Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3528501 A
Publication typeGrant
Publication dateSep 15, 1970
Filing dateAug 4, 1967
Priority dateAug 4, 1967
Publication numberUS 3528501 A, US 3528501A, US-A-3528501, US3528501 A, US3528501A
InventorsParker Harry W
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Recovery of oil from oil shale
US 3528501 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

p 15, 1970 H. w. PARKER 3,528,501

RECOVERY OF OIL FROM OIL SHALE Filed Aug. 4, 1967 50 DISTILLATION 9 HEATER 5 I 38 32 PRODUCT 5aon.

36 {CENTRIFUGE 24 2 2 g9 34 FUEL coKER INVENTOR. H. W. PARKER 47 WEN-5 5 United States Patent Oflice 3,528,501 Patented Sept. 15, 1970 U.S. Cl. 166266 8 Claims ABSTRACT OF THE DISCLOSURE Shale oil is produced from oil shale in situ by 'injecting hot hydrocarbon oil, such as gas oil from crude or from oil shale, or shale oil per se, at a temperature in the range of about 550 to 800 F. thru a fractured section of the shale between wells penetrating said section to heat the shale, cause disintegration thereof, produce shale oil and a resulting suspension of mineral matter from the shale in the resulting oils, and produce the suspension thru one of the wells. Kerogen and bitumen of the shale are dissolved in the hot injected oil, forming a mixed oil from which the solids are separated and coked to produce additional shale oil.

This invention relates to a process for producing oil and oil shale from a subterranean deposit of oil shale.

There are vast deposits of oil shale in the Rocky Mountain region of the United States and elsewhere, much of which contain more than twenty gallons of shale oil per ton of shale. Because of the solid nature of the kerogen in the shale and the impervious nature of the oil shale, production by conventional oil-producing methods is not feasible. Mining of the shale and transportation of the mined and crushed shale to above-ground retorting plants comprises one method of recovering shale oil from the shale but is too expensive to compete with petroleum oils produced in conventional manner. Various methods for producing shale oil from oil shale in situ have been devised but such methods have not been competitive with methods of producing liquid oil from ordinary oil reservoirs.

The present invention is concerned with a method or process for producing shale oil, both in situ and aboveground, from a subterranean shale deposit which avoids mining and crushing of the oil shale.

Accordingly, it is an object of the invention to provide an improved method or process for producing shale oil from a subterranean oil shale deposit. Another object is to provide a process for producing shale oil from a subterranean oil shale deposit which avoids the necessity of mining and crushing the shale. Other objects of the invention will become apparent to one skilled in the art upon consideration of the accompanying disclosure.

A broad aspect of the invention comprises providing an injection well and a production well penetrating a fractured section of a subterranean oil shale deposit, passing thru the fractured shale section from the injection well to the production well a hot hydrocarbon oil containing a major portion boiling above about 500 F. heated to a temperature in the range of about 550 to 800 F. at a suflicient pressure to maintain the oil in liquid phase, continuing the injection of the hot oil thru the injection well and producing the oil thru the production well so as to disintegrate the contacted shale, extract shale oil from the disintegrated shale, form a suspension of the mineral matter of the shale in the resulting mixture of oils, and flow the resulting suspension thru the production well to aboveground level where most of the oil is separated from the suspension as recovered shale oil product. The remaining solids are subjected to fluid bed coking in conventional manner to recover additional shale oil therefrom. The remaining coke and mineral matter provides a solid fuel for any desired use.

The process of the invention is applicable to any oil shale which contains or assays at least twenty gallons of shale oil per ton of shale. It has been found that kerogen and soluble bitumen, the first product of kerogen pyrolysis, are soluble in heavy oils, particularly oils boiling above about 500 F. and up to 800 or 900 R, such as gas oil. It is preferred to utilize the shale oil produced in the process or a gas oil fraction thereof, however, crude oil or the gas oil fraction thereof obtained from a liquid oil deposit is operable in the process.

By flowing the hot oil thru the fractured section of oil shale from the injection well to the production well at the required elevated temperature, the oil shale is heated substantially to the temperature of the injected oil so that after a couple of hours of heating at this temperature the shale disintegrates, the kerogen and soluble bitumen therein going into solution in the injected oil and leaving a suspension of the mineral matter of the oil shale dispersed in the oil mixture. In this manner, the disintegrated and dispersed mineral matter containing additional shale oil is transported to ground level in the produced oil. In the operation, the heated oil-soaked particles are swept away, exposing new oil shale to the heating and contacting, contacting, and soaking process with continuous wearing away of the oil shale, production of shale oil therefrom, and transporting of the oil-soaked mineral matter to ground level for further production.

A more complete understanding of the invention may be had by reference to the accompanying schematic drawing which is a flow scheme thru a pair of wells penetrating a fractured oil stratum and thru an arrangement of the equipment aboveground for separating and producing oil.

Referring to the drawing, an oil shale 10 is penetrated by an injection well 12 and a production well 14. A lower section of the oil shale is fractured as at 16 and 18, providing communication between wells 12 and 14 thru the oil stratum. While only two wells are shown, well 12 may represent a line of wells parallel with a line of wells 14, each of wells 12 being used as an injection well while each of wells 14 serves as a production well. Another arrangement comprises a ring of wells around a central well, injection being effected thru the central well and production thru the ring wells or vice versa. One or more fractures are produced by conventional means as by hydraulic fracturing, by an explosion downhole, or by an underground nuclear explosion within the shale formation.

Well 12 is provided with an injection tubing string 20 while well 14 is provided with a production tubing string 22. A production line 24 connects with tubing 22 and leads into a centrifuge 26 or other separation means for separating most of the produced oil from the particulate solids flowing to the surface. Line 28 connects the centrifuge with a fluid bed coker 30 for delivery of separated solids thereto. Oil produced in the coker is recovered thru line 32 while residual coke and mineral matter are recovered thru line 34 and may be used as fuel for any desired purpose.

Separated oil from centrifuge 26 is passed thru line 36 under the impetus of pump 38 partially to oil heater 40 and partially to production line 42 or to distillation column 44. Distillation column 44 is a conventional distillation column from which various fractions are recovered in conventional manner such as normal gaseous hydrocarbons thru line 46, gasoline thru line 48, gas oil thru line 50, cycle oil thru line 52, leaving a residuum or topped crude which is recovered thru line 54. In a preferred mode of operation, gas oil is passed thru line 56 and line 39 into oil heater 40 for heating to the required temperature of 550 to 800 F. for passing thru line 58 into tubing string 20 and injecting into the oil shale.

Any type of oil heater may be utilized as heater 40 such as a gas-fired indirect heat exchange heater. While a centrifuge is shown as equipment 26, a filter or any other type of solids-liquid separator may be utilized. Likewise, a fluid bed coker is shown for the separation of oil from the mineral matter recovered from the centrifuge in line 28, however, the oil may be produced from this material by retorting or any other suitable method.

In operation, hot oil heated to a temperature in the range of 550 to 800 F., and preferably to at least 750 F., is injected from a line 58 thru tubing string 20 into fractures 16 and 18 from which the oil flows into well 14 and is produced thru tubing string 22. Suitable pressure is maintained on the injected oil to provide liquid phase operation and to force the oil thru the system into centrifuge 26. After sufficient heating period with oil flowing thru the system, the oil shale surface within the fractures is brought to disintegrating temperatures with kerogen going into solution in the injected oil and disintegration of the mineral matter associated with kerogen. The particulate mineral matter forms a dispersion in the injected and produced oil and the dispersion is flowed thru tubing string 22 and line 24 into the centrifuge 26 for separation into a stream of oil recovered thru line 36 and a thick slurry of mineral matter in oil thru line 28 from which it is passed to fluid bed coker 30. The coker is operated in conventional manner to produce shale oil thru line 32 and coke and mineral matter thru line 34.

In preferred operation, the oil recovered in line 36 is passed in part to distillation column 44 from which a gas oil is recovered in line 50. The required amount of heating oil is passed from line 50 thru line 36 and line 39 into heater 40 where it is heated to 775 F. under a pressure of about 300 p.s.i.g. before being injected as the heating oil into the oil shale.

Another oil that functions efficiently as a heating oil comprises a cycle oil produced from catalytic cracking of heavy oils. Cycle oils have excellent solvent capacity for asphaltic materials which aids in the disintegration of the oil shale.

Certain modifications of the invention will become apparent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitations on the invention.

I claim:

1. A process for producing shale oil from an oil shale assaying at least 20 gallons of oil per ton of shale which comprises the steps of:

(a) providing an injection well and a production well penetrating a fractured section of said oil shale with communication between the wells thru said fractured section;

(b) injecting hot hydrocarbon oil a major portion of which boils above about 500 F. thru said injection well into said fractured section at a temperature in the range of about 550 to 800 F. and sufiicient pressure to maintain said oil in liquid phase and producing said oil thru said production well;

(0) continuing the injection of hot oil in accordance With step (b) so as to disintegrate the shale contacted by said oil, form a suspension of the mineral matter of said shale in the resulting mixture of oils, and produce said suspension thru said production well;

((1) separating most of the oil from said suspension;

and

(e) recovering shale oil from the recovered oil as product.

2. The process of claim 1 including the step of:

(f) passing a slurry of mineral matter in shale oil recovered in step (d) to a coking step to recover additional shale oil.

3. The process of claim 1 wherein step (d) comprises centrifuging said suspension.

4. The process of claim 1 including the steps of:

(f) heating a portion of the oil recovered in step (d) to a temperature in the range of 750 to 800 F.; and

(g) injecting the resulting hot oil as said oil in step 5. The process of claim 1 wherein said oil injected in step (b) is shale oil.

6. The process of claim 1 wherein said oil injected in step (b) is a gas oil.

7. The process of claim 1 wherein said oil injected in step (b) is a gas oil distilled from the produced shale oil.

8. The process of claim 1 wherein said oil injected in step (b) is a cycle oil obtained from catalytic cracking of a crude oil.

References Cited UNITED STATES PATENTS 2,813,583 11/1957 Marx et al 166-272 X 3,061,009 10/1962 Shirley 166-603 3,284,281 11/1966 Thomas 166-272 X 3,322,194 5/1967 Strubhar 166272 X 3,349,850 10/1967 Schlicht et a1. 166-303 3,352,355 11/1967 Putman 166272 X 3,358,756 12/1967 Vogel 166272 X STEPHEN J. NOVOSAD, Primary Examiner US. Cl. X.R. 166-247, 271, 272

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2813583 *Dec 6, 1954Nov 19, 1957Phillips Petroleum CoProcess for recovery of petroleum from sands and shale
US3061009 *Jan 17, 1958Oct 30, 1962Svenska Skifferolje AktiebolagMethod of recovery from fossil fuel bearing strata
US3284281 *Aug 31, 1964Nov 8, 1966Phillips Petroleum CoProduction of oil from oil shale through fractures
US3322194 *Mar 25, 1965May 30, 1967Mobil Oil CorpIn-place retorting of oil shale
US3349850 *Aug 9, 1965Oct 31, 1967Deutsche Erdoel AgMethod for the extraction of underground bituminous deposits
US3352355 *Jun 23, 1965Nov 14, 1967Dow Chemical CoMethod of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3358756 *Mar 12, 1965Dec 19, 1967Shell Oil CoMethod for in situ recovery of solid or semi-solid petroleum deposits
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3685581 *Mar 24, 1971Aug 22, 1972Texaco IncSecondary recovery of oil
US3695354 *Mar 30, 1970Oct 3, 1972Shell Oil CoHalogenating extraction of oil from oil shale
US3730270 *Mar 23, 1971May 1, 1973Marathon Oil CoShale oil recovery from fractured oil shale
US3881550 *May 24, 1973May 6, 1975Parsons Co Ralph MIn situ recovery of hydrocarbons from tar sands
US3881551 *Oct 12, 1973May 6, 1975Terry Ruel CMethod of extracting immobile hydrocarbons
US4438816 *May 13, 1982Mar 27, 1984Uop Inc.Process for recovery of hydrocarbons from oil shale
US4449586 *Jun 11, 1982May 22, 1984Uop Inc.Process for the recovery of hydrocarbons from oil shale
US4461350 *Dec 16, 1981Jul 24, 1984Mobil Oil CorporationThermal solvent recovery method utilizing visbroken produced crude oil
US4501445 *Aug 1, 1983Feb 26, 1985Cities Service CompanyMethod of in-situ hydrogenation of carbonaceous material
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US7441603Jul 30, 2004Oct 28, 2008Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7857056Oct 15, 2008Dec 28, 2010Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7980312 *Jul 19, 2011Hill Gilman AIntegrated in situ retorting and refining of oil shale
US7986869 *Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8082995Dec 27, 2011Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8087460Jan 3, 2012Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US8104537Jan 31, 2012Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8122955Apr 18, 2008Feb 28, 2012Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146664May 21, 2008Apr 3, 2012Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151877Apr 18, 2008Apr 10, 2012Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151884Oct 10, 2007Apr 10, 2012Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8230929Jul 31, 2012Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261823Sep 11, 2012Hill Gilman AIntegrated in situ retorting and refining of oil shale
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8540020Apr 21, 2010Sep 24, 2013Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8596355Dec 10, 2010Dec 3, 2013Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8616279Jan 7, 2010Dec 31, 2013Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US8616280Jun 17, 2011Dec 31, 2013Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US8622127Jun 17, 2011Jan 7, 2014Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US8622133Mar 7, 2008Jan 7, 2014Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8641150Dec 11, 2009Feb 4, 2014Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8770284Apr 19, 2013Jul 8, 2014Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8863839Nov 15, 2010Oct 21, 2014Exxonmobil Upstream Research CompanyEnhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789Aug 8, 2011Nov 4, 2014Exxonmobil Upstream Research CompanyProcess for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9080441Oct 26, 2012Jul 14, 2015Exxonmobil Upstream Research CompanyMultiple electrical connections to optimize heating for in situ pyrolysis
US9085972Aug 6, 2012Jul 21, 2015Gilman A. HillIntegrated in situ retorting and refining of heavy-oil and tar sand deposits
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9347302Nov 12, 2013May 24, 2016Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US20070023186 *Jul 30, 2004Feb 1, 2007Kaminsky Robert DHydrocarbon recovery from impermeable oil shales
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20090038795 *Oct 15, 2008Feb 12, 2009Kaminsky Robert DHydrocarbon Recovery From Impermeable Oil Shales Using Sets of Fluid-Heated Fractures
US20130240210 *Sep 29, 2011Sep 19, 2013David P. YaleSystems and Methods For Injecting A Particulate Mixture
CN102928320A *Aug 9, 2011Feb 13, 2013中国石油化工股份有限公司Method and apparatus for testing viscous oil viscosity on well boring coring site
CN102928320B *Aug 9, 2011Nov 26, 2014中国石油化工股份有限公司Method and apparatus for testing viscous oil viscosity on well boring coring site
Classifications
U.S. Classification166/266, 166/271, 166/272.6, 166/247
International ClassificationE21B43/16, E21B43/34, E21B43/24, E21B43/40
Cooperative ClassificationE21B43/24, E21B43/40
European ClassificationE21B43/40, E21B43/24