Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3558892 A
Publication typeGrant
Publication dateJan 26, 1971
Filing dateNov 29, 1968
Priority dateNov 29, 1968
Publication numberUS 3558892 A, US 3558892A, US-A-3558892, US3558892 A, US3558892A
InventorsRobert L Seeley
Original AssigneeUs Navy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Constant light intensity servo control unit
US 3558892 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventor Robert L. Seeley San Diego, Calif. [21] Appl. No. 780,942 [22] Filed Nov. 29, 1968 [45] Patented Jan. 26, 1971 [73] Assignee the United States of America as represented by the Secretary of the Navy [54] CONSTANT LIGHT INTENSITY SERVO CONTROL UNIT 2 Claims, 2 Drawing Figs.

52 us. Cl 259 295 315/151; 323/20, 3 23/21 [51] Int. Cl G05d 25/00, G05f1/56, H05b 41/392 [50] Field of Search 315/151; 250/205; 317/20, 21

[56] References Cited UNITED STATES PATENTS 3,031,578 4/1962 Colburn 250/205 3,358,217 12/1967 Deelman 315/15IX 3,431,464 4/1969 Brischink 315/151X 3,456,155 7/1969 Buchanan 3l5/151X 3,473,084 1/1969 Dodge 315/151X Primary ExaminerRoy Lake Assistant Examiner-C. R. Campbell A!!0rneys-R. S. Sciascia, E. F. Johnston and T. G. Keough ABSTRACT: The present disclosure relates to devices for controlling the light intensity of a lamp, automatically, under unfavorable conditions. Electronic servocontrol circuits have been used to maintain associated circuit elements within certain operational limits. The disclosed invention, while generally being of this type, presents a rugged, compact, servocontrol unit designed to regulate the output of a storage battery to ensure a particular light intensity of a lamp contained in a pressure-resistant housing. Precise light intensity regulation, to a degree far in excess of that discernible by the human eye, is necessary where a lamp provides a source of illumination for a remotely located nephelometer, an instrument for determining the concentration or particle size of suspensions by means of transmitted or reflected light. Such precise light intensity regulation is achieved by a serially connected control unit formed of a pair of parallel power transistors controlled by a first and a second feedback loop coupled to their bases. The first feedback loop compares a desired potential provided by a Zener diode to the output of the control unit and develops a first control signal that functions to change the bias on the two parallel transistors until the output of the control unit substantially equals the desired potential. A second feedback loop, having a photocell positioned to receive impinging radiation from the lamp, produces an output signal indicative of the lamps radiation intensity. A predetermined lamp intensity, causing the photocell to give a predetermined resultant signal, causes no current feedback to the control unit. A resultant signal caused by a deviation from the predetermined lamp intensity results in the creation and the transfer of a second signal to the control unit and consequent regulation of the lamps intensity. Thus, a circuit ensuring internal potential regulation, as well as regulation of a lamps intensity caused by deterioration of the lamps elements, provides more stable and precise light intensity regulation than contemporary circuits.

CONSTANT INTENSITY /9 INTENSITY SAMPLER y INVERTING AMPLIFIER sissslasz SAMPLER v94 ADDER COMPARATOR VOLTAGE VOLTAGE STANDARD CURRENT ADDER INVENTOR. ROBERT L. SEE'LEY SOURCE PATE 'NTE D m6 |97| CURRENT IONSTANT LIGHT INTENSITY SERVO CONTROL UNIT BACKGROUND OF THE INVENTION The inventionis adapted specifically, but not exclusively, for deep sea operations requiring a self-contained housing enclosing a power voltage source, regulating circuitry, and a lamp, all remotely located from supervisory control circuitry for providing a highly stable source of light at a given light intensity. Heretofore such light intensity, used. with undersea photography or for scientific measurements, has been provided by placing a photocell in the radiation path of a source of light and noting changing variations in the radiant light on a connected ammeter, that is to say, as the intensity of the light varied, the reading on the ammeter varied. An operator, upon observing the ammeters fluctuation,'would change the setting of a potentiometer connected in series with a source of potential and the lamp to bring the intensity of the light back to the desired level, At great depths pressures usually prohibit first hand observation, or, if a pressurized habitat were available to protect an observer from the crushing pressures, electrical connections permitting adjustment of the light intensity unit must pierce the shell of the habitat, thereby greatly weakening its structural strength and greatly increasing its cost. In additiori to the aforementioned disadvantages, an externally located photocell would be susceptible to damage and may incorrectly give readings representative of light intensity due to water cloudiness between the cell and the monitored lamp. All the present voltage regulation systems fail to provide a compact, two-feedback loop voltage regulation systems fail to pro vide a compact, two circuit, including a hermetically sealed photocell and serially connected power transistors mounted on aheat sink for regulating an interconnected lamp coupled to asource of potential. i

SUMMARY OF THE INVENTION -,The present invention is directed to providing an apparatus for controlling the light intensity of a lamp and includes a control unit-having a pair of parallel-connectedtransistors forming an adjustable impedance, serially'connecting a source of potential to a lamp. A first aid and a second feedback circuit monitor the output from the control unit to respectively provide a coarse control signal yielding a desired potential and a fine control signal for precisely adjusting the radiation intensi- 'ty of the lamp. -By adding the. coarse and fine control signals and feeding the added signals to the control unit, such desired light intensity is achieved.

It is a prime object of the instant invention to provide a lamp intensity regulation circuitpermitting superior regulation as compared to contemporary circuits.

- Another object of the instant invention is to provide a circuit permitting precise lamp intensity regulation requiring no outside supervision ormanipulation.

Yet another object is to provide a compact regulation circuit adapted to operate under severe environmental handicaps.

Still another object is to provide-a regulation circuit having a coarse control feedback and a find. control feedback additively enabling a more precise output control.

BRIEF DESCRIPTION OF THE DRAWINGS 7 FIG. I shows a block diagram of the preferred embodiment of the invention;

. FIG. 2 shows a schematic diagram of the FIG. 1 block diagram.

PREFERRED EMBODIMENT OF THE INVENTION Turning now to the drawings, the invention permits the inclusion of a battery or similar power source I l. a series potential control 12 and a flood lamp 13 within a watertight housing, not shownfor sake of simplicity,-without requiring outside control devices or remotely extending circuitry for regulating a precise light intensity of the flood lamp. This regulation is achieved by the unique electrical interaction of a first feedback loop and a second feedback loop generally designated by the arrows and reference characters 14 and 15, respectively.

Loop 14 is responsible for the generation of a first feedback signal, a coarse feedback control signal, fed to the series voltage control element to regulate the control element's output voltage to a desired level. Theloop includes a voltage sampler l6 bleeding off a portion of the output voltage and passing this sample to a comparator 17. A voltage standard source 18 passes a signal having a desired voltage magnitude to the comparator within which a comparison of the two voltages is made and a first control signal representative of the difference between the desired voltage magnitude and the sample voltage is fed to an adder 2l.

Simultaneously, a radiation intensity sampler 19, here an optical electric-transducing photocell, samples the light intensity of lamp 13. A signal representative of the sampled radiated intensity is passed to an inverting amplifier 20 and the resultant signal, a second control signal, is passed to adder 21. These two control signals, added to form a composite signal,

are amplified in a feedback amplifier 22 and passed to a con trol current adder 23. A current source 24, connected power source 11, passes an additive current to control current adder 23 to provide the proper biasing level within which the composite signal, when added to the additive current, can effectively vary the impedance of the series voltage control element voltage. I

The first loop is responsive to the output voltage of the control element to bring the output voltage to a desired potential established within the first feedback loop. In the second loop, however, the second control signal is generated from an optical-to-electrical conversion representative of the lightlights intensity. Empirically, it has been discovered that irrespective of the factthat if the potential impressed across a lamp is precisely regulated, the magnitude of light intensity is subject to fluctuation or diminishment caused by deterioration of the lamps reflective surfaces. This problem is especially prevalent in the instant invention where the lamp is used in a corrosive environment. Therefore, the second feedback loop is necessary to preserve a constant level of light intensity by providing a second second control signal representative of changing light intensity due to deterioration of the lamp. A hermetically sealed selenium photocell installed within the housing provides the necessary degree of light intensity control. However, since such a photocell has a linear response over a limited range of light intensity, the output potential provided by the first feedback loop is of a magnitude that ensures the lamps operation within this limited range.

Looking now at the schematic diagram in FIG. 2, the boxed in phantom, having identical reference characters as shown in FIG. 1, contain the principal circuit elements. The output current of the series voltage control is the sum of the current originating in current source 24 and the feedback current originating in feedback loops l4 and 15. When the output voltage is greater than a desired voltage established by the voltage standard source 18 or the light intensity is greater than a desired intensity determined by selective adjustment of a variable series resistor 25, the negative feedback current from the two loops lowers the control current passed from current adder 23 to the bases of parallel transistors 26 and 27 forming 'the series control elements. The lowering of the total control current passed to the series voltage control element lowers the output voltage impressed across lamp l3, schematically represented by a resistor. The voltage sampler l6, depicted as a potentiometer tapping off a portion of the series control elements output voltage, passes the sample to a comparator junction point designated by the numeral 17. A voltage standard source is established by a Zener diode having breakdown voltage equal to the desired voltage and this magnitude of voltage is fed to the comparator junction. It is readily observed that an over voltage transferred by the voltage sampler results in a negative feedback current being delivered to the feedback amplifier and a consequent lowering of the total control current passed to the series voltage control element. The voltage samplers transferring of an under voltage," with respect to the desired voltage as established by voltage standard source 18, results in a lesser amount of feedback current to permit a greater total control current transfer to the control electrodes of the two power transistors 26 and 27. Linear operation of the power transistors is ensured by the supporting heat sink 29. I

The output current from the intensity sampler, a hermetically sealed selenium photocell 19, is fed to a common base transistor 30 presenting a low impedance load and to a second transistor 31 functioning as an inverting amplifier. The output signal produced by the interconnected photocell circuit is passed to an adder 21 for algebraic addition to the first signal originating in the first feedback loop and results in the transfer of a composite signal to control current adder 23. Here, it

should be pointed out that the junction enclosed by the phantom box designated both 17 and 21, performs the dual function of being a voltage comparator 17 for the first feedback loop and as an adder 21 for the first control signal originating in the first feedback loop and the second control signal originating in the second feedback loop.

The -photocells constant monitoring of the flood lamp's radiated intensity permits a feedback indicative of lamp deterioration independent of fluctuations in output voltage of the power source of or of the series voltage control element. Thus, independent, dual control of the light intensity is simultaneously occurring to ensure a constant light intensity output.

It is understood that the invention has been described without giving representative values to circuit elements in FIG. 2. Given the values of a particular power source and a desired light intensity, the choice of circuit components operatively duplicating the inventive concept set forth in the present disclosure, is well within the purview of one skilled in the art and such changes and modifications may be made without departing from the scope of the invention as defined by appended claims.


1. An apparatus for controlling the light intensity of a lamp isolated from external control comprising:

a storage battery slmilarly isolated fromexternal 'control;

an adjustable impedance including first and second power transistors connected in parallel with their respective collectors electrically connected to said storage battery and their emitters electrically connected to said lamp for transferring an output signal thereto;

a first feedback means including a Zener diode having a breakdown voltage equal to a desired potential. a voltage sampler connected to said emitters bleeding off a portion of said output signal, and a voltage comparator coupled to said Zener diode and said voltage sampler for comparing said desired potential with said portion to pass a first signal representative of their deviation to the bases of said first and second transistors to adjust said impedance for ensuring the transfer of an output potential equal in magnitude to said desired potential; second feedback means including an internally carried photocell having a linear response over a limited range of light intensity to simultaneously generate a linear second signal representative of light intensity deviations from a desired light intensity caused by deterioration of said lamp, electrically connected to said bases; and means for adding said first signal and said second signal to produce a composite signal electrically connecting said bases to said first and second feedback means for additively controlling said impedance to provide a lamp potential ensuring said desiredlight intensity.

2. An apparatus according to claim 1 further including: a

source of current deriving its power from said source of potential and interposed between said adjustable impedance and

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3031578 *Oct 29, 1959Apr 24, 1962Beckman Instruments IncRegulated power supply
US3358217 *Jun 29, 1964Dec 12, 1967Philips CorpVoltage regulating circuit utilizing photoelectric control
US3431464 *Apr 20, 1966Mar 4, 1969Bbc Brown Boveri & CieVoltage regulation apparatus with an optical feedback
US3456155 *Apr 30, 1965Jul 15, 1969Advance Data Systems CorpPhotosensitive circuit for controlling the intensity of a lamp
US3473084 *Dec 6, 1967Oct 14, 1969Automatic Power IncConstant intensity lamp control with an optical feedback control
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3670202 *Jul 31, 1970Jun 13, 1972NasaUltrastable calibrated light source
US3675074 *Aug 6, 1970Jul 4, 1972Loewe Opta GmbhTransistorized quenching arrangement for a duration-controlled flash tube
US3833297 *Mar 13, 1972Sep 3, 1974Sears Roebuck & CoAutomatic brightness control for photographic projectors
US3917974 *Nov 23, 1973Nov 4, 1975Searle & CoScintillation camera brightness calibrating apparatus
US3941487 *Oct 18, 1974Mar 2, 1976Beckman Instruments, Inc.Colorimetric fluid analyzer
US3950640 *Apr 17, 1975Apr 13, 1976Xerox CorporationLamp control and lamp switch circuit for controlling light balance
US3986022 *Jun 4, 1973Oct 12, 1976Gilbert Peter HyattIllumination control system
US4009387 *Jul 19, 1976Feb 22, 1977Esquire, Inc.Automatic energy control lighting system with automatically variable dc source
US4236069 *Oct 16, 1978Nov 25, 1980Varo, Inc.Avalanche photodiode gain control system
US4342906 *Feb 2, 1978Aug 3, 1982Hyatt Gilbert PPulse width modulated feedback arrangement for illumination control
US4471385 *Dec 13, 1977Sep 11, 1984Hyatt Gilbert PElectro-optical illumination control system
US4481461 *Sep 30, 1982Nov 6, 1984Densetsukiki Industry Co., Ltd.Switching regulator
US4672457 *Sep 27, 1982Jun 9, 1987Hyatt Gilbert PScanner system
US4697709 *Sep 3, 1985Oct 6, 1987Delta Technology CorporationSorter for agricultural products
US4739396 *Sep 27, 1982Apr 19, 1988Hyatt Gilbert PProjection display system
US5398041 *Apr 27, 1990Mar 14, 1995Hyatt; Gilbert P.Colored liquid crystal display having cooling
US5432526 *Apr 27, 1990Jul 11, 1995Hyatt; Gilbert P.Liquid crystal display having conductive cooling
US5602617 *Mar 10, 1995Feb 11, 1997Eastman Kodak CompanyLight metering device with adjustable output
US6172491 *Sep 29, 1994Jan 9, 2001Robert Bosch GmbhRemote feeding device
US7498778 *Sep 15, 2003Mar 3, 2009International Rectifier CorporationORing circuit
US20060044709 *Sep 15, 2003Mar 2, 2006ScanpowerOring circuit
US20060144988 *Feb 18, 2004Jul 6, 2006Mitsui Mining & Smelting Co., Ltd.Device and method for transporting film carrier tape for mounting electronic components
WO1987005462A2 *Aug 13, 1987Sep 24, 1987Slagteriernes ForskningsinstitutApparatus for determining meat quality
WO1987005462A3 *Aug 13, 1987Feb 25, 1988Svend T OlesenApparatus for determining meat quality
U.S. Classification250/205, 323/269, 315/151, 323/275
International ClassificationH05B39/04
Cooperative ClassificationY02B20/14, H05B39/042
European ClassificationH05B39/04B2