Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3532639 A
Publication typeGrant
Publication dateOct 6, 1970
Filing dateMar 4, 1968
Priority dateMar 4, 1968
Publication numberUS 3532639 A, US 3532639A, US-A-3532639, US3532639 A, US3532639A
InventorsGeorge B Hatch
Original AssigneeCalgon C0Rp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Corrosion inhibiting with combinations of zinc salts,and derivatives of methanol phosphonic acid
US 3532639 A
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent O 3,532,639 CORROSION INHIBITING WITH COMBINATIONS OF ZINC SALTS, AND DERIVATIVES OF METH- ANOL PHOSPHONIC ACID George B. Hatch, Allison Park, Pa., assignor to Calgon Corporation, Pittsburgh, Pa. No Drawing. Filed Mar. 4, 1968, Ser. No. 709,951 Int. Cl. C23f 11/10, 11/16 U.S. Cl. 252-389 Claims ABSTRACT OF THE DISCLOSURE Novel combinations of zinc salts and derivatives Of methanol phosphonic acid or methanol diphosphonic acid are used in small concentrations to inhibit corrosion in aqueous systems.

BACKGROUND OF THE INVENTION This invention relates to corrosion inhibitors for aqueous systems. In the past, the corrosion inhibitors in most widespread use have contained either inorganic polyphosphates or chromates, while the polyphosphates have a tendency to hydrolyze and revert to orthophosphates, the waste disposal problems posed by toxic chromate containing corrosion inhibitors have resulted in increased demand for corrosion inhibitors of a completely different class.

Certain derivatives of methanol phosphonic acids have been disclosed in the literature. Alkyl and aryl alpha hydroxyphosphonic acids and salts thereof long have been known. See for example, Monatsch 5, 120,627 (1884); J. Am. Chem. Soc. 42, 2337 (1920); J. Am. Chem. Soc. 43, 1928. (1921); Belgian Pat. 678,912. See also U.S. Pat. 3,122,417 and U.S. Pat. 3,214,454. U.S. Pat. 3,159,581 shows the use of such compounds in detergent compositions. Also of interest are Belgian Pats. 655,166 and 672,- 168. In U.S. Pat. 3,122,417, mentioned above, a series of alkyl alpha-hydroxy 1,1 diphosphonic acid is disclosed. The distinctive common feature Of the compounds of present interest is the presence of one ormore alpha-hydroxy phosphonic acid groups. These groups may be represented by the following formula:

OH i OH where R is H, a lower alkyl group or OOH 2 SUMMARY OF THE INVENTION I have discovered that combinations of zinc salts with compounds containing one or more methanol phosphonic or methanol diphosphonic groups or soluble salts thereof provide excellent inhibition of corrosion of metals, particularly iron and steel, in aqueous systems.

Some particular compounds which are useful in my invention may be represented by the formula T OH OH where R is independently selected from the group consisting of H, alkyl groups up to four carbon atoms, phenyl, and phosphonate groups, R is hydrogen, an alkyl group having up to four carbon atoms Or where n is 0 to 8, and water soluble salts thereof.

The effectiveness of combinations of zinc sulfate with the sodium salts of the methanol phosphonic acids is shown in Table I. The zinc sulfate additions were calculated to supply zinc in amounts equal to 30% of the sodium methanol phosphonate concennations. These examples as well as all the examples in this disclosure, were obtained by immersing steel samples in the solutions described under agitation for five days at 35 C. The pH in Table I was 6.8. Weight loss results are stated in terms of milligrams per square decimeter per day.

TABLE I.-INHIBITION OF CORROSION OF STEEL BY COMBINATIONS 0F ZINC SULFATE WITH COMPOUNDS Weight loss (m.d.d.)

Sodium Sodium Zinc (sul- Sodium dimethyl pheuyl PhoSDhonate fate) cone. methanol methanol methanol conc. (p.p.m.) (ppm. Zn) phosphonate phosphonate phosphonate Table II shows the effectiveness of combinations of zinc sulfate with compounds containing methanol diphosphonate groups. The quantities of zinc supplied were equal to 30% of the methanol diphosphonate concentrations.

TABLE Il'.INHIBITION OF CORROSION OF STEEL BY COMBINATIONS OF ZINC SULFATE WITH COMPOUNDS CONTAINING METHANOL DIPHOSPHONATE GROUPS Weight loss (m.d.d.)

Methyl Sodium Sodium Sodium di- Sodium tetra- Zine (sulmethanol diphenyl methylene bis methylene bis methylene bis Phosphonate fate) conc. phosphonic methanol di- (methanol di (methanol di- (methanol dicone. (p.p.m.) (ppm. Z11) ac phosphonate phosphonate) phosphonate) phosphonate) They may be considered as methanol phosphonic acid Or where R is as methanol diphosphonic acid groups.

The influence of the zinc in combination with ethanol 1,1'-diphosphonic acid is shown in Table III. Zinc in amounts equal to 30% of the ethanol 1,1'-diphosphonic acid (EDP) was added as the sulfate. Inclusion of zinc markedly improves the inhibitive action of the ethanol 1,l-diphosphonic acid.

TABLE IIL-INHIBITION OF CORROSION OF STEEL WITII ETHANOL 1, l-DIPI'IOSPHONIC ACID (EDP) AND INFLU- ENCE THEREON ON ZINC Weight loss (n1.d.d.)

E DP concentration (p.p.m.)

NATE) AND INFLUENCE? ggl fiREON OF ZINC Weight loss (m.d.d.)

With zinc (30% of Diphosphonato conc. (p.p.m.) Alone diphosphonate) TABLE V Influence of zinc (ZnSO on inhibition of corrosion of steel at a fixed ethanol 1,1-diphosphonic acid level (10 p.p.m.) pH=6.87

Zn conc. (percent of EDA conc.): Weight loss (m.d.d.)

The combination of zinc with the substituted methanol phosphonic or diphosphonic acid compounds provides very eifective inhibition of the corrosion of iron and steel over a rather wide range of pH as is illustrated by the data for the zinc-ethanol 1,1-diphosphonic acid combination in Table IV. Inhibition starts to fall off as the pH is lowered to 5 so that appreciably lower pH levels are undesirable. Inhibition tends to fall off somewhat when the pH is raised much above 9, although it remains appreciable at pH 10.4 or above.

The methanol phosphonic and diphosphonic acid compounds are corrosive to copper and copper alloys. The presence of zinc markedly inhibits the corrosive action of these methanol phosphonic and diphosphonic acids with regards to copper and its alloys.

Table VII shows the effect of 50 p.p.m. ethanol 1,1- diphosphonic acid on the corrosion of copper at several pH levels and the influence thereon of 15 p.p.m. of zinc (added as the sulfate). The ethanol 1,1'-diphosphonic acid accelerates the attack throughout the pH range of 4 to 9. 15 p.p.m. zinc (30% of the EDA concentration) counteracts this accelerative action of the ethanol 1,1- diphosphonic acid at a pH of 6, while at higher pH levels the mixture becomes inhibitive with respect to copper.

TABLE VII.-INFLUENOE OF pH ON CORROSION OF OOP- PER AND EFFECT THEREON OF ETHANOL 1,1-DIPHOS- PHONIC ACID (50 p.p.m.) AND MIXTURE THEREOF WITH ZINC (15 p.pm.)

Weight loss (m.d.d.)

3 50 p.p.m. EDP,

Untreated 50 p.p.m. EDP 15 p.p.m. Zn"

Where lower pH values are involved or where even greater inhibition of corrosion of copper and copper alloys is desired, we have found that this may be accomplished by incorporation of the specific copper inhibitors described by Hatch in US. Pats. 2,941,953 and 2,742,369 with the methanol phosphonates or diphosphonates and zinc. These specific copper inhibitors include 1,2,3 triazoles (US. Pat. 2,941,953) (e.g. benzotriazole) and the thiols of thiazoles (e.g. 2-mercaptobenzothiazole), oxazoles (e.g. 'l-mercaptobenzoxazole) or imidazoles (e.g. 2-mercaptobenzimidazole) (US. Pat. 2,742,369).

Concentration levels of 0.05 to 5 p.p.m., preferably 0.5 to 2 p.p.m., of these triazoles or thiols should be employed when they are used in conjunction with the methanol phosphonate or diphosphonate and zinc inhibitors.

I may use any inorganic zinc salts capable of forming zinc ions in solution, i.e. water-soluble salts. Examples of such zinc salts are zinc chloride, zinc acetate, zinc nitrate, and zinc sulfate. I prefer to use zinc sulfate because it is readily available, economical and not excessively hydroscopic.

The ratio of zinc to organic phosphonate compound may vary from about 1:10 to about 1:2, by weight. Preferably the zinc will be about 20% to 40% of the weight of the organic phosphonate. Where triazoles or thiazoles as described above are used, they may be present in the inhibitor composition in amounts up to 10% by weight, preferably between 1 and 5%. Within the limits of these ranges, the concentrations of my inhibitor combination may vary from about 5 p.p.m. to 0.2% or more. At least about 5 p.p.m. of the inhibitor combination should be present in the aqueous system. Concentrations above p.p.m. generally do not significantly improv? the inhibition rate in cooling water and are unnecessary.

My inhibitor compositions are useful in such aqueous solution systems as cooling waters, heating systems, and certain process and distribution systems.

I do not intend to be restricted to the above illustrated specific examples. My invention may be otherwise practiced within the scope of the following claims.

TABLE VI.INHIBITOR. OF CORROSION OF STEEL AT SEVERAL pH LEVELS WITH ETHANOL 1,1 -DI PHOSPHATE ACID AND ZINC (SULFATE) Weight loss (m.d.d.)

Zn+ cone.

EDP cone. (p.p.m.) (p.p.m.) pH 4.9-5.1 pH 6-6.2 pH 6.8-7 pH 7.9-8.1 pH 9-9 2 pH 10.2-10.4

I claim:

1. Composition useful for inhibiting corrosion in aqueous systems, consisting essentially of one part by Weight zinc in the form of a water soluble zinc salt and from 1 to parts by weight of a water-soluble organic phosphonate compound having the formula Ill:

HO-?-R2 P=O OH OH where R is independently selected from the group consisting of H, alkyl groups up to four carbon atoms, phenyl, and phosphonate groups, and R is selected from the group consisting of hydrogen, alkyl groups having up to 4 carbon atoms and where n is 0 to 8, and water-soluble salts thereof.

2. Composition of claim 1 in which the water-soluble zinc salt is zinc sulfate.

3. Composition of claim 1 in which the methanol phosphonate derivative is ethanol 1,1-diphosphonic acid or water-soluble salt thereof.

4. Composition of claim 1 in which the weight ratio of zinc to the methanol phosphonate derivative is about 1 to 10 to about 1 to 2.

5. Method of inhibiting corrosion in aqueous systems comprising adding to said aqueous system at least about 5 parts per million of the composition of claim 1.

6. Method of inhibiting corrosion in aqueous systems comprising adding to said aqueous system at least about 5 parts per million of the composition of claim 2.

7. Method of inhibiting corrosion in aqueous systems comprising adding to said aqueous system at least about 5 parts per million of the composition of claim 3.

8. Method of inhibiting corrosion in aqueous systems comprising adding to said aqueous system at least about 5 parts per million of the composition of claim 4.

9. Composition of claim 1 including a copper corrosion inhibitor selected from the group consisting of l, 2, 3 triazoles, thiols of thiazoles, oxazoles, and imidazoles, said copper corrosion inhibitor being present in an amount up to about 10% by weight.

10. Method of inhibiting corrosion in aqueous systems comprising maintaining therein an amount of the composition of claim 9 to provide up to about 5 ppm. copper corrosion inhibitor.

References Cited UNITED STATES PATENTS 3,483,133 12/1969 Hatch et al 252389 LEON D. ROSDOL, Primary Examiner I. GLUCK, Assistant Examiner US. Cl. X.R.

2l-2.7; 252-855, 387; 260502.4; l06l4 Disclaimer 3,532,639.Ge01'ge B. H atch, Allison Park, Pa. CORROSION INHIBITING WITH GOMBINATIONS OF ZINC SALTS, AND DERIVA- TIVES OF METHANOL PHOSPHONIC ACID. Patent dated Oct. 6, 1970. Disclaimer filed Aug. 10, 1972, by the inventor, the assignee, UaZgon Corporation, assenting. Hereby enters this disclaimer to claims 1 through 10 of said patent.

[Oficz'al Gazette Febmary 1.9, 1974.]

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3483133 *Aug 25, 1967Dec 9, 1969Calgon C0RpMethod of inhibiting corrosion with aminomethylphosphonic acid compositions
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3668094 *Oct 16, 1970Jun 6, 1972Calgon CorpNovel glassy compositions zinc and alpha hydroxy diphosphonic acids
US3668138 *Nov 27, 1970Jun 6, 1972Calgon CorpMethod of inhibiting corrosion with amino diphosphonates
US3714066 *Apr 13, 1970Jan 30, 1973Monsanto CoMethods of inhibiting corrosion with ethane diphosphonate compositions
US3925245 *Jun 22, 1972Dec 9, 1975Ciba Geigy CorpCorrosion inhibiting composition containing an aminoalkyl-phosphonic acid and an inorganic nitrite
US3965254 *Nov 15, 1974Jun 22, 1976The Procter & Gamble CompanyCompositions for the treatment of calcific tumors
US3971734 *Mar 3, 1975Jul 27, 1976Nl Industries, Inc.Sulfite compositions, aqueous sulfite solutions and method of decreasing their rate of oxidation
US4057511 *Nov 6, 1975Nov 8, 1977Bayer AktiengesellschaftProcess for preventing corrosion and the formation of scale in water circulating system
US4066398 *Nov 12, 1974Jan 3, 1978Chemed CorporationCorrosion inhibition
US4206075 *May 5, 1978Jun 3, 1980Calgon CorporationCorrosion inhibitor
US4411865 *May 28, 1981Oct 25, 1983Betz Laboratories, Inc.Method of corrosion inhibition in aqueous mediums
US4440646 *Jun 3, 1971Apr 3, 1984Plains Chemical Development Co.Chelation
US4501615 *May 31, 1983Feb 26, 1985International Paint Public Limited CompanyAnti-corrosive paint
US4505748 *May 31, 1983Mar 19, 1985International PaintAnti-corrosive paint
US4613674 *Sep 23, 1983Sep 23, 1986Tsolis Alexandros K2-hydroxy-2-phosphinyl ethanals and 1,2-dihydroxy-1,2-bisphosphinyl ethanes
US4640818 *Jun 13, 1985Feb 3, 1987The Dow Chemical CompanyCorrosion inhibition of metals in water systems using aminophosphonic acid derivatives in combination with manganese
US4649025 *Sep 16, 1985Mar 10, 1987W. R. Grace & Co.Anti-corrosion composition
US4663053 *May 3, 1982May 5, 1987Betz Laboratories, Inc.Method for inhibiting corrosion and deposition in aqueous systems
US4759900 *Aug 27, 1986Jul 26, 1988General Electric CompanyInhibition of radioactive cobalt deposition in water-cooled nuclear reactors
US4885136 *Oct 15, 1987Dec 5, 1989Katayama Chemical Works Co., Ltd.Method of anticorrosive treatment for soft water boilers
US4911887 *Nov 9, 1988Mar 27, 1990W. R. Grace & Co.-Conn.Phosphonic acid compounds and the preparation and use thereof
US4950449 *Feb 26, 1988Aug 21, 1990General Electric CompanyInhibition of radioactive cobalt deposition in water-cooled nuclear reactors
US4981648 *Nov 9, 1988Jan 1, 1991W. R. Grace & Co.-Conn.Inhibiting corrosion in aqueous systems
US5017306 *Nov 9, 1988May 21, 1991W. R. Grace & Co.-Conn.Corrosion inhibitor
US5137657 *Apr 24, 1991Aug 11, 1992Merck & Co., Inc.Synergistic combination of sodium silicate and orthophosphate for controlling carbon steel corrosion
US5232629 *Mar 2, 1992Aug 3, 1993Calgon CorporationSynergistic combination of sodium silicate and ortho-phosphate for controlling carbon steel corrosion
US5266722 *Nov 9, 1988Nov 30, 1993W. R. Grace & Co.-Conn.Polyether bis-phosphonic acid compounds
US5312953 *Aug 17, 1993May 17, 1994W. R. Grace & Co.-Conn.Polyether bis-phosphonic acid compounds
US6059458 *Feb 5, 1999May 9, 2000Tenneco Packaging, Inc.Elastic top drawtape bag and method of manufacturing the same
US6090345 *Jan 29, 1999Jul 18, 2000Bayer AgPhosphorus-containing compounds based on 1-hydroxypropane-1, 3-diphosphonic acid
US6402377May 22, 2000Jun 11, 2002Pactiv CorporationNon-blocking elastomeric articles
USB265369 *Jun 22, 1972Jan 28, 1975 Title not available
EP0934948A1 *Jan 21, 1999Aug 11, 1999Bayer AktiengesellschaftPhosphorus containing compounds based on 1-hydroxy-1,3-diphosphonic acid
EP1716949A1 *Apr 19, 2006Nov 2, 2006Rohm and Haas Electronic Materials, L.L.C.Immersion method
Classifications
U.S. Classification252/389.22, 507/939, 507/237, 252/387, 106/14.12, 252/389.52, 422/15
International ClassificationC23F11/08
Cooperative ClassificationY10S507/939, C23F11/08
European ClassificationC23F11/08
Legal Events
DateCodeEventDescription
Jan 3, 1983ASAssignment
Owner name: CALGON CORPORATION ROUTE 60 & CAMPBELL S RUN ROAD,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE JULY 1, 1982;ASSIGNOR:CALGON CARBON CORPORATION (FORMERLY CALGON CORPORATION) A DE COR.;REEL/FRAME:004076/0929
Effective date: 19821214