Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3555311 A
Publication typeGrant
Publication dateJan 12, 1971
Filing dateJan 23, 1969
Priority dateJan 23, 1969
Publication numberUS 3555311 A, US 3555311A, US-A-3555311, US3555311 A, US3555311A
InventorsWeber Peter E
Original AssigneeMarquardt Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High pressure piezoelectric transducer
US 3555311 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] lnventor Peter E. Weber Scarborough, N.Y.

[21 Appl. No. 793,344

[22] Filed Jan. 23, 1969 [45] Patented Jan. 12, 1971 v [73] Assignee The Marquardt Corporation Van Nuys, Calif. a corporation of Delaware [54] HIGH PRESSURE PIEZOELECTRIC TRANSDUCER 20 Claims, 3 Drawing Figs.

Primary Examiner-W. E. Ray Assistant Examiner-B. A. Reynolds Attorney-Robert E. Geauque ABSTRACT: An alternating voltage is applied to the electrodes of a piezoelectric crystal at the frequency of natural vibration of the crystal in the thickness mode which causes the crystal to vibrate in the thickness mode. This vibration is at one-half wavelength resonance. Vibrations from the front surface are transmitted through an epoxy window as an ultrasonic wave. Vibrations off the back surface are reflected from a reflector which is spaced one-quarter wavelength from the crystal. A filler material with negligible reflective qualities, such as neoprene, synthetic or natural rubbers, or the like, is sandwiched between the crystal and the reflective material. The filler also has the properties of compressions so that the crystal will not break or cave in when the transducer is subject to high pressures when submerged in very deep water.

HIGH PRESSURE PIEZOELECTRIC TRANSDUCER BACKGROUND OF THE INVENTION 1. Fieid of the Invention This invention relates to underwater transducers and more particularly to novel and improved underwater transducers which have the qualities of reflecting the back energy to increase the initial output of the transducers without significant losses thereto.

2. Description of the Prior Art Transducers of the prior art are generally comprised of a crystal oscillator formed of piezolectric material. Those crystals vibrate in the thickness mode, sending out an acoustic vibration when an electrical energy is applied to the electrodes thereof. These vibrations are generally caused by the contractions and expansions of the crystal.

These transducers are generally used as sonic transmitters and receivers and are used to send acoustic energy either down or through the water and received back by transducers similar to the transmitting transducers.

Problems occur with transducers which are placed many fathoms under the water. When subjected to these depths, extreme pressures are exhibited to the transducers. Approximately one-half p.s.i. for every foot of water in depth. The nor mal use of some transducers are in 20,000 feet of water. When down this deep, they are subjected to approximately 10,000

In the prior art, transducers were filled with oil to transmit and equalize the pressure and prevent the crystals from caving in. However, the prior art oil filled transducers had many problems. First, they are susceptible to spillage and leakage during assembly. Further, it is not desirable to work with transducers which are filled with oil because they require many mechanical joints which may leak.

It is found thatthe back energy from the crystal is normally lost because the only energy which is desired to be used is that which is projected in a forward direction. Because the crystal oscillates in the thickness mode, the ultrasonic vibrations thereof are transmitted in its forward and back direction, whereas only the forward direction is of any use and the back direction of the ultrasonic wave is virtually lost.

Thus, it would be desirable to provide a transducer which can utilize the back ultrasonic waves as well as the forward ul- SUMMARY OF THE INVENTION Briefly described, the present invention includes a crystal vibrator which vibrates in its thickness mode. The vibrations from the front surface of the crystal are used for ultrasonic transmission. Means are disposed behind the crystal to reflect the ultrasonic waves to reinforce the ultrasonic waves to reinforce the ultrasonic waves emitted in the downward direction. A further filler is positioned between the crystal and the reflecting means to maintain a distance therebetween which is one-quarter wavelength distance. The filler material is composed of a substance which is compressible and doesnt require air in its compression process, whereby the volume of the material is completely filled, such as neoprene, cork, rubber, either natural or synthetic. A number of these reflective stages may be used to further increase the efficiency of the transducer reflection in its forward direction. The entire transducer may then be encapsulated in epoxy.

It, therefore, becomes one object of this invention to provide a novel and improved high pressure transducer.

Another object of this invention is to provide a novel and improved high pressure transducer which reflects back sonic waves to aid in the overall output of the transducer system.

Another object of this invention is to provide a novel. and improved transducer which is capable of being submerged in very deep water without damage thereto.

Another object of this invention is to provide a novel and improved transducer which has characteristics safeguarding the crystal material used therein from being crushed due to the deep water pressures.

These and other objects, features and advantages will become more apparent to those skilled in the art when taken into consideration with the following detailed description, wherein like reference numerals indicate like and corresponding parts throughout the several views, and wherein:

FIG. lis a section view of the transducer of this invention showing the internal apparatus;

FIG. 2 is a section view taken along the lines 2-2 of FIG. I;

and

FIG. 3 is a section view taken along the lines 3-3 of FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENT Turning now to a more detailed description of this embodiment, there is shown a housing 10 which'may be composed of a metallic material, such as stainless steel. The end 12 of the housing 10 may be, for example, tubular in shape and having a bore 14 therein, and a bulkhead 16 which is used to seal the internal apparatus of this invention from water. A pair of holes 18 are provided in the bulkhead 16 of the end 12 for a pair of electrodes 20 and 22 to extend therethrough. The electrodes 20 and 22 are insulated from the end 12 of housing 10 by the insulators 24 and 26, respectively. These insulators are tightly placed within the bulkhead 16 to assure that no leakage of water enters the internal mechanisms of the invention.

A crystal 28 is placed within the housing 10 and is shaped in the form of a disc. The top surface 30 and the bottom surface 32 are silvered and electrical lead 34 is coupled to the electrode 20 and to the top surface 30 of the crystal 28. A lead 36 is coupled to the electrode 22 and to the bottom surface 32 of the crystal 28. These leads may be electrically insulated wires to prevent the short circuit to the housing 10 and other internal mechanisms of the invention.

A reflective device 38, which is also shaped in the form of a disc, is placed within the housing 10 and spaced below the bottom surface 32 of the crystal 28. This reflective device 38 may be formed of brass because of its reflectivity qualities.

A tiller 4!! is spaced between the crystal 28 and the reflector 38 at a predetermined distance. The filler material d0 may be comprised of a suitable compressible material, such as neoprene, pliable plastics elastomers, isoprene butylene, cork, natural rubber, synthetic rubber, and compressed sponge, and the like, as an example.

The thickness of the crystal 28 is selected so that when it vibrates in its thickness mode by having an alternating voltage applied to the electrodes 20 and 22, the material changes dimensions in the thickness mode. It has been found, by way of example, that if the material is 0.336 inches thick it will vibrate at one-half wavelength in terms of velocity propagation through the crystal for a frequency of 300 MHZ. This thickness will vary depending upon the bulk velocity of the material and the frequency required, but it is selected to have the one-half wavelength resonance. Thus, when the voltage is applied to the crystal 28, the total cubic inches of the crystal changes from the voltages applied thereto.

If the reflector is positioned one-quarter wavelength from the crystal 28, its return will be a full one-half wavelength, thus reinforcing or adding to the energy emitted from the front surface and no loss of energy is realized, but rather a reinforcement of the front energy. The material brass can be selected because it has good sonic reflectivity, although it should be understood that many other materials may be used and the limitation of brass is shown only by way of example.

The filler Ml, which faces the reflector 3%, from the crystal 2% at the aforesaid distance, should be selected from a material which is compressible so that as the thickness of the crystal chan es, the tiller will compress and prevent the crystal from being damaged by cracking or cavin in, or the like. The substance for the filler 4% should be selected from a material which is compressible, but does not require air in the process of compressing and wherein the volume of the material may be neoprene, cork, rubber, either natural or synthetic, or the like. Neoprene has been selected for the preferred embodimerit in that the molecular chain breaks and reforms during compression without filling with another substance, such as FlG. ll illustrates that a second filler 42 and a second refiective device 6 3 is positioned behind the first reflective device and the filler ill. The second stage is added because no material is a perfect reflector. Thus, the energy is reflected for a second time at a similar operation as the first stage. Also the energy is reflected a third time from the metal housing 52.

With reference to H68. 2 and 3, there is shown, for example, in FIG. 2 a slot 50 which is provided in the fillers and reflective brass material to allow the lead 34 from the electrode 20 to pass therethrough and to become affixed to the silvered top surface 30 of the crystal 2%. A slot is cut in the filler 46 to accommodate the lead-36 from electrode 22. A similar slot (not shown) is provided in the filler 40 so that the lead 36 may be connected to the silvered portion of the bottom surface 32 of crystal This lead comes up through the slot 52 in the reflectors 38 and M and their respective fillers as and &2.

The entire transducer is encapsulated in an epoxy coating 56 which provides that at the area S8 the epoxy window is used to transmit the ultrasonic vibration waves. The epoxy is used because it has nearly the same velocity as the velocity of sound in sea water.

I claim:

ll. A transducer for emitting ultrasonic vibrations comprising:

a housing;

means for emitting ultrasonic energy in a first direction and a second direction, said means being disposed within said housing;

means disposed within said housing and being juxtaposed with said means for emitting ultrasonic energy for reflecting the ultrasonic energy transmitted in a second d rection to the first direction; and

a compressible filler means disposed within sa d housing for spacing said ultrasonic energy emitting means from said reflecting means a quarter wave length therefrom.

2. The apparatus as defined in elm-"n 3 wherein said transducer being encapsulated in an epoxy material.

3. The transducer as defined in claim F. and further comprising a pair of electrode means protruding from said housing and wherein one of said is coupled Co the top surface or" said ultrmoric c. gy emitting mean and the other electrode is coupled to t hottorn surface of aid ultrasonic energy emitting mean The apparatus as defined in claim means being neoprene.

5. The transducer as defined in claim 2 wherein said filler means being a pliable plastic.

6. The transducer as defined in claim 3 being an elastorner.

7. The transducer as defined in claim r. being an isoprene butylene.

The transducer as defined in claim ll wherein said means for emitting a frequency vibration wave being a piezoelectric crystal.

9. transducer as defined in claim 1 wherein said rcflec tit e means being comprised of brass.

transducer as defined in claim l wherein:

fl wherein said filler wherein said filler said filler wherein said means for emitting frequency vibrations being a piezoelectric crystal; said reflective means being brass; and said filler means being neoprene.

ll LA transducer comprising: a piezoelectric crystal having a front surface and a back surface and including electrodes coupled to the back surface and front surface of said crystal for causing said crystal to vibrate in the thicizness mode when energized with an electric energy, said crystal being of a thickness and characteristics to resonate at one-half wavelength;

d adjacent the back surface of said crystal therefrom by one-fourth wavelength of the vibrat: of said crystal for reflecting vibrations of said crystal back to said crystal for transmission from only the front surface thereof; and

"er means disposed between said crystal and said reflecti means, said filler means being comprised of an acoustic and pressure absorbing material.

12. The transducer as defined in claim 111 wherein said filler is composed of a material which being a solid compressible material.

13. The transducer as defined in claim 12 wherein said filler is selected from the group consisting of neoprene, natural rubber, synthetic rubber, cork, plastic, compressed sponge, and isoprene butylene.

14. The transducer as defined in claim 11 wherein said reflective means being a metallic substance with an acoustic reflectivity.

15. The transducer as defined in claim 11 wherein said reflective means being brass.

16. The transducer as defined in claim 11 wherein said transducer being encapsulated in epoxy.

l7. A transducer comprising:

a metallic housing;

a piezoelectric crystal being capable of vibrating in the thickness mode for emitting ultrasonic vibrations on the front surface and back surface thereof, said crystal being of a predetermined thickness and characteristic to resonate at one-half wavelength;

a pair of electrodes protruding from said housing and being coupled to the back surface and the front surface of said crystal for causing said crystal to vibrate in the thickness mode thereof when energized with electric energy;

a first means disposed adjacent the back surface of said crystal and being spaced therefrom by one-fourth wavelength for reflecting vibrations of said crystal back to said crystal for transmission from only the front surface thereof;

a first filler means disposed between said crystal and said reflecting means, said first filler means being comprised of a pressure absorbing material;

a second disposed adjacent the back surface of said first means and being spaced from said first means by one-fourth wavelength of reflecting vibrations passed by said first means back to said crystal for transmission from only the front surface thereof; and second filler disposed between said crystal and said reflecting means, said second filler means being comprised of a pressure absorbing material.

118 The transducer as defined in claim 17, wherein said filler being comprised of neoprene.

E9. The transducer as defined in claim 17, wherein said first means and second means being comprised of a metallic reflective material.

255. The transducer as defined in claim 19, wherein said reflective material being comprised of brass.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2406767 *Oct 22, 1932Sep 3, 1946Harvey C HayesDirective transceiver for sound
US2427348 *Aug 19, 1941Sep 16, 1947Bell Telephone Labor IncPiezoelectric vibrator
US2434143 *Sep 25, 1943Jan 6, 1948Chilowsky ConstantinSupersonic signal transmitter and receiver
US2753543 *Aug 28, 1952Jul 3, 1956Raytheon Mfg CoTransducers
US2799788 *Nov 16, 1954Jul 16, 1957James W FitzgeraldPiezoelectric blast gages
US2928068 *Mar 25, 1952Mar 8, 1960Gen ElectricCompressional wave transducer and method of making the same
US3167668 *Oct 2, 1961Jan 26, 1965Florence NeshPiezoelectric transducers
US3200369 *Jun 29, 1961Aug 10, 1965Neubauer Werner GMiniature underwater sound transducer
US3325779 *Sep 13, 1965Jun 13, 1967Westinghouse Electric CorpTransducer
US3441754 *May 31, 1966Apr 29, 1969Linden Lab IncBase mounted piezoelectric transducer assembly having intermediate stress absorbing member
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4031502 *Apr 7, 1976Jun 21, 1977Etat FrancaisHydrophone with acoustic reflector
US4264788 *Jan 31, 1979Apr 28, 1981Princo Instruments, Inc.Damped ultrasonic detection unit
US4679179 *Mar 29, 1985Jul 7, 1987Raychem CorporationSonar detection apparatus
US4945276 *Apr 20, 1988Jul 31, 1990Den Norske Stats Oljeselskap A.S.Transducer for arranging in a fluid, particularly for the measurement of the flow-velocity of a fluid in a pipe, by transmitting/receiving sonic pulses
US6628047 *Feb 10, 1997Sep 30, 2003General Electric CompanyBroadband ultrasonic transducers and related methods of manufacture
US7542579 *Sep 15, 2005Jun 2, 2009Seiko Epson CorporationUltrasonic transducer, ultrasonic speaker, acoustic system, and control method of ultrasonic transducer
US7949143 *Apr 23, 2009May 24, 2011Seiko Epson CorporationUltrasonic transducer, ultrasonic speaker, acoustic system, and control method of ultrasonic transducer
US20130134833 *Jan 28, 2012May 30, 2013Samsung Electro-Mechanics Co., Ltd.Ultrasonic sensor and method for manufacturing the same
DE3505872A1 *Feb 20, 1985Nov 21, 1985Ngk Spark Plug CoUltraschallwandler
DE3505872C2 *Feb 20, 1985Jul 7, 1994Ngk Spark Plug CoUltraschallwandler mit in einem geschlossenen Gehäuse angeordnetem piezoelektrischen Element
DE102005001899A1 *Jan 14, 2005Jul 27, 2006Landis+Gyr GmbhUltraschallkopf
DE102005001899B4 *Jan 14, 2005Mar 8, 2007Landis+Gyr GmbhUltraschallkopf
EP0178346A1 *Oct 18, 1984Apr 23, 1986NGK Spark Plug Co. Ltd.Ultrasonic transducer
EP1681104A1 *Dec 23, 2005Jul 19, 2006Landis+Gyr GmbHUltrasonic transducer
WO1997008917A1 *Aug 29, 1996Mar 6, 1997Danfoss AsUltrasonic transducer
WO1997026646A1 *Jan 10, 1997Jul 24, 1997Grohmann GerhardDamped ultrasonic transducer
WO2011009513A1 *Jun 17, 2010Jan 27, 2011Valeo Schalter Und Sensoren GmbhDiaphragm and method for producing a diaphragm for an ultrasonic transducer
WO2014124306A1 *Feb 7, 2014Aug 14, 2014Flodesign Sonics, Inc.Bioreactor using acoustic standing waves
Classifications
U.S. Classification310/322, 367/162, 367/165, 310/326, 310/335
International ClassificationB06B1/06
Cooperative ClassificationB06B1/0677
European ClassificationB06B1/06E6E