Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3533945 A
Publication typeGrant
Publication dateOct 13, 1970
Filing dateJul 15, 1968
Priority dateNov 13, 1963
Publication numberUS 3533945 A, US 3533945A, US-A-3533945, US3533945 A, US3533945A
InventorsPaul W Vogel
Original AssigneeLubrizol Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lubricating oil composition
US 3533945 A
Abstract  available in
Images(8)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 01 .lice

3,533,945 Patented Oct. 13, 1970 Ser. No. 744,688

Int. Cl. (110m 1/54 US. Cl. 25249.6 12 Claims ABSTRACT OF THE DISCLOSURE Lubricating properties of a lubricating oil are improved by incorporating a combined boron esteralkenyl succinic acid ester of a polyhric alcohol.

This application is a division of earlier filed copending application Ser. No. 323,266, filed Nov. 13, 1963, now abandoned.

This invention relates to novel compositions of matter and processes for preparing the same. In a more particular sense this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.

Deterioration of lubricating oils, especially mineral oils, has been a great concern in the formulation of lubricating compositions for use in internal combustion engines, transmissions, gears, etc. Deterioration of the oil results in the formation of products which are corrosive to the metal surfaces with which the oil comes into contact. It also results in the formation of products which agglomerate to form sludgeand varnish-like deposits. The deposits cause sticking of the moving metal parts and obstruct their free movement. They are a principal cause of malfunctioning and premature break-down of the equipment which the oil lubricates.

It is known that water is a common contaminant in the crankcase lubricant of an engine. It may result from the decomposition of the lubricating oil or come from the combustion chamber as a blow-by product of the burning of the fuel. The presence of water in the lubricant seems to promote the deposition of a mayonnaise-like sludge. This type of sludge is more objectionable because it clings tenaciously to metal surfaces and is not removed by oil filters. If the engine is operated under conditions such that the crankcase lubricant temperature is continuously high the water will be eliminated about as fast as it accumulates and only a very small amount of the mayonnaise-like sludge will be formed. On the other hand, if the crankcase lubricant temperature is intermittently high and low or consistently low the water will accumulate and a substantial quantity of the mayonnaise-like sludge will be deposited in the engine.

High operating temperatures are characteristic of an engine that is run consistently at a relatively high speed. However, where an automobile is used primarily for trips of short distance such as is characteristic of urban, home to work use, a significant portion of the driving occurs before the engine has reached its optimum high temperature. An ideal environment thus obtains for the accumulation of water in the lubricant. In this type of operation the problem of mayonnaise-like sludge has been especially troublesome. Its solution has been approached by the use in the lubricant of detergents such as metal phenates and sulfonates which have been known to be effective in reducing deposits in engines operated primarily at high temperatures. Unfortunately, such known detergents have not been particularly effective in solving the problems associated with low temperature operation particularly those problems which are associated with crankcase lubricants in engines operated at low or intermittently high and low temperatures.

It is accordingly a principal object of this invention to provide novel compositions of matter.

lt is also an object of this invention to provide compositions which are suitable for use as additives in hydrocarbon oils.

It is also an object of this invention to provide compositions which are effective as additives in lubricating compositions.

It is another object of this invention to provide compositions effective as detergents in lubricating compositions intended for use in engines operated at low or intermittently high and low temperatures.

It is another object of this invention to provide a process of preparing additives useful as additives in hydrocarbon oils and lubricating compositions.

It is another object of this invention to provide lubricating compositions.

It is further an object of this invention to provide fuel compositions.

These and other objects are attained in accordance with this invention by providing a process for preparing boroncontaining esters comprising the reaction of one mole of a polyhydroxy compound having the formula wherein R is a hydrocarbon radical and x is an integer greater than one with (A) at least about 0.5 mole of a succinic acid-producing compound selected from the class consisting of hydrocarbon-substituted succinic acids and the halides, the esters, and the anhydrides thereof having at least about 50 aliphatic carbon atoms in the hydrocarbon substituent and (B) at least about 1 mole of a boron reactant selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids and esters of boron acids with volatile, monohydric alcohols and esters of boron acids with monohydric phenols.

The polyhydroxy compounds from which the boroncontaining esters of this invention are derived include principally polyhydric alcohols and polyhydric phenols. They preferably contain less than about 30 carbon atoms. The polyhydric alcohols having from about 2 to 12 carbon atoms and having from 2 to about 10 hydroxy radicals, preferably from 3 to 6 hydroxy radicals, are especially useful. They are illustrated by, for example, alkylene glycols and poly(oxy-alkylene)glycols such as ethylene glycol, di(ethylene glycol), tri-(ethylene glycol), di(propylene glycol), tri(butylene glycol), penta (ethylene glycol) and other poly(oxy-alkylene)glycols formed by the condensation of two or more moles of ethylene glycol, propylene glycol, octylene glycol, or a like glycol having up to about 12 carbon atoms in the alkylene radical. Other useful polyhydric alcohols include glycerol, pentaerythritol, 2,4-hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2-cyclohexanediol, xylylene glycol, and 1,3,5-cyclohexanetriol. The polyhydric phenols are exemplified by hydroquinone, resorcinol, 4-heptyl- 1,2-di-hydroxy-benzene, 1,2-dihydroxy-naphthalene, 4- polypropene (molecular weight of 1500)-substituted 1,2- dihydroxy-benzene, S-methyl-S-decyl-1,2-dihydroxy-naphthalene, and pyrogallol.

Still other polyhydroxy compounds include the monoesters of glycerol, sorbitol, mannitol, or other higher polyhydroxy alcohols, such as mono-acetate of glycerol, mono-oleate of sorbitol, mono-propionate of mannitol, or the like. Also useful are the interpolymers of an unsaturated alcohol with a copolymerizable olefinic substance such as styrene, vinyl ether, vinyl acetate, isobutene, butadiene, di-vinylbenzene or the like. The interpolymers contain two or more monomeric units derived from the unsaturated alcohol and thus constitute the polyhydric alcohols contemplated for use in the process of this invention. Specific examples of such interpolymers are the copolymer of moles of allyl alcohol and 1 mole of. styrene having an average molecular weight or" about 2500.

The term hydrocarbon used in describing the radical R in the formula of the polyhydroxy compounds designates a radical which is substantially hydrocarbon in character. Thus, the radical may contain inert polar groups provided that such groups are not present in proportions sufficiently large to alter significantly the hydrocarbon character of the radical. The polar groups are exemplified by chloro, bromo, keto, ether, aldehyde, nitro, etc. The upper limit with respect to the proportion of such polar groups in a hydrocarbon radical is usually about based upon the weight of the hydrocarbon portion of the radical. However, in the case of the ether groups such as oxyalkylene or poly(oxy-alklene) groups the radical may contain as many as one oxygen atom for each two carbon atoms.

The hydrocarbon-substituted succinic acid-producing compounds useful in preparing the boron-containing esters may be the succinic acids, anhydrides, halides, or esters in which the hydrocarbon substituent contains at least about 50 aliphatic carbon atoms. The sources of the hydrocarbon substitutent include principally the high molec ular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of mono-olefins having from 2 to 30 carbon atoms. The especially useful polymers are the polymers of l mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, 2-methyl-1-heptene, 3-cyclohexyll-butene, and 2-methyl-5-propyl-1-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by 2-butene, 3-pentene, and 4octene.

Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins. Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; l-hexene with 1,3-hexadiene; loctene with l-hexene; l-heptene with l-pentene; 3-Inethyll-butene with l-octene; 3,3-dimethyl-1-pentene with 1- hexene; isobutene with styrene and piperylene; etc.

The relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95%, on a weight basis, of units derived from the aliphatic mono-olefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-to-carbon covalent linkages.

Specific examples of such interpolymers include the copolymer of 95% (by weight) of isobutene with 5% of styrene; the terpolymer of 98% of isobutene with 1% of. piperylene and 1% of chloroprene; the terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexone; the terpolymer of 80% of isobutene with 10% of l-pentene and 10% of l-octene; the copolymer of 80% of l-hexene and of lheptene; the terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene;

and the copolymer of 80% of ethylene and 20% of propene.

Another source of the hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such lit as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.

The use of olefin polymers having molecular weights of about 7506000 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart viscosity index improving properties to the final products of this invention. The use of such higher molecular weight olefin polymers often is desirable. It will be noted that the hydrocarbon substituent in the succinic acid-producing compound likewise may contain inert polar groups. Thus, in this respect, it may be a radical which is substantially hydrocarbon in character such as is referred to in the above description of the hydrocarbon radical R of the polyhydroxy compounds.

The succinic acid-producing compounds useful in the above process are preferably substantially hydrocarbonsubstituted succinic acids and anhydrides. These succinic compounds are readily available from the reaction of maleic anhydride with a high molecular wegiht olefin or a chlorinated hydrocarbon such as the olefin polymer described hereinabove. The reaction involves merely heating the two reactants at a temperature about l00200 C. The product from such a reaction is an alkenyl succinic anhydride. The alkenyl group may be hydrogenated to an alkyl group. The anhydride may be hydrolyzed by treatment with water or steam to the corresponding acid. Either the anhydride or the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, or alcohols.

In lieu of the olefins or chlorinated hydrocarbons, other hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydro carbon molecule in respect to reaction with maleic acid or anhydride, may be used in the above-illustrated reaction for preparing the succinic compounds. Such polar substituents may be illustrated by sulfide, disulfide, nitro, mercaptan, bromine, ketone, or aldehyde radicals. Examples of such polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominat'ed polyethylene, etc. Another method useful for preparing the succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight olefin or a polar-substituted hydrocarbon at a temperature usually within the range from about 100 C. to about 200 C.

The acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tri-bromide, phos phorus pentachloride or thionyl chloride. The esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadecanol, cyclohexa-nol, phenol, naphthol, octylphenol, etc. The esterification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such as sulfuric acid. The nature of the alcoholic or phenolic portion of the ester radical appears to have little influence on the utility of such ester as reactant in the process described hereinabove.

The boron compounds useful as the reactant: in the above process include boron oxide, boron oxide hydrate, boron trifiuoride, boron tribromide, boron trichloride,

' boron acids such as boronic acid (e.g., alkyl-B(OH) or aryl-B (OPD boric acid, (i.e., H tetraboric acid (i.e., H B O metaboric acid (i.e., HBO ammonium salts of boron acids, and esters of boron acids with volatile, monohydric alcohols and esters of boron acids with monohydric phenols. The use of complexes of a boron trihalide with ethers, ammonia, organic acids, inorganic acids, or hydrocarbons is a convenient means of introducing the boron reactant into the reaction mixture. Such complexes are known and are exemplified by boron trilluoridc-diethyl ether, boron trifluoride-phenol, boron trifluoride-phosphoric acid, boron trichloride-chloroacetic acid, boron tribromide-dioxane, and boron trifiuoridemethylethylether.

Specific examples of boronic acids include methyl boronic acid, phenyl boronic acid, cyclohexyl boronic acid, p-heptylphenyl boronic acid and dodecyl boronic acid, diheptylphenyl boronic acid, polyisobutene (molecular weight of 3000)-substituted phenyl boronic acid, and naphthyl boronic acid.

The boron acid esters include especially mono-, di-, and tri-organic esters of boric acid with volatile monohydric alcohols or phenols such as, e.g., methanol, ethanol, isopropanol, cyclohexanol, cyclopentanol, l-octanol, 2-octanol, 2-butyl cyclohexanol, and other monohydric alcohols preferably boiling below about 150 C. Lower monohydric alcohols, those having less than about 6 carbon atoms, are especially useful for preparing the boric acid ester reactants for the purpose of this invention. Monohydric phenols include phenol, o-cresol, p-cresol and rn-cresol.

Methods for preparing the esters of boron acid are known and disclosed in the art (such as Chemical Reviews pages 959l064, volume 56). Thus, one method involves the reaction of boron trichloride with 3 moles of an alcohol to result in a tri-organic borate. Another method involves the reaction of boric oxide with an alcohol. Another method involves the direct estrification of tetraboric acid with 3 moles of an alcohol.

The ammonium salts of boron acids include principally the salts of boric acid with ammonia or lower alkylamines, i.e., mono-, di-, or tri-alkyl amines having less than 12 carbon atoms in each alkyl radical. Salts of ammonia or such amines with any other boron acid illustrated above are also useful. It is often desirable to use a mixture of an ammonium salt and at least a molar amount of water. Water tends to cause at least partial hydrolysis of the salt, so as to liberate a boron acid. Thus, the use of a mixture of an ammonium salt and water in many instances is an expedient method of introducing a boron acid into the reaction mixture. Specific examples of the ammonium salts are ammonium salt of boric acid; a mixture of one mole of ammonium salt of boric acid and three moles of Water; a mixture of one mole of mono-methylamine salt of boric acid and one mole of water; trimethylamine salt of boric acid; di-cyclo-hexylamine salt of boric acid, etc.

The reaction by which the boron-containing esters of this invention are obtained may be carried out by mixing the polyhydric compound, the hydrocarbon-substituted succinic acid-producing compound, and the boron acid producing compound at a temperature above about 100 C., preferably between about 125 C. and 250 C. The optimum reaction temperature depends to some extent upon the nature of the specific reactants used. For instance, where the succinic acid-producing compound and the boron acid-producing compound are relatively reactive acids or anhydrides, the reaction temperature may be below about 200 C. On the other hand, if the acid-producing reactants are esters such as the dimethylesters of hydrocarbon substituted succinic acids and triphenyl ester of boric acid, the reaction temperature often will be 200 C. or higher. The maximum temperature for the process is determined by the decomposition point of the reaction mixture. It rarely exceeds 300 C.

The product resulting from the process of this invention is a complex mixture of esters derived from the polyhydroxy reactant by the esterification of at least one of its hydroxy groups with the succinic acid-producing compound and at least another hydroxy group with the boron reactant. Thus, the product of this invention is a complex mixture of esters characterized by the presence of ester radicals of both succinic acid ester type and boron acid ester type. The precise composition of the product is not fully understood. Consequently, the product is best described in terms of the process by which it is formed.

The composition of the product of this invention depends to a large extent upon the relative proportions of the reactants used in the process. Based upon the stoichiometry of the esterification, at least 0.5 mole of the succinic reactant and at least one mole of the boron reactant are to be used for each mole of the polyhydroxy reactant. Also, the total amounts of the succinic reactant and the boron reactant usually range from about two moles to as many moles as the number of the hydroxy radicals present within the molecular structure of the polyhydroxy reactant. The preferred amounts of the three reactants are such that one mole of the polyhydroxy reactant is used with at least about one mole of the succinic reactant and at least about one mole of the boron reactant and the molar ratio of the succinic reactant to the boron reactant is within the range of from about 5:1 to 1:5. A specific example of the products of this invention is one obtained by the reaction of one mole of sorbitol with from about 1 to 5 moles of a succinic anhydride and from about 1 to 5 moles of boric acid.

It will be noted that where a reactant is a mixture of two or more individual compounds such as are exemplified by commercial polyhydric alcohols comprising a mixture of tri-, tetrapenta-, or higher polyhydric alcohols, the average molecular weight may be estimated from the elemental analysis of the mixture. Similarly, in the case of a hydrocarbon-substituted succinic anhydride wherein the hydrocarbon substituent is derived from a mixture of, e.g., olefin polymers, the molecular weight is estimated from the acidity or potential acidity of the anhydride, i.e., it is taken to be twice the equivalent weight based upon the acid number as determined by a standard procedure for determining the acidity of carboxylic acids or anhydrides. The molecular weight of a succinic acid ester likewise may be estimated from the potential acidity as determined by its saponification number. It will be further noted that the upper limit of the number of moles for the combined quantities of the two acid-producing reactants per mole of the polyhydroxy reactant having a particular number of hydroxy groups is based upon the stoichiometry for an esterification involving all of the hydroxy groups of the polyhydroxy reactant. Also, if a stoichiometric excess of a reactant is used, the excess may be present in the product as diluent.

A preferred mode of carrying out the process of this invention involves reacting a polyhydroxy reactant with the succinic acid-producing reactant to form a partially esterified intermediate and then reacting the intermediate with a boron reactant. When the process is carried out in this manner the first step, i.e., the formation of the partially esterified intermediate, is preferably effected at a temperature between about 100 C. and 200 C. and the second step, i.e., the reaction of the intermediate with the boron reactant, may be carried out at a temperature from about C. to about 250 C. This particular mode of carrying out the process of this invention is preferred because the products resulting therefrom have been found to be especially useful for the purpose of this invention such as in hydrocarbon oil and lubricating compositions.

Another alternative mode of carrying out the process of this invention involves first reacting the polyhydroxy reactant with a boron acid-producing reactant to form a partially esterified intermediate and then reacting the intermediate with the succinic acid-producing reactant. In this regard, the process admits of further variations in forming the intermediate of a polyhydroxy substance which has been partially esterir'ied with a boron acid. Thus, for instance, the reaction of boric acid with an epoxide, particularly an alkylene oxide such as ethylene oxide, propylene oxide, hexylene oxide, or epichlorohydrin may result in a partially esterified glycol, i.e., a glycol having one free hydroxy group and one hydroxy group which has been converted to a boron acid ester group by esterification with boric acid.

In some instances the formation of the boron-contain ing esters by the process of this invention is facilitated by the presence in the process of an esterification catalyst. The well-known estcrification catalysts are useful for this purpose. They are illustrated by 'tanium tetrachloride, aluminum chloride, titanium tetrafiuoride, boron trifiuoride, aluminum tribromide, potassium etho-xide, sodium methoxide, calcium phenate, sodium hydroxide, calcium oxide, benzene sulfonic acid, toluene sulfonic acid, etc. A small amount such as 0.001% by Weight of the catalyst often is sufficient to promote esterification of the process of this invention. The amount of the catalyst may range up to about 1% by weight of the process mixture.

It will be appreciated that the reaction of a succinic acid ester or a boron acid ester with a polyhydroxy reactant is a trans-esterification, i.e., the replacement of an ester radical derived from the polyhydroxy reactant for the ester radical originally present in the succinic or boron acid ester reactant. For instance, Where a di-methyl ester of a succinic acid is reacted with a partially esterified glycerol formed by the reaction of glycerol with boric acid, the product of this invention is formed by trans-esterification wherein one or both of the methyl radicals of the succinic reactant are replaced with radicals derived from the partially esterified glycerol intermediate and methanol is the by-product. When tributyl borate is used in the reaction with a partially esterified glycerol formed by the reaction of glycerol and a polyisobutene-substitutcd succinic acid, the product of this invention is formed by trans-esterification wherein one or more of the butyl radicals of tributyl borate are replaced with the ester radicals derived from the partially esterificd glycerol intermediate and butanol is the by-product. The latter may involve trans-esterification reactions including, e.g., the one illustrated as follows:

0 (j EXAMPLE An intermediate is obtained by heating 38 grams (1.75 moles) of pentaerythritol and i940 grams (1.75 moles) of a polyisobutene-substituted succinic anhydride (hav ing an acid number of 100 and prepared by the reaction of maleic anhydride with a chlorinated polyisobutene having a chlorine content of 4.3% and a molecular Weight of 1000) in 1430 grams of mineral oil at 150 C. for hours and at 200210 C. for 5 more hours and then filtering the residue. To 520 grams of the filtrate there is added 15.5 grams (1 mole per mole of the pentaerythritol used) of boric acid. The resulting mixture is heated at 145 C. for 2 hours and at l60165 C. for .1 hour whereupon Water is distilled oil. The residue is filtered. The filtrate is an oil solution of the desired ester and has a boron content of 0.5%.

EXAMPLE 2 To 544 grams (0.5 mole) of the polyisobutene-substituted succinic anhydride of Example 1 and 417 grams of mineral oil, there is added at ll0115 C. in minutes 96 grams (0.5 mole) of sorbitol. The mixture is blown with nitrogen at 150155 C. for 3 hours. To this mixture there is added 31 grams (0.5 mole) of boric acid at 140-150 C. in minutes. The resulting mixture is heated at l-l55 C. for 1 hour and then blown with nitrogen at 200 C. for 3 hours. The residue is filtered. The filtrate is a 40% oil solution of the desired ester and has a boron content of 0.23%.

EXAMPLE 3 A mixture of 594 grams of mineral oil, 358 grams (0.76 mole) of sorbitol monooleate, and 544 grams (0.5

mole) of the polyisobutenc-substitutcd succinic anhydride of Example 1 is heated at C. for 4 hours and filtered.

1lIO-C2l.l-iOlI 13203 ll lt-oir-o-oi 2 n0C21u*o-)2B(on) CH2([C1 o The following examples illustrate the process of this invention.

The filtrate is an ester intermediate having a saponification number of 76 and a hydroxyl content of 1.1%. To 540 grams of the filtrate there is added 27 grams of boric acid at 150 C. in 10 minutes. The residue is blown with nitrogen at 150 C. for 3.5 hours and then filtered. The filtrate has a boron content of 0.5%.

EXAMPLE 4 A mixture of 544- grams (0.5 mole) of the polyisobutene-sulistituted succinic anhydride of Example 1, 182 grams (1 mole) of boric acid, and 476 grams of mineral oil is blown with nitrogen at 200210 C. for 3 hours and then mixed with ()2 grams (1 mole) ol boric acid at '75 2tl()2lt) C, for 3 hours. The resulting mixture is lll- 9 tered. The filtrate is a 40% oil solution of the desired ester and has a boron content of 0.5% and a saponification number of 59.

EXAMPLE The polyisobutene-substituted succinic anhydride of Example 1, 1632 grams (1.5 moles), and a commercial polyoxyethylene sorbitol monooleate (1590 grams, 1.25 moles; prepared by treating sorbitol monooleate with moles ethylene oxide) in 600 grams of toluene is heated at 109142 C. for 12 hours and then to 150 C./9 mm. to distill off volatile components. The residue is diluted with 1324 grams of mineral oil, mixed with a filter aid and filtered. The filtrate is a partially esterified intermediate having a hydroxyl content of 0.4 and a saponification number of 54. To 950 grams of this intermediate and 175 grams of mineral oil there ls added 10 grams of boric acid (one boron radical per each hydroxyl radical). The mixture is blown with nitrogen at 150 C. for 3 hours and filtered. The filtrate has a boron content of 0.2%.

EXAMPLE 6 A mixture of 1 mole of ethylene glycol, 1 mole of boric acid, and 1 mole of a mineral oil solution of a polypropene (molecular weight of l500)-substituted succinic acid is prepared at room temperature and then heated at 150 C. for 7 hours whereupon Water is distilled off. The residue is the desired ester.

EXAMPLE 7 A mixture of 2000 grams of mineral oil, 1 mole of glycerol, 1 mole of boric oxide, and 1.5 moles of dimethyl ester of a succinic acid obtained by the reaction of maleic anhydride with a copolymer of 95 parts (by weight) of isobutene and 5 parts of styrene having a molecular Weight of 1000 is prepared at C. and then heated at 200 C. for 5 hours whereupon water and methyl alcohol are distilled off as the by-products. The residue is filtered. The filtrate is an oil solution of the desired ester.

EXAMPLE. 8

An intermediate is obtained by heating a mixture of 1 mole of boron trifluoride and 1 mole of 1,2-octylene glycol at 80-120 C. The intermediate is mixed with an equal volume of dioxane and then with a mineral oil solution of a polyisobutene (molecular weight of 60,000) substituted succinic anhydride. The resulting mixture is heated at reflux for 5 hours and then heated to 210 C./ 2 mm. The residue is filtered. The filtrate is an oil solution of the desired ester.

EXAMPLE 9 Resorcinol -(1 mole) is added at 120 C. to a mixture of 1 mole of boric acid and 1 mole of a polyethylene (molecular weight 1000)-substituted succinic anhydride. The resulting solution is mixed with an equal volume of mineral oil and heated at 120 C.l50 C. for 8 hours and filtered. The residue is filtered and the filtrate is an oil solution of the desired ester.

EXAMPLE 10 An intermediate is obtained by heating 120-180 C., 1 mole of ammonium borate, 1 mole of water, 1 mole of a copolymer (molecular Weight of 1100) of sytrene and allyl alcohol (molar ratio of 1 to 5). To this intermediate there is added a mineral oil solution of a succinic anhydride obtained by reacting at 200 C. 1.2 moles of maleic anhydride with 1 mole of a copolymer (molecular weight of 2000) of 98 parts (by weight) of isobutene and 2 parts of isoprene. The resulting mixture is heated at l50220 C. and filtered. The filtrate is an oil solution of the desired ester.

The boron-containing esters of this invention are useful for a wide variety of purposes including pesticides, plasticizers, rust-inhibiting agents for treatment of metals,

10 corrosion-inhibiting agents, extreme pressure agents, anti- Wear agents, and detergents.

A principal utility of such products is as additives in lubricants. it has been discovered in accordance with this invention that when used for such purpose their effectiveness to impart a specific property to a lubricant is closely related to the size of the hydrocarbon substituent in the hydrocarbon-substituted succinic acid-producing compounds from which the boron-containing esters are derived. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about 50 aliphatic carbon atoms are particularly effective for the purposes of this invention.

The lubricating oils in which the boron-containing esters of this invention are useful as additives may be of synthetic animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-Z-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally the lubricating oils preferred will be fluid oils, ranging in viscosity from about 40 Saybolt Universal Seconds at F. to about 200 Saybolt Universal Seconds at 210 F.

The concentration of the boron-containing esters as additives in lubricants usually ranges from about 0.01% to about 15% by weight. The optimum concentrations for a particular application depend to a large measure upon the type of service to which the lubricant is to be subjected. Thus, for example, lubricants for use in gasoline internal combustion engines may contain from about 0.5 to about 10% of the additive, whereas lubricating compositions for use in gears and diesel engines may contain as much as 20% or even more of the additive. Lubricants for use in the oil-fuel mixture for two-stroke engines may contain from about 1% to 10% of the additive.

This invention contemplates also the presence of other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxi dation and corrosion-inhibiting agents.

The ashcontaining detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.

The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid With a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoters include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearylalcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl 1 l beta-naphthylamine, and dodecylamine. A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60200 C.

The preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.

The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasul fide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.

The phosphorus-containing esters are especially adapted for use in combination with extreme pressure and corrosion-inhibiting additives such as metal dithiocarbamates, exanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, dialkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids. Combinations of the phosphorus-containing esters of this invention with in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The

barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkylcyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphtyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.

The availability of the phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to

about 200 C. Thus the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. The preparation of the zinc or barium salt of this acid may be effected by reaction with Zinc oxide or barium oxide. Simply mixing and heating these two reactants is suflicient to cause the reaction to take place and the resulting product is sufficiently pure for the purposes of this invention.

Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.

Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, p-ethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-l,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin. Other epodides useful herein include, for example, butyl 9,l0-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.

The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.

The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.

The lubricating compositions may contain metal detergent additives in amounts usually within the range of about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions many contain as much as 30% of a metal detergent additive. They may contain other additives such as extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.

The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight).

13 EXAMPLE I SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.

EXAMPLE II SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.

EXAMPLE III SAE 10W-30 mineral lubricating oil containing 0.4% of the product of Example 3.

EXAMPLE IV SAE 90 mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equimolar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.

EXAMPLE V SAE 30 mineral lubricating oil containing 2% of the product of Example 4.

EXAMPLE VI SAE 20W30 mineral lubricating oil contianing of the product of Example 5.

EXAMPLE VII SAE W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.

EXAMPLE VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 4 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.

EXAMPLE 1X SAE 10W30 mineral lubricating oil containing 2% of the product of Example 2, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.

EXAMPLE X SAE 30 mineral lubricating oil containing 5% of the product of Example 10, 0.1% of phosphorus as the zinc salt of a mixture of equimolar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basic barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of Water and 0.7 mole of octylphenol as the pro-. moter.

EXAMPLE XI SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 7, 0.075 of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.

EXAMPLE XII SAE 10 mineral lubricating oil containing 2% of the product of Example 8, 0.075% of phosphorus as the ad duct of zinc di-cyclohexylphosphorodithioate treated With 0.3 mole of ethylene oxide, 2% of a sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly-(alkyl methacrylate) viscosity index improver, 0.02% of a poly- (alkyl methacrylate) pour point depressant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.

14 EXAMPLE XIII SAE 10 mineral lubricating oil containing 1.5% of the product of Example 9, 0.075% of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at C., a sulfurized methyl ester of tall oil acid having a sulfur content of 15%, 6% of a polybutene viscosity index improver, 0.005% of a poly-(alkyl methacrylate) anti-foam agent, and 0.5 of lard oil.

EXAMPLE XIV SAE 10 mineral lubricating oil containing 25% of the product of Example 3, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent pre pared by neutralizing with barium hydroxide the hydrolyzed reaction product of a polypropylene (molecular weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (weight) of decyl-methacrylate and 5% (weight) of diethylaminoethylacrylate.

EXAMPLE XVI SAE 30 mineral lubricating oil containing 2% of the product of Example 5, 0.1% of phosphorus as zinc di-nhexylphosphoroclithioate, 10% of a chlorinated paraffin wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amide, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.

EXAMPLE XVII SAE 10 mineral lubricating oil containing 3% of the product of Example 3, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at C.

EXAMPLE XVIII SAE 20 mineral lubricating oil containing 2% of the product of Example 10 and 0.07% of phosphorus as zinc di-n-octylphosphorodithioate.

EXAMPLE XIX SAE 30 mineral lubricating oil containing 3% of the product of Example 4 and 0.1% of phosphorus as zinc di- (isobutylphenyl) -phosphoro dithioate.

EXAMPLE XX SAE 50 mineral lubricating oil containing 2% of the product of Example 5.

EXAMPLE XXI SAE 90 mineral lubricating oil containing 3% of the product of Example 4 and 0.2% of phosphorus as the reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.

as is EXAMPLE XXII SAE 90 mineral lubricating oil containing 3% of the product of Example 2 and 0.2% of 4,4-methylene-bis (2,6-di-tert-butylphenol) EXAMPLE XXIII SAE 30 mineral lubricating oil containing 2% of the product of Example 3 and 0.1% of phosphorus as phenylethyl di-cyclohexylphosphorodithioate.

EXAMPLE XXlV SAE 90 mineral lubricating oil containing 5% of the product of Example 1 and 1% of the calcium salt of the sulfurized phenol obtained by the reaction 0f.2 moles of heptylphenol with 1 mole of sulfur.

The above lubricants are merely illustrative and the scope of invention includes the use of all the additives previously illustrated as well as others within the broad concept of this invention described herein.

The detergent properties of the boron-containing esters of this invention and the utility thereof as additives in hydrocarbon oil compositions are illustrated by the results from the following detergency test. In this test a mixture of three grams of a synthetic sludge consisting of a carbon black paste (20 parts by weight of carbon black and 80 parts by weight of white oil), 0.3 gram of water, and 77 cc., of a kerosene solution containing the additive is homogenized to form a suspension and then allowed to settle at room temperature. The time required for the sediment of carbon black is taken as a measure of the effectiveness of the additive as a detergent, i.e., the longer the time the more effective the additive. By this test a sample without the additive results in the complete sediment of carbon black in less than one day. The same sample containing 0.2% by weight of the product obtained by the reaction of one mole pentaerythritol with one mole of the polyisobutene-substituted succinic anhydride of Example 1 and 2.8 moles of boric acid (according to the procedure of Example 1) shows no sediment after seven days.

What is claimed is:

1. A lubricating composition comprising a major proportion suflicient to improve the lubricating properties of a lubricating oil and a minor proportion of a boron-containing ester prepared by the process comprising the reaction of 1 mole of a polyhydroxy compound having the formula wherein R is a hydrocarbon radical, x is an integer greater than 1 with (A) at least about 0.5 mole of a succinic acid-producing compound selected from the class consisting of hydrocarbon-substituted succinic acids and the halides, the ester, and the anhydrides thereof having at least about 50 aliphatic carbon atoms in the hydrocarbon substituent and (B) at least about 1 mole of a boron reactant selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids, esters of boron acids with volatile, monohydric alcohols, and esters of boron acids With monohydric phenols.

2. A lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sulficient to improve the lubricating properties, of the reaction product of 1 mole of a polyhydric alcohol having up to about 8 hydroxy radicals with (A) at least about 0.5 mole of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 750 to 5000 and (B) at least about 1 mole of boric acid.

3. The composition of claim 2 characterized further in that the olefin polymer substi ent of the succinic anhydride is derivcg from an isobutene polymer.

4. The composition of claim 2 characterized further in that the olefin polymer substituent of the succinic anhydride is derived from polyisobutene.

5. A lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to improve the lubricating properties of the reaction product prepared by forming a partially esterilied intermediate by the reaction at a temperature above about 100 C. of a polyhydroxy compound having the formula wherein R is a hydrocarbon radical and is an integer greater than 1 with at least about 0.5 mole of a succinic acid-producing compound selected from the class consisting of hydrocarbon-substituted succinic acids and the halides, the esters, and the anhydrides thereof having at least about 50 aliphatic carbon atoms in the hydrocarbon substitucnt and reacting at a temperature above about 100 C. said intermediate with at least about 1 mole of a boron reactant selected from the class consisting of boron oxide, boron halides, and boron acids, the total number of the hydroxy radicals in said polyhydroxy compound being at least as great as the total number of moles of said succinic acid-producing compound and said boron reactant.

6. The composition of claim 5' characterized further in that the polyhydroxy compound is a polyhydric alcohol having up to about 8 hydroxy radicals.

'7. The composition of claim 5 characterized further in that the succinic acid-producing compound is a polyisobutene-substituted succinic anhydride in which the polyisobutene substituent has a molecular weight from about 750 to 5000.

8. The composition of claim 5 characterized further in that the boron reactant is boric acid.

9. A lubricating composition comprising a major proportion of a lubricating oil a minor proportion, sufilcient to improve the lubricating properties of the reaction product prepared by forming a partially esterifict intermediate by the reaction at a temperature above about 100 C. of a polyhydric alcohol having up to about 8 hydroxy radicals with at least about 0.5 mole of a polyisobutenc-substituted succinic anhydride in which the polyisobutene substituent has a molecular Weight from about 750 to 5000 and reacting at a temperature above about 100 C. said intermediate with at least about 1 mole of boric acid, the total number of the hydroxy radicals in said polyhydric alcohol being at least as great as the total number of moles of said succinic anhydride and boric acid.

10. The composition of claim 0 characterized further in that the polyhydric alcohol is pentaerythritol.

lift. The composition of claim F." characterized further in that the polyhydric alcohol is a poly(oxy-alltylcne)glycol.

1.2. The composition of claim 9 characterized further in that the polyhydric alcohol is a hexahydroxy-alkane.

References Cited UNETED STATES PATEIJTS 3,067,192 12/1962 Ernrick 252-49.6 X 3,150,157 9/1964 Liao 251-496 X 3,151,077 9/1964 Liao 252-49.6 X 3,254,025 5/1966 Le Suer 252-49.6 X

DANIEL E. WYMAN, Primary Examiner W. H. CANNON, Assistant Examiner US. Cl. KR. 4-476; 260462

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3067192 *Jun 11, 1958Dec 4, 1962Standard Oil CoProcess for preparing acyl polysac-charide borates
US3150157 *Dec 17, 1962Sep 22, 1964Standard Oil CoFatty acid and naphthenic acid acylated borates
US3151077 *Mar 6, 1961Sep 29, 1964Standard Oil CoFatty acid-acylated borates as gasoline and lube oil additives
US3254025 *Apr 6, 1962May 31, 1966Lubrizol CorpBoron-containing acylated amine and lubricating compositions containing the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4071548 *Aug 16, 1976Jan 31, 1978Toa Nenryo Kogyo Kabushiki KaishaLubricating oil additive, process for the synthesis thereof and lubricating oil additive composition
US4080303 *Jul 22, 1974Mar 21, 1978The Lubrizol CorporationViscosity improver
US4120887 *Nov 21, 1977Oct 17, 1978Toa Nenryo Kogyo Kabushiki KaishaLubricating oil additive, process for the synthesis thereof and lubricating oil additive composition
US4173540 *Oct 3, 1977Nov 6, 1979Exxon Research & Engineering Co.Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound
US4184851 *Dec 18, 1978Jan 22, 1980Exxon Research & Engineering Co.Borated derivatives of hydrocarbon substituted succinamic acids and/or acid salts thereof are flow improvers for middle distillate fuel oils (PT-364)
US4370248 *Dec 16, 1980Jan 25, 1983Mobil Oil CorporationBorated hydroxyl-containing acid esters and lubricants containing same
US4376712 *Oct 15, 1981Mar 15, 1983Mobil Oil CorporationFriction reducing additives and compositions thereof
US4406802 *Apr 30, 1981Sep 27, 1983Mobil Oil CorporationFriction reducing additives and compositions thereof
US4495088 *Feb 24, 1983Jan 22, 1985Chevron Research CompanyMethod for improving fuel economy of internal combustion engines
US4530771 *Jul 26, 1983Jul 23, 1985Karonite Chemical Co., Ltd.Lubricating oil compositions
US4629577 *Jun 17, 1985Dec 16, 1986Chevron Research CompanyMethod for improving fuel economy of internal combustion engines
US4724099 *Jul 11, 1986Feb 9, 1988Union Oil Company Of CaliforniaLubricating compositions
US4756842 *Jun 25, 1986Jul 12, 1988Union Oil Company Of CaliforniaLubricating compositions
US4797219 *Apr 24, 1987Jan 10, 1989Exxon Chemical Patents Inc.Acylates hydroxypyran compounds
US4801729 *Dec 30, 1987Jan 31, 1989Union Oil Company Of CaliforniaLubricating compositions
US4828740 *Jul 29, 1987May 9, 1989Mobil Oil CorporationMixed hydroquinone-hydroxyester borates as antioxidants
US4936867 *Aug 2, 1989Jun 26, 1990Exxon Chemical Patents Inc.Novel dispersants for oleaginous compositions
US5006270 *May 1, 1989Apr 9, 1991Mobil Oil CorporationMixed resorcinol-hydroxyester borates as antioxidants
US5006272 *Sep 29, 1989Apr 9, 1991Mobil Oil CorporationFriction reducing additives and compositions thereof
US5328619 *Jun 21, 1991Jul 12, 1994Ethyl Petroleum Additives, Inc.Oil additive concentrates and lubricants of enhanced performance capabilities
US5334329 *Oct 7, 1988Aug 2, 1994The Lubrizol CorporationLubricant and functional fluid compositions exhibiting improved demulsibility
US5498809 *May 22, 1995Mar 12, 1996Exxon Chemical Patents Inc.Terminal ethylvinylidene groups which can be functionalized, dispersants
US5554310 *Jun 9, 1994Sep 10, 1996Exxon Chemical Patents Inc.Trisubstituted unsaturated polymers
US5629434 *Sep 25, 1995May 13, 1997Exxon Chemical Patents IncReaction product of polymer with at least one ethylenic double bond with carbon monoxide and nucleophilic trapping agent; dispersants, viscosity modifiers
US5643859 *Jun 17, 1994Jul 1, 1997Exxon Chemical Patents Inc.Fuel dispersant
US5646332 *Jun 17, 1994Jul 8, 1997Exxon Chemical Patents Inc.Batch Koch carbonylation process
US5650536 *Jun 17, 1994Jul 22, 1997Exxon Chemical Patents Inc.Continuous process for production of functionalized olefins
US5652201 *Jul 11, 1995Jul 29, 1997Ethyl Petroleum Additives Inc.Lubricating oil compositions and concentrates and the use thereof
US5663130 *Mar 11, 1996Sep 2, 1997Exxon Chemical Patents IncPolymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5696064 *Aug 23, 1995Dec 9, 1997Exxon Chemical Patents Inc.From carbon monoxide and a nucleophilic trapping agent
US5698722 *Jun 6, 1995Dec 16, 1997Exxon Chemical Patents Inc.Blend of addition polymer, carbon monoxide and nucleophilic trapping agent
US5703256 *Dec 16, 1996Dec 30, 1997Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5717039 *Jun 6, 1995Feb 10, 1998Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5767046 *May 15, 1997Jun 16, 1998Exxon Chemical CompanyPrepared by reacting an olefin, carbon monoxide, an acid catalyst and a nucleophilic trapping agent selected from hydroxy- and thiol-containing compounds
US6030930 *May 14, 1997Feb 29, 2000Exxon Chemical Patents IncUseful in lubricating oils, and to concentrates containing the oil-soluble dispersant additives
US6362136Mar 26, 1996Mar 26, 2002The Lubrizol CorporationCompositions for extending seal life, and lubricants and functional fluids containing the same
US6573223Mar 4, 2002Jun 3, 2003The Lubrizol CorporationLubricating compositions with good thermal stability and demulsibility properties
US6627584Jan 28, 2002Sep 30, 2003Ethyl CorporationAutomatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6689723Mar 5, 2002Feb 10, 2004Exxonmobil Chemical Patents Inc.Higher concentration of polysulfides combined with phosphorous or boron compound; enhancing performance without adverse effects
US7485734Jan 28, 2005Feb 3, 2009Afton Chemical CorporationSeal swell agent and process therefor
US7833953Aug 28, 2006Nov 16, 2010Afton Chemical CorporationDispersant and a base oil containing more than 1.6% by weight of tetracycloparaffins
US7879775Jul 14, 2006Feb 1, 2011Afton Chemical CorporationLubricant compositions
US7888299Jan 13, 2004Feb 15, 2011Afton Chemical Japan Corp.For use in heavy duty (HD) axle and transmission applications; low odor, high temperature oxidation stability, antiwear protection, copper passivation and synchronizer performance without requiring the use of metal detergents
US7902133Jul 14, 2006Mar 8, 2011Afton Chemical CorporationLubricant composition
US7928260Sep 3, 2008Apr 19, 2011Afton Chemical CorporationSalt of a sulfur-containing, phosphorus-containing compound, and methods thereof
US7947636Feb 27, 2004May 24, 2011Afton Chemical CorporationPower transmission fluids
US8299003Mar 9, 2006Oct 30, 2012Afton Chemical CorporationComposition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof
US8546311Mar 10, 2009Oct 1, 2013Volkswagen AktiengesellsschaftMethod for lubricating a clutch-only automatic transmission component requiring lubrication
US8557752Mar 22, 2006Oct 15, 2013Afton Chemical CorporationLubricating compositions
US8703669Feb 17, 2009Apr 22, 2014Afton Chemical CorporationUltra-low sulfur clutch-only transmission fluids
US8791055Sep 23, 2008Jul 29, 2014The Lubrizol CorporationTitanium compounds and complexes as additives in lubricants
DE102009001301A1Mar 3, 2009Sep 24, 2009Audi AgVerfahren zum Schmieren einer Komponente nur für die Kupplung eines automatischen Getriebes, welche Schmierung erfordert
DE102009012567A1Mar 11, 2009Oct 1, 2009Afton Chemical Corp.Getriebeöle mit sehr wenig Schwefel nur für Kupplung
EP0558835A1Jan 30, 1992Sep 8, 1993Albemarle CorporationBiodegradable lubricants and functional fluids
EP0683220A2May 18, 1995Nov 22, 1995Ethyl CorporationLubricant additive compositions
EP0695798A2Aug 2, 1995Feb 7, 1996The Lubrizol CorporationLubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound
EP1669436A1Dec 8, 2005Jun 14, 2006Afton Chemical CorporationOxidation stable gear oil compositions
EP2017329A1Apr 17, 2008Jan 21, 2009Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
EP2230292A1Nov 8, 2004Sep 22, 2010Afton Chemical CorporationMethods of lubricating transmissions
EP2420553A1Apr 17, 2008Feb 22, 2012Afton Chemical CorporationEnvironmentally-Friendly Lubricant Compositions
WO2003095595A1May 7, 2003Nov 20, 2003Lubrizol CorpContinuously variable transmission fluids comprising a combination of calcium- and magnesium-overbased detergents
WO2009045979A1Sep 30, 2008Apr 9, 2009Lubrizol CorpLubricants that decrease micropitting for industrial gears
WO2011066142A1Nov 17, 2010Jun 3, 2011The Lubrizol CorporationStabilized blends containing friction modifiers
WO2011066144A1Nov 17, 2010Jun 3, 2011The Lubrizol CorporationStabilized blends containing friction modifiers
WO2011066145A1Nov 17, 2010Jun 3, 2011The Lubrizol CorporationStabilized blends containing friction modifiers
WO2012162020A1May 15, 2012Nov 29, 2012The Lubrizol CorporationStabilized blends containing antioxidants
WO2012162027A1May 15, 2012Nov 29, 2012The Lubrizol CorporationStabilized blends containing friction modifiers
WO2013151911A1Apr 1, 2013Oct 10, 2013The Lubrizol CorporationBearing lubricants for pulverizing equipment