules to define said vertical chases.

6. The building of claim 1 in which each of said prefabricated building modules has a bottom wall and a top wall.

7. The building of claim 6 in which each of said top walls on said prefabricated building modules carries solid spacing means to provide horizontally extending chases between the top of said module and the vertically adjacent module immediately above it, said horizontal chases extending continuously from one side of said building to the other, some of said horizontal chases containing said fiowable, hardenable material to form horizontal beams extending between and supported by said vertical support columns, and the remainder of said horizontal chases being devoid of said fiowable, hardenable material.

8. The building of claim 7 in which said solid spacing means on each top wall of said-prefabricated building modules is in contact with the exterior surface of the bottom wall of the vertically adjacent module immediately above it and the continuously extending horizontal chase defined thereby is completely filled with said fiowable, hardenable material to form a horizontal beam that is in contact with and helps to support said vertically adjacent module.

9. The building of claim 1 in which sections of said solid spacing means are omitted, and mold means extending from the exterior surface of the side wall of one of said building modules to the exterior surface of the side wall of the adjacent module is positioned at the bottom of the spaces where said sections of the spacing means are omitted, to form a chase extending continuously through said spaces from one side of the building to the other, said horizontally extending chase being filled with said fiowable, hardenable material to form a horizontal beam extending between and supported by said vertical support columns;

10. The building of claim 1 in which said fiowable, hardenable material is poured concrete and said concrete is reinforced with steel reinforcing rods.

11. The building of claim 1 in which each of said prefabricated building modules has a plurality of tie rods extending from one end of said module into a horizontally adjacent module.

12. The building of claim 1 in which at least a portion of the exterior surface of each of said opposing side walls of all said prefabricated building modules is bevelled upwardly and outwardly with respect to a vertical plane, to provide a positive mechanical purchase between said side walls and the vertical support columns formed of flowable, hardenable material.

References Cited UNITED STATES PATENTS 1,421,278 6/ 1922 Matthews 52429 2,882,712 4/ 1959 Carlson 52429 1,900,457 3/1933 Miller 52437 2,009,217 7/ 1935 Barnhart 52-437 3,260,025 7/ 1966 Van Der Lely 52228 3,287,865 11/ 1966 Lockman 5279 3,292,327 12/1966 Van Der Lely 5279 3,331,170 7/1967 Lowe 5279 3,377,755 4/1968 Stacky 5279 FOREIGN PATENTS 120,609 12/ 1945 Australia.

269,000 1964 Australia.

722,341 1965 Canada.

120,024 1901 Germany.

HENRY C. SUTHERLAND, Primary Examiner US. Cl. X.R. 52--228, 236, 438

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1421278 *Dec 21, 1920Jun 27, 1922Alfred C MatthewsConcrete and like building block or slab
US1900457 *Sep 27, 1930Mar 7, 1933Walter R MillerBuilding block
US2009217 *Jan 17, 1929Jul 23, 1935Barnhart Vern ABuilding block
US2882712 *Jun 16, 1955Apr 21, 1959Carlson John APreformed and bonded masonry wall structure
US3260025 *May 16, 1961Jul 12, 1966Lely Nv C Van DerPrecompressed vertically stacked, prefabricated building elements
US3287865 *Nov 5, 1962Nov 29, 1966Lockman Frederick VSectional tiered vault structure
US3292327 *Sep 8, 1961Dec 20, 1966Patent Concern NvPlural story building comprising superimposed box-shaped dwelling units
US3331170 *Dec 19, 1963Jul 18, 1967Lowe & RodinPreassembled subenclosures assembled to form building construction
US3377755 *Jan 15, 1964Apr 16, 1968Stucky Fritz ChristophPrefabricated building units including prestressed floor panels with upstanding end members connected by tension means
AU120609B * Title not available
AU269000B * Title not available
CA722341A *Nov 30, 1965Elcon AgPrefabricated buildings
*DE120024C Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3631648 *Jan 23, 1970Jan 4, 1972Stirling Homex CorpMethod of erection of high-rise building structure formed of modular units
US3678638 *Dec 24, 1970Jul 25, 1972Sodeteg IncBuilding construction of modular units with settable material therebetween
US3703058 *Sep 14, 1970Nov 21, 1972Building Block Modules IncModular building construction and erection system utilizing selectively oriented modules
US3712007 *Aug 3, 1970Jan 23, 1973Kump EBuilding system and components therefor
US3712008 *Oct 16, 1970Jan 23, 1973Georgiev TModular building construction system
US3750366 *Jul 16, 1971Aug 7, 1973Rich F Housing CorpBuilding
US3758998 *Jun 17, 1970Sep 18, 1973Timber Res Dev AssMulti storey building
US3762115 *Apr 26, 1971Oct 2, 1973Schokbeton Products CorpMultilevel concrete building of precast modular units
US3835601 *Jan 10, 1973Sep 17, 1974Kelbish EModular construction system
US3849952 *Feb 2, 1973Nov 26, 1974Misawa Homes CoCapsule-unit house
US3874134 *May 29, 1973Apr 1, 1975Feldman AlbertModular building units
US3962835 *Jul 25, 1974Jun 15, 1976Philip Andrew LittleBuilding unit
US3982366 *Mar 12, 1975Sep 28, 1976Haapala Jalo PStructural space element
US3990193 *Mar 25, 1974Nov 9, 1976Ray Orlando FPrefabricated building module and modular construction method for the module
US3991528 *Apr 13, 1973Nov 16, 1976Fce-Dillon, Inc.Module elevator system for installation in a multi-story building
US4019293 *Jan 27, 1975Apr 26, 1977Eduardo Santana ArmasBuilding modules and structure embodying such modules
US4073102 *May 29, 1973Feb 14, 1978Fisher John SergioPremanufactured modular town house building construction
US4074476 *Dec 2, 1975Feb 21, 1978Imanol OrdorikaTubular dwelling construction
US4107886 *Feb 9, 1976Aug 22, 1978Systems Concept, Inc.Prefabricated building module
US4129969 *Jun 15, 1976Dec 19, 1978Jalo HaapalaStructural space element
US4159602 *Apr 7, 1977Jul 3, 1979Matrapa S.A.Three-dimensional construction element comprising a body of generally polyhedral form
US4185423 *Mar 27, 1978Jan 29, 1980Systems Concept, Inc.Lightweight building module
US4194339 *Aug 7, 1978Mar 25, 1980Fisher John SMethod for constructing town houses and the like
US4622788 *Aug 5, 1982Nov 18, 1986Lars-Goran Franklin BlixtBuilding structure, especially air raid shelter
US5233808 *Sep 23, 1991Aug 10, 1993Masa-Yards OyMethod of constructing a building
US7047897 *Mar 20, 2003May 23, 2006Kvaerner Masa-Yards OySystem and method in water-craft
US9068340 *Nov 2, 2012Jun 30, 2015Pre-Form Systems LLCNon-bearing modular construction system
US20130152485 *Nov 2, 2012Jun 20, 2013Douglas AustinNon-Bearing Modular Construction System
USRE28367 *Jun 6, 1974Mar 18, 1975 Rich) jr
CN100584691CMar 20, 2003Jan 27, 2010克瓦纳尔.马沙-亚德斯有限公司;皮基厄工厂有限公司System and method for providing equipment for water-craft
WO2011106842A1Mar 3, 2011Sep 9, 2011Modconnect Group Pty LtdImprovements in prefabricated modular building units
WO2013086638A1 *Dec 14, 2012Jun 20, 2013Marion Investments Ltd.Apparatus, systems and methods for modular construction
Classifications
U.S. Classification52/79.11, D25/35, 52/79.14, D25/59, D25/4, 52/438, 52/223.7
International ClassificationE04B1/348
Cooperative ClassificationE04B1/34807
European ClassificationE04B1/348B