Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3545094 A
Publication typeGrant
Publication dateDec 8, 1970
Filing dateMar 27, 1969
Priority dateMar 27, 1969
Also published asDE2014116A1
Publication numberUS 3545094 A, US 3545094A, US-A-3545094, US3545094 A, US3545094A
InventorsAlbert H Barnes, Henry W Schuette
Original AssigneeMoore Dry Kiln Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multiple-dryer system for veneer and like material having widely varying moisture content
US 3545094 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

De@ 8, 1970 H. w. scHur-:TTE ETAL 3,545,094

MULTIPLE-DRYER SYSTEM FOR VENEER AND LIKE MATERIAL HAVING WIDELY VARYING MOISTURE CONTENT Filed March 27, 1969 5 Sheets-Sheet 1 25h/lXX FEL25u 25g/IEX WXL25h 5f/1X] N I WXL25e XM1 uh\ 20a) Dec. 8, 1970 H, w, SCHUETTE ETAL 3,545,094

MULTIPLE-DRYER SYSTEM FOR VENEER AND LIKE MATERIAL HAVING WIDELY VARYING MOISTURE CONTENT Filed March 27. 1969 3 Sheets-Sheet 2k Litt-4 46 Fig.2

D. s, 1970 H,w SCHUETTE Em :545,094

MULTIPLE-DRYER SYSTEM FOR VENEER AND LIKE MATERIAL HAVING WIDELY VARYING MOISTURE CONTENT Filed "arch 2'?. 1969 3 Sheets-Sheet 3 Figli www-ww JQJ Fig.4A

United States Patent O MULTIPLE-DRYER SYSTEM FOR VENEER AND LIKE MATERIAL HAVING WIDELY VARYING MOISTURE CONTENT Henry W. Schuette and Albert H. Barnes, Portland, Oreg., assignors to Moore Dry Kiln Company of Oregon, North Portland, Oreg., a corporation of Oregon Filed Mar. 27, 1969, Ser. No. 810,996 Int. Cl. F2611 7/00 U.S. Cl. S14-13.4 6 Claims ABSTRACT OF THE DISCLOSURE A continuous dryer system for wood veneer and similar sheet material having Widely varying initial moisture content comprised of a high capacity primary dryer for drying the large bulk of material to a predetermined moisture content, and a lower capacity secondary dryer receiving that portion of material which is underdried after passage through the primary dryer. The secondary dryer is arranged in a closed loop configuration so that underdried material is automatically recycled therethrough by an endless conveyor until the desired degree of final' moisture content is achieved.

BACKGROUND OF THE INVENTION This invention relates to an apparatus and method for the production drying of wood veneer and similar sheetv material whose initial moisture content varies over a wide range. More particularly, the present invention is directed to an arrangement of a high capacity primary dryer in which a large percentage of the material treated is dried to a moisture content within a predetermined range Without excessive overdrying, and a secondary dryer of lower capacity which receives the remaining portion of underdried material from the outfeed of the primary dryer chamber for a further drying of the material to the desired moisture level. A closed loop conveyor design for` the secondary dryer permits the underdried material to be automatically recycled through the secondary dryer chamber as many times as necessary in order to achieve the requisite degree of dryness in the nal product. Whereas the exemplary embodiment of the invention disclosed herein relates to the drying of wood veneer, it is to be understood that these teachings are also advantageously applicable to ,the production-line drying or heat treatment of other sheet or ribbon-like material whose initial moisture content varies over a wide range.

For many years the conventional method of production drying wood veneer has been to handle the product in sheet form and pass it in single layers through a multideck conveyor-type drying chamber. The veneer is usually peeled from the log by a rotary lathe in a variable sheet thickness dependent upon the size desired of the final multi-ply panel product. The outer layers of the log v when peeled by the lathe are generally considered sapwood and as a rule possess the higher moisture content, whereas the inner layers, referred to as heartwood, have lower moisture content and in general possess a somewhat ditferent texture and density. While in some species of timber the dilferential in moisture content between heartwood and sapwood is not as great as in others, nevertheless, a measurable differential does exist in vrtually all cases.

In those wood species having a great range of moisture content dierential between heartwood and sapwood, an attempt is usually made to segregate the two immediately after the green veneer is clipped into sheet sizes. Typically this segregation is accomplished, where possible, by utilizing the natural color differential which exists between 3,545,094 Patented Dec. 8, 1970 ICC the heart and sap material, but more often by the trained eye of the sorter recognizing certain distinctive characteristics of the inner wood in contrast to the outer layers. Although this segregation of heart from sapwood has heretofore been carried out manually, recently moisture detectors have been developed to accomplish this segregation automatically; however, at the present state of the art, such instrumentation has not yet received wide-scale acceptance by the industry and lacks the broad band resolution capacility for handling material having a wide range of moisture content.

Although some veener drying is now being carried out in the industry with the wood material in ribbon form or as sheets on a batch-type tray, in the great bulk of plywood production the veneer is in sheet form and is processed for drying in packages in which single-layered sheets are continuously fed into multi-deck conveyor dryers. After an initial pass through the drying chamber, the sheet veneer is graded and again stacked into dry packages. Even where there has been an initial segregation of heartwood from sapwood material, typically a Wide differential in moisture content still exists among the veneer sheets after this iirst pass through the dryer. In fact, in order to dry the majority of a typical run to a satisfactory moisture level, as much as 70 percent of the run might be overdried to a less than desirable moisture level. In recognition of the wide moisture differential which can exist in the veneer package after the initial drying run, the industry in general follows the practice of setting aside a small percentage of each run as redry for further processing. In conventional practice this redry material (that is, material which has been insufficiently dried in the initial drying run because of a higher-thanaverage initial moisture content) is segregated from the acceptably-dried material and set aside until enough has been accumulated to warrant a second run of this material through the drying chamber. However, because of the handling of this redry material during the second drying run results in considerable degrade and breakage, sizeable production loss and decreased drying eiciency, the industry practice is to allow but a small percentage of material as redry. Perhaps the main objection topr0c essing redry veneer, so as to reduce its moisture content to an acceptable level, is that it ties up the dryer and thus interrupts the mainline processing of green veneer in the production run. Also, the dryer itself is caused to be operated at low efciency during a redry run because substantially reduced temperatures are required in the circulating drying medium in order to prevent overdry of this partially-dried material.

SUMMARY O'F THE INVENTION The present invention is directed to a two-dryer system for overcoming the need of initial segregation of the veneer product while in the green state to separate the highmoisture level sapwood from the less wet hardwood material. The two dryer system arrangement provides a means for eiciently drying the underdried material which results from the initial drying process without additional handling and without interrupting the production run of green veneer through the drying system.

In the system of the present invention the iirst dryer, which is of conventional multi-deck conveyor-type design, acts as a primary dryer through which is processed all of the green veneer material which may be either in sheet or ribbon form. The operating parameters (i.e., conveyor speed, drying air temperature and circulation ilow) of this primary dryer are adjusted so that only the veneer material of initially low moisture content is fully dried during passage therethrough. A conventional moisture detector is located at the outfeed or dry end of the primary dryer to differentiate the fully dried material,

typically 30 to 50 percent of the thruput of the primary machine depending upon species, from the remainder requiring further drying. The material which is satisfactorily dried during passage through the primary dryer, as determined by the moisture detector, is pulled off the conveyor, graded, put up into packages, and is then ready for layup into plywood panels. The remaining material, which is marked by the moisture detector as insufficiently dried, continues on the conveyor to a secondary dryer of relatively lower production capacity in contrast to the primary dryer. In the transition of the material by the.;

conveyor from the primary to the secondary dryer, the underdried veneer material is not handled or packaged in any way, and therefore the likelihood of breakage or degrade is very substantially reduced, if not entirely eliminated.

In the exemplary embodiment of the invention, designed to handle veneer sheets in contrast to veneer ribbon, the conveyor arrangement between the primary dryer outfeed and the infeed to the secondary dryer is so constructed that the grain orientation in the sheets is rotated 90 with respect to the flow direction so that, for example, if the material is initially processed through the primary dryer with its grain orientation parallel to the flow direction, it will be received in the secondary dryer with its grain pattern perpendicular tothe flow in the secondary unit. On the other hand, where the material being handled is in ribbon veneer form, the primary and secondary dryers would accordingly be arranged in-line and there would be no alteration of grain direction in the transition of the material from the primary to the secondary dryer.

The secondary dryer of the series dryer arrangement of the present invention is constructed to form a closed loop system for material entering the secondary dryer. The closed loop design of the secondary dryer, provided by an endless conveyor belt which carries the veneer material in a vertically-disposed elliptical path through an overhead drying chamber, permits the veneer to -be automatically recycled through the secondary dryer as many times as necessary in order to reduce its moisture content to a satisfactory level. lRecycling of some of the material through the secondary dryer is necessary because, in spite of the segregation which occurs at the dry end of the primary dryer, the material which reaches the second dryer still possesses a high moisture content which varies over a wide range. In order to monitor the moisture content of the material after its passage through the secondary dryer, a second moisture detector is located at the outfeed end of the recirculating conveyor of the secondary system to mark material whose moisture content still remains above the desired level. In a typical wood species some 70 percent of the veneer material entering the secondary dryer would be satisfactorily dried after a single pass, but the remaining 30 percent would require at least a second pass through the secondary drying chamber.

As previously indicated, one of the principal' significant advantages of the primary-secondary dryer system summarized above is that the veneer product is not damaged or degraded iby handling during the drying proc-- ess. Further, none of the veneer material is deleteriously overdried, as is typical in conventional systems designed to minimize the amount of redry material, and thus the undesirable effects in plywood panel production of excess glue usage and delamination due to glueline dryout and poor veneer surface condition are avoided. Finally, a most significant advantage of the present system` is that the efficiency of the drying operation is greatly increased, as the material passing through the system is dried only to the desired moisture level and not substantially below that level. Also, the period of time during which the veneer material is exposed to the drying air medium is reduced, thus permitting higher production Speeds, or conversely, the operative area of the drying chamber can be reduced as much as 2O to 30 percent while handling the same volume of veneer material as that dried by prior art unitary dryer systems.

It is therefore a principal objective of the present invention to provide a novel method and apparatus for effecting improved high-speed continuous production drying of wood veneer and similar sheet material having widely varying initial moisture content.

It is a still further objective of the present invention to eliminate the need for segregation of green veneer sapwood from heartwood prior to the drying process through the utilization of a primary-secondary dryer system providing more uniform drying of veneer material than that heretofore achieved.

v'It is yet another important objective of the present invention to provide a veneer drying system which is inherently more efficient and capable of higher production speeds than those heretofore known to the art.

It is a principal advantage of the present invention that veneer material of initially high moisture content is automatically fed, after passage through a primary drying chamber, to a secondary drying chamber for a further drying operation, and that material which remains underdried after passage through the secondary dryer is automatically recycled through the secondary dryer as many times as necessary to achieve the desired moisture level, all of the foregoing being accomplished Without additional handling or manual intervention.

It is a principal advantage of the present invention that the entire run of wood veneer is processed on a continuous basis without interruption to the production line despite the fact that the initial moisture content of the veneer -material being dried varies over an extremely wide range.

It is another important advantage of the present invention that wood veneer is eicently dried on a continuous production line basis to a uniform moisture content with no overdrying of material.

The foregoing and other objectives, features and advantages of the present invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is an enlarged sectional view, taken along the1 lines 4 4 in FIG. 2.

FIG. 4A is an enlarged view showing a detail of the drying chamber depicted in FIG; 4.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, in FIG. 1 there is shown a veneer dryer system arrangement according to the teachings of the present invention. The primary dryer, indicated schematically at 10, may be one of the conventional types now used in the industry for the drying of Wood veneer such as, for example, the dryer manufactured and sold by applicants assignee under the trademark Uni-Jet which comprises a multi-deck gas or steam heated air dryer with a plurality of drying sections.

As previously indicated, the operating parameters of the primary dryer 10 are adjusted so that, of a typical unsegregated heartwood and sapwood run of green veneer supplied to its infeed 11 between 30 to 50 percent are satisfactorily dried, with no overdry, after passage through the primary drying chamber. In other words, only that portion of the run which is of initially low moisture content is completely dried to the requisite moisture level by processing through the primary dryer 10. After emergence from the primary dryer 10, the veneer material received at the primary dryer outfeed 12 is individually scanned by a conventional moisture detector 15 which discriminates between those veneer pieces which have been dried to a moisture content at or below a predetermined level from those which require further drying. In a typical moisture detector device, the partially dried material is sprayed with a water solublecolored dye so that it can be readily distinguished. One suitable type of moisture detector unit for use in this application is the one manufactured and sold by applicants assignee as the Moore Oregon Continuous Check Moisture Detector described in its bulletin No. 6608.

After passage past the moisture detector 15, the veneer material, which in this embodiment is handled in the form of sheets, is transferred to a conveyor where its orientation is altered 90 relative to the initial direction of travel. This changes the orientation of the veneer grain relative to the path of travel of the material through the secondary dryer 30. Thus, typically, if the grain orientation of the veneer through the primary dryer 10 were parallel to the direction of travel, the right angle turn indicated at 20a would change the grain orientation so that in passage through the secondary dryer 30 the wood grain would be perpendicular to the direction of travel.

Before reaching the secondary dryer 30 the veneer material passes by a grading station, indicated as a h, where graders pull off the unmarked, fully dried veneer and sort it according to conventional grading techniques. The remainder of the veneer material, marked as being insufficiently dried, is carried by the conveyor 20 into the infeed 31 of the secondary dryer 30. As best shown in FIGS. 2 and 3, the thin, partially-dried veneer sheets 18 carried to the infeed 31 of the secondary dryer are transported by a conveyor web 35 in a closed elliptical path, first upwardly and then through an overhead-mounted heat treatment chamber 36, then downwardly and past a second moisture detector 37 of conventional design, next past a grading station 39, and finally return to the beginning of the loop.

Thus, in the aforedescribed system arrangement, all partially-,dried veneer material received from the primary dryer 10 is fed through the drying chamber of the secondary dryer 30 where its moisture content is further reduced. If the material is now satisfactorily dried after an initial pass through the secondary drying chamber 35, it is pulled off the conveyor web by graders at the grading station 39 onto trolleys 39a f (FIG. l) from whence it may be taken to the plywood panel lay-up area. On the other hand, veneer material which is still too wet for use is marked `by the second moisture detector 37, and is then carried by the `conveyor past the grading station and on to a recycling through the secondary drying chamber 36. In this manner all of the veneer material, regardless of its initial state of wetness, can be fully dried to the required moisture level without handling or manual inter- Vention at any intermediate stage of the drying operation.

Specic structural details of the exemplary secondary dryer embodiment are depicted in FIGS. 2-4A, although it will be appreciated that other designs for a drying chamber with closed loop conveyor mechanism utilizing the present teachings will be apparent to those skilled in the art. As shown in the figures, the heat treating chamber 36 is supported overhead (i.e., some eight to ten feet above the ground) on a platform 41 by a structural skeleton of supporting shores 42 and crossbraces 43.

Carried on the platform 41 is the heat-treating `chamber comprising a first section 45 in which a heated air medium is directed at high velocity against the surfaces of the veneer material to evaporate moisture therefrom, and a second section 55 in which ambient air is circulated to cool the veneer and also carry away remaining moisture. As best shown in FIGS. 4 and 4A, a pair of centrifugal fans 46 in the heating section 45 pressurizes air which is also heated to high temperature (typically, above 350 F.) by a gas burner (not shown). The pressurized heated air is then forced into a respective first plenum chamber 47 and thence into an associated hollow air box 48 disposed laterally on either side of the veneer material which is transported through the central core area. As indicated in FIG. 4A, the veneer 18 is carried through the center of the chamber by means of a sandwiching conveyor web 35a and 35b supported and driven by a roller mechanism 49.

The heated air emerges from the respective air boxes 48 at high velocity, typically 2,500-l0,000 linear feet per minute, through a plurality of jet nozzles 52 spaced in a staggered arrangement to direct the heated air medium perpendicularly to the horizontal surfaces of the moving veneer material 18. The high-velocity, high temperature jet action produces an efficient and rapid drying of the partially-dried veneer material and, because of the disruption of the interface boundary layer which occurs due to the sharp right-angle impingement of the jet streams on the flat surface of the sheet material, the drying action is extremely thorough. The high air temperatures used, which are considerably above those conventionally employed in veneer dryers, are injurious because the moisture is rapidly drawn from the interior of the veneer material and quickly evaporated from the surface, thereby producing a cooling effect which protects the board from injury or discoloration. A more detailed explanation of the drying phenomena associated with this type of high-temperature, high-velocity impingement jet action is set forth in U.S. Pat. No. 3,199,213 whose disclosure is herein incorporated by reference.

After impingement on the veneer material, the air ow is swept laterally across the surface thereof and exhausted from the central core area and into the respective second plenum passages 51, and thereafter drawn toward the inlet side of the opposing centrifugal fan 46 to complete the circulation path. The moisture carried away from the veneer material in the drying process and collected in the gaseous medium is then exhausted to the atmosphere through the vent stack 53.

After passage through the heating section 45, the veneer material then passes into the adjacent cooling section 55 of similar design in which unheated ambient air is directed in high velocity jet streams perpendicularly against the respective faces of the veneer sheet so as to draw off remaining moisture. In this cooling section the air is circulated in a fashion similar to that in the heating section by means of a single centrifugal fan 56, and the moisture-laden air is exhausted to the atmosphere by a separate stack 58 provided in the cooling section.

The conveyor mechanism 35 4which transports the veneer material 18 in a closed loop configuration through the secondary dryer 30 is of generally conventional design utilizing powered and idler rollers driven by suitable mechanisms known to the art. In order to secure the veneer material 18 during its passage through the heattreating chamber where high-velocity jet air flows are encountered, the veneer is preferably constrained in sandwich-like fashion by the conveyor web 35 which, as shown in FIG. 4A, overlies the top and bottom of the material during this portion of its travel. In its arcuate vertical passage from the overhead-mounted drying charnber to the ground level moisture deflection and grading stations, and then back again, the veneer material is supported, as shown in FIG. 3A, by an overlying conveyor belt portion 35C which presses the veneer material 18 against a plurality of closely-spaced idler rollers 35 disposed along the arcuate path. It will be noted from the nature of the conveyer mechanism 35 shown in FIG. 3 that the veneer sheets 18 will continue to recirculate in the closed path between the drying chamber and the grading station until the sheet material is physically taken olf the conveyor belt.

While the described embodiment of the present invention has been directed to a system for handling veneer in sheet form, it will be apparent that the system is readily adaptable for the handling of veneer in ribbon form by the alignment of the primary and secondary dryers in a colinear arrangement and, in such modification, some lengthening of the elliptical path traveled by the conveyor belt of the secondary dryer system might be required in order to deal with the longer ribbon lengths involved.

ILLUSTRATIVE EXAMPLE In an exemplary operation of the primary-secondary dryer system of the present invention, samples of intemixed sapwood and heartwood green veneer, having a range of initial moisture content varying from 35 percent to 158 percent (based, as is the conventional industry practice, on the bone dry Weight of the veneer) were entered into the infeed of the primary dryer unit. The operating parameters of the primary dryer were set so that only the material having the lowest initial moisture content was fully dried in this unit; thus, the material of originally 35 percent moisture level was reduced to a satisfactory moisture level of 4 percent in its passage through the primary unit, and this material was then removed from the system. However, the veneer material of initially 158 percent moisture content was reduced to only a partially dry 22 percent moisture level after passage through the primary dryer, and this wet material was thereafter continued on to the secondary dryer where it was tinally reduced to a satisfactory 31/2 percent moisture level in two passes through the secondary dryer unit. Material of moisture content intermediate these two extremes required but a single pass through the secondary dryer to reach the desired moisture level. In this manner all of the material was dried to a satisfactory moisture level within a narrow range centering around 2-4 percent moisture content, with none of the material being underdried and none of it requiring further handling or reprocessing as redry material.

What is claimed is:

1. A process for continuous drying of planar material having widely varying initial moisture content comprising:

(a) carrying on a conveyor all of said material through a first drying chamber wherein only that portion of said material having initially low moisture content is fully dried to a predetermined moisture content range and the remainder of initially higher moisture content is only partially dried,

(b) marking said material after passage through said irst drying chamber to discriminate fully dried material from partially dried material,

(c) removing from said conveyor only the fully dried portion of said material,

(d) continuing the partially dried portion of said material on said conveyor through a second drying chamber,

(e) again marking said material after passage through said second drying chamber to discriminate fully dried material from partially dried material,

(f) removing from said conveyor only that portion of said material which is fully dried after passage through said second drying chamber, and

(g) repeating steps (c) through (e), as many times as necessary, until substantially all of the remaining material is fully dried.

2. The process of claim 1 characterized in that the material is wood veneer as peeled from a log containing intermixed heartwood and sapwood, and the operating parameters of said first drying chamber are adjusted so that about percent of said material is fully dried after passage therethrough.

3. The process of claim 1 characterized that in said second drying 'chamber of said material is dried by the action of a plurality of high velocity jet streams of heated air directed to impinge substantially perpendicularly to the respective major planar surfaces of said material.

4. The process of claim 3 further characterized in that said material is wood veneer, and the jet streams in said second drying chamber are of a velocity between 2,500 and 10,000 linear feet per minute and at a temperature above 350 F.

5. An apparatus for continuous drying of planar material having Widely varying initial moisture content and comprising:

(a) a liirst drying chamber, with associated means for adjusting the operating parameters thereof to control drying action,

(b) a second drying chamber, of substantially lesser capacity than said first drying chamber, With associated means for adjusting the operating parameters thereof to control drying action,

(c) a conveyor means for transporting said material in a path travelling to and through said iirst drying chamber, next to and through said second drying chamber, and then returning said material to the input of said second drying chamber, whereby said material is continuously recycled through said second drying chamber until remoyed from said conveyor,

(d) a first moisture detecting means provided at the outlet of said irst drying chamber to discriminate material Which has been fully dried to a predetermined moisture content range from partially dried material, and

(e) a second moisture detector located at the output of said second drying chamber to discriminate fully dried material from partially dried material.

6. The apparatus of claim -5 characterized in that said second drying chamber comprises a tirst zone in which material transported therethrough is subjected to a plurality of jets of heated air directed at high velocity and substantially perpendicularly against the major planar surfaces of said material, and a second zone in which a plurality of jets of unheated air at similar velocity is directed substantially perpendicularly to the major surfaces of said material for cooling purposes.

References Cited UNITED STATES PATENTS 3,434,221 3/1969 Hammond 34-6 CHARLES SUKALO, Primary Examiner U.S. Cl. X.R. 34-23 UNITED STATES PATENT OFFICE CERTIFICATE 0F CORRECTION Parent No. 3.545.094 Dated De c emb.er 84 l2lQ Inventor(s) Henry W. Schuette et al It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Col. l, line 49 change "material" to materials. Col. 2 line l2 correct spelling of "veneer" Col. 4, line 19 change "advantage" to feature. Col. 6 line 28 after "are" insert -not;

line 68, change "deflection" to detection.

Signed and sealed this 23rd day of March 1971 (SEAL) Attesti EDWARD M PLETCHERJR. WILLIAM E. SCHUYLER, JR Attesting Officer Commissioner of Patents can nnrintn llntCnI

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3434221 *Apr 13, 1967Mar 25, 1969Weyerhaeuser CoRedry veneer drying method and apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3935888 *Nov 6, 1973Feb 3, 1976C.L.P. Fleck Sohne GmbhManufacture of veneer sheets
US4106209 *Apr 21, 1977Aug 15, 1978The Dow Chemical CompanyDrying veneer with jets of superheated solvent vapor
US4308667 *Feb 28, 1980Jan 5, 1982Babcock-Bsh AktiengesellschaftContinuously operating multistage drying installation and a process for continuously drying a workpiece
US7946321 *Apr 24, 2007May 24, 2011Meinan Machinery Works, Inc.Method of holding a veneer sheet
US7963048 *Sep 25, 2006Jun 21, 2011Pollard Levi ADual path kiln
US8201501Sep 4, 2009Jun 19, 2012Tinsley Douglas MDual path kiln improvement
US8342102May 9, 2012Jan 1, 2013Douglas M TinsleyDual path kiln improvement
Classifications
U.S. Classification34/396
International ClassificationF26B25/22, F26B15/00, F26B15/18, F26B3/00, F26B21/00, F26B25/00, F26B13/12
Cooperative ClassificationF26B2210/16, F26B25/004, F26B2210/14, F26B15/18, F26B21/004, F26B15/00, F26B25/22
European ClassificationF26B15/00, F26B25/00B3B, F26B21/00D, F26B15/18, F26B25/22
Legal Events
DateCodeEventDescription
Nov 1, 1982AS02Assignment of assignor's interest
Owner name: COE MANUFACTURING COMPANY, THE, 609 BANK ST. PAINE
Effective date: 19821026
Owner name: MOORE INTERNATIONAL CORPORATION A CORP. OF OREGON
Nov 1, 1982ASAssignment
Owner name: COE MANUFACTURING COMPANY, THE, 609 BANK ST. PAINE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MOORE INTERNATIONAL CORPORATION A CORP. OF OREGON;REEL/FRAME:004063/0883
Effective date: 19821026
Dec 16, 1980ASAssignment
Effective date: 19801126
Owner name: MOORE INTERNATIONAL CORPORATION
Free format text: MERGER;ASSIGNOR:MOORE DRY KILM COMPAY OF OREGON;REEL/FRAME:3815/339
Free format text: MERGER;ASSIGNOR:MOORE DRY KILM COMPAY OF OREGON;REEL/FRAME:003815/0339
Dec 16, 1980AS03Merger
Owner name: MOORE DRY KILM COMPAY OF OREGON
Owner name: MOORE INTERNATIONAL CORPORATION
Effective date: 19801126