Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3565804 A
Publication typeGrant
Publication dateFeb 23, 1971
Filing dateMar 30, 1970
Priority dateAug 23, 1965
Also published asDE1289355B, DE1289355C2, DE1545487A1, DE1545487B2, DE1545487C3, US3438757, US3574576
Publication numberUS 3565804 A, US 3565804A, US-A-3565804, US3565804 A, US3565804A
InventorsRobert Gordon Anderson, Lewis R Honnen
Original AssigneeChevron Res
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lubricating oil additives
US 3565804 A
Abstract  available in
Images(8)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 3,565,804 LUBRICATING OIL ADDITIVES Lewis R. Honnen, Petaluma, Calif., and Robert Gordon Anderson, Wassenaar, Netherlands, assignors to Chevron Research Company, San Francisco, Calif., a corporation of Delaware No Drawing. Continuation-impart of applications Ser. No. 408,686, Nov. 3, 1964, and Ser. No. 488,775, Sept. 20, 1965. This application Mar. 30, 1970, Ser. No. 23,959

Int. Cl. C07c 87/04; (107d 51/70; C10m 1/32 US. Cl. 25250 23 Claims ABSTRACT OF THE DISCLOSURE Hydrocarbon polyamines are provided having a long, substantially aliphatic, oil solubilizing hydrocarbon chain bonded to a dior higher polyamine which find use as detergents and dispersants in both lubricating oils and in fuels. The hydrocarbon group is normally branched and derived from natural sources or polyolefins,

CROSS-REFERENCES TO RELATED APPLICA- TIONS This application is a continuation-in-part of application Ser. No. 488,775, filed Sept. 20, 1965, and Ser. No. 408,686, filed Nov. 3, 1964.

BACKGROUND OF THE INVENTION Field of the invention The compounds of this invention are long chain hydrocarbon substituted polyamines, the amino groups being bonded to aliphatic carbon atoms. The hydrocarbon group is an oil solubilizing group relatively free of aromatic unsaturation.

These compounds are effective detergents and dispersants in both lubricating oils and fuels for internal combustion engines. In internal combustion engines, the presence of constricted openings and narrow tolerances in the areas of moving parts provides numerous opportunities for deposits to seriously reduce the operating efiiciency of the engines. The lubricating oil must be capable of maintaining sludge forming deposits dispersed in the oil, thus keeping the piston and piston rings relatively free of deposits. Also, sludge formation is minimized in the crankcase and in the areas where valves and gears operate.

In addition, the additives of this invention do not themselves contribute significantly to the formation of sludge and deposits, They are able to stably disperse depositforming materials in the oil medium, while avoiding any significant enhancement of the rate of formation of deposit-forming materials by their own degradation products.

Description of the prior art Patents of interest include the following. US. Pat. No. 3,182,024 is concerned with a N-amino alkyl or polyamino polyalkylene long chain hydrocarbon substituted pyrrolidine which finds use as a detergent in lubricating oil.

U.S. Pats. Nos. 3,031,505 and 3,189,652 are concerned with hydrocarbon substituted alkylene polyamines, primarily propane diamines and amine compounds up to C These compounds are used as reactants to be reacted with glycidyl halides followed by reaction with alkylene polyamines. The final product finds use in maintaining sediment-forming materials dispersed in fuels, The only exemplification are C straight chain aliphatic substituted propane diamines.

U.S. Pats. Nos. 2,267,204, 2,267,205, 2,361,457 and 2,891,850 are all concerned with low molecular weight polyamines.

SUMMARY OF THE INVENTION Long branched chain, primarily aliphatic, hydrocarbon substituted polyamines are provided of from about 600 to 10,000 average molecular weight which are efiective detergents in lubricating oils and fuels. The hydrocarbon group will normally be derived from mineral oils of high molecular weight or polyolefins by halogenation of the hydrocarbon and displacement of the halogen with an appropriate polyamine, normally free of unsaturation.

DETAILED DESCRIPTION OF THE INVENTION The compositions of this invention are high molecular weight branched chain aliphatic hydrocarbon N-substituted alkylene polyamines which are superior detergents and dispersants in both lubricating oils and hydrocarbonaceous fuels for internal combustion engines, being effective under wide variations in operating conditions. The compositions have average molecular weights in the range of about 600 to 10,000, more usually in the range of about 750 to 5,000. With the lower molecular weight hydrocarbon groups, the average number of groups will be greater than one. The hydrocarbon groups will normally be aliphatic, having from 0 to 2 sites of unsaturation, more usually from 0 to 2 sites of ethylenic unsaturation and preferably from 0 to 1 site of ethylenic unsaturation.

The hydrocarbon group will normally be derived from a polyolefin derived from olefins of from 2 to 6 carbon atoms (ethylene being copolymerized with an olefin of at least 3 carbon atoms), or from a high molecular weight petroleum-derived hydrocarbon.

For the most part, the compositions of this invention will have the following formula:

wherein:

U is alkylene of from 2 to 6 carbon atoms, more usually of from 2 to 3 carbon atoms, there being at least 2 carbon atoms between the nitrogen atoms;

a is an integer of from 0 to 10, usually of from 1 to 6,

and more usually of from 1 to 4;

b is an integer of from 0 to 1 and preferably 0;

a+2b is an integer of from 1 to 10, more usually an integer of from 1 to 6 and preferably an integer of from 1 to 4;

c is an integer or fractional number (when averaged over the entire composition) in the range of from 1 to 5, preferably 1 to 3, and equal to or less than the number of nitrogen atoms in the molecule, usually on the average less than the total number of nitrogen atoms in the molecule; and

R is an aliphatic or alicyclic branched chain hydrocarbon radical derived from petroleum hydrocarbons or olefin monomers of from 2 to 6 carbon atoms, preferably of from 3 to 4 carbon atoms, ethylene being copolymerized with a higher homologue (an olefin of at least 3 carbon atoms) and having from 0 to 2 sites of ali phatic unsaturation, more usually from 0 to 2 sites of ethylenic unsaturation and preferably from 0 to 1 site of ethylenic unsaturation having greater than 40 carbon atoms and not more than 300 carbon atoms, more usually 50 to 200 carbon atoms and preferably 60 to 200 carbon atoms.

The alkylene radical, indicated as U, will have from 2 to 6 carbon atoms, the nitrogens connected by U being separated by at least 2 carbon atoms. The alkylene group may be straight chain or branched chain, the remaining valences of the alkylene group being on different carbon atoms. Illustrative alkylene groups include ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, 1,2-propylene, 2-methy1-l,3-propylene, l,4-(2,3-dimethylbutylene), etc.

The hydrocarbon radical indicated by R may be aliphatic or alicyclic and, except for adventitious amounts of aromatic structure present in petroleum mineral oils, will be free of aromatic unsaturation. The hydrocarbon groups are derived from petroleum mineral oil or polyolefins, either homo-polymers or higher order polymers, of l-olefins of from 2 to 6 carbon atoms, ethylene being polymerized with a higher homologue. The olefins may be monoor polyunsaturated, but the polyunsaturated olefins require that the final product be reduced to remove substantially all of the residual unsaturation.

Illustrative sources for the high molecular weight hydrocarbons from petroleum mineral oils are naphthenic bright stocks. For the polyolefin, illustrative polymers include polypropylene, polyisobutylene, poly-l-butene, copolymer of ethylene and isobutylene, copolymer of propylene and isob-utylene, poly-l-pentene, poly-4-methyl-1- pentene, poly-l-hexene, poly-3-methylbutene-l, etc.

The hydrocarbon group will normally have at least 1 branch per 6 carbon atoms along the chain, preferably at least 1 branch per 4 carbon atoms along the chain, and particularly preferred that there be from 0.5 to 1 branch per carbon atom along the chain (at least 1 branch per 2 carbon atoms along the chain). These branched chain hydrocarbon groups are readily prepared by the polymerization of olefins of from 3 to 6 carbon atoms and preferably from olefins of from 3 to 4 carbon atoms. The addition polymerizable olefins employed are normally l-olefins. The branch will be of from 1 to 4 carbon atoms, more usually of from 1 to 2 carbon atoms and preferably methyl.

The above formula provides for alkylene polyamines and alkylene amines and polyamines attached to a piperazine ring. Therefore, when a and b are both 1 the formulae would be as follows:

NR2 H2 CHZNH CH1 CHzN with RX, where the R group will replace from one to two of the hydrogen atoms, a complex product would be obtained. There are three different nitrogen atoms which may react to form a mono-substituted product. The three isomers are:

(CHM

RNI'I CH2 CH NH CH2 CH N NH R 11202 NIIgCHzCHzllICHzCHzN NH and NHzGHzCHzNHOHzOHzN The disubstituted product would add three more compounds.

'In order to include all possible variations, the generic formula does not indicate to which nitrogen atom the R group and the H atoms are bonded. Rather, free valences are indicated by bars, and the total number of R groups and H atoms indicated next to the basic polyamine structure. The generic formula employed provides a simple means for including the possible variations that will occur when a polyamine is used having nonequivalent amine nitrogen atoms.

Looking at Example 1, infra, where a monopolyisobutenyl tetraethylene pentamine is prepared, for that compound, the generic formula:

would have a equal to 4, b equal to 0, 0 equal to l, U would be ethylene, and R would be a polyisobutenyl group of approximately 930 average molecular weight. The three possible mono (polyisobutenyl) tetraethylene pentamines would have the following formulae:

It is possible to prepare single compounds. With monopolyisobutenyl ethylene diamine, only one isomer can be formed:

where R is a polyisobutenyl group. With higher order polyamines, while it is possible to form a single isomer, as a practical matter, this will rarely be done.

In preparing the compositions of this invention, rarely will a single compound be employed. With both the polymers and the petroleum-derived hydrocarbon groups, the composition is a mixture of materials having varying structures and molecular weights. Therefore, in referring to molecular weight, viscosity average molecular weights are intended. Furthermore, when speaking of the particular hydrocarbon group, it is intended that the group include the mixture that is normally contained with materials which are commercially available; that is, polyisobutylene is known to have a range of molecular weights and may also include very small amounts of very high molecular weight materials. Furthermore, depending on the method of preparation, the end group of the polymer may vary and may be terminated, not only with an isobutene group, but also with a 1- or Z-butene group.

In addition the alkylene polyamines which are commercially available are frequently mixtures of various alkylene polyamines having one or two species dominating. Thus, in commercially available tetraethylene pentamine, there will also be small amounts of pentaethylene hexamine and triethylene tetramine. In referring to tetraethylene pentamine, for example, it is intended not only to include the pure compound, but those mixtures which are obtained with commercially available alkylene polyamines. Finally, as indicated, in preparing the compounds of this invention, where the various nitrogen atoms of the alkylene polyamine are not equivalent, the product will be a mixture of the various possible isomers.

As is evident from the above formula, the alkylene polyamines may have only one hydrocarbon substituent or may be polysubstituted with hydrocarbon radicals. The monosubstituted alkylene polyarnine compositions will have the following formula:

wherein U, a, b and R have been previously defined.

Illustrative compounds within the above formula are as follows: N-polyisobutenyl ethylene diamine, N-polypropenyl ethylene diamine, N poly(1 butenyl) ethylene diamine, N-(alternating copolymer of ethylene and isobutylene) ethylene diamine (alternating copolymers of ethylene and isobutylene may be achieved by the cationic polymerization of 4 methylpentene l), N-polypropenyl 2 aminoethylpiperazine, N polyisobutenyl 2 aminoethylpiperazine, N polypropenyl diethylene triamine, N- polyisobutenyl diethylene triamine, N poly(l-pentenyl) diethylene triamine, N polypropenyl trimethylene diamine, N polyisobutenyl trimethylene diamine, N polypropenyl di(trimethylene) triamine, N polyisobutenyl di(trimethylene) triamine, N-polyisobutenyl 1,2 propylene diamine, N polyisobutenyl di(1,2 propylene) triamine, N polypropenyl triethylene tetramine, N polyisobutenyl triethylene tetramine, N (alternating copolymer of ethylene and isobutylene) triethylene tetramine, N polypropenyl tetraethylene pentamine, N polyisobutenyl tetraethylene pentamine, N-polyiso butenyl pentaethylene hexamine, etc.

The polyhydrocarbon radical substituted alkylene polyarnine compositions have the following formula:

wherein U, a, b and R are as defined previously and d is a fractional or whole number greater than 1 and up to 5, more usually from about 1.2 to 4 and preferably from about 1.5 to 4, averaging over the entire composition.

(As indicated by the above formula, the number of hydrocarbon substituents need not be a whole number when averaging over the total composition; generally, a mixture will be obtained containing mono-, di-, and trior higher substituted molecules averaging out to a fractional or whole number.) The hydrocarbon groups may be the same or different, differing both as to molecular weight and structure. Normally, the hydrocarbon groups will be primarily the same structure and differ only as to molecular weight.

It is preferred with the shorter hydrocarbon chains ranging toward the lower end of the molecular weight range to have on the average more than one hydrocarbon group, particularly as the number of amine nitrogens per molecule increases.

Illustrative compounds coming within the above formula are as follows: N,N'-di(polypropenyl) diethylene triamine, N,N (polyisobutenyl) diethylene triamine, N,N' di(polyisobutenyl) triethylene tetramine, N,N' di (polypropenyl) tetraethylene pentamine, N,N' di(polyisobutenyl) tetraethylene pentamine, N,N,N" tri(polyisobutenyl) tetraethylene pentamine, N,N' di(polyisobutenyl) 2 aminoethylpiperazine, N,N' di(poly 1- butenyl) triethylene tetramine, N,N di(polyisobutenyl) di- (trimethylene) triamine, etc.

Usually, the compositions of this invention will have the following formula:

U is alkylene of from 2 to 3 carbon atoms (ethylene or propylene) and preferably ethylene;

a is an integer of from 1 to 5, more usually of from 1 c is an integer of from 1 to 5, more usually of from 1 to 3 and (on the average) equal to or less than the number of nitrogen atoms; and

R is a branched chain aliphatic hydrocarbon group having from 0 to 2 sites of olefinic unsaturation derived from olefins of from 2 to 6 carbon atoms (ethylene is copolymerized with an olefin of at least 3 carbon atoms) and preferably derived from olefins of from 3 to 4 atoms, being either a homopolymer or higher order polymer (co-, ter-, etc.) and having a molecular weight in the range of about 600 to 2800, more usually of from about 750 to about 2000. The preferred R groups are polypropylene, polyisobutylene or combinations thereof.

When 0 is equal to one, the alkenylene polyarnine will be mono-substituted. When 0 is greater than 1, usually averaging over the entire composition in the range of about 1.25 to 3, the alkylene polyarnine will normally be a mixture of monoand higher order substitution.

Commonly available alkylene polyamines are the ethylene polyamines having from 2 to 6 amino nitrogen groups. When these are substituted with a branch chain aliphatic hydrocarbon group, these compositions will have the following formula:

a is an integer of from 1 to 5, more usually from 1 to 4;

c is an integer or fractional number of from 1 to 4, more usually of from 1 to 3 and preferably being in the range of about 1 to 2; and

R is a branched chain aliphatic hydrocarbon group derived from polymerizing olefins of from 3 to 4 carbon atoms and having a molecular weight in the range of about 650 to 2800, more usually 750 to 2000. Preferred R s are polypropenyl, polyisobutenyl or combinations thereof, either mixtures or copolymers.

METHOD OF PREPARATION The compositions of this invention are readily prepared by combining an aliphatic or alicyclic halide with the desired amine in the proper mole proportions. The halide is prepared from the hydrocarbon by halogenation: ionically or free radically.

As already indicated, the hydrocarbon groups may be prepared by ionic or free radical polymerization of olefins of from 2 to 6 carbon atoms (ethylene must be copolymerized with another olefin) to an olefin of the desired molecular weight. The olefins which find use are ethylene, propylene, isobutylene, l-butene, l-pentene, 3--methyl-1- pentene, 4 methyl-l-pentene, etc., preferably propylene and isobutylene.

As previously indicated, there should be at least 1 propylene, isobutylene, l-butene, l-pentene, 3-methyl-lbranch per 4 carbons along the chain and preferably at least 1 branch per 4 carbons along the chain. The preferred olefins, propylene and isobutylene, have from 0.5 to 1 branch per atom along the hydrocarbon chain.

Alternatively, various naturally occurring materials may be used which have the desiredmolecular weight and aliphatic or alicyclic character.

The halogen may be introduced into the hydrocarbon molecule by various means known in the art. Most readily, either chlorine or bromine (halogen of atomic number 17-35) may be introduced by the free radical catalyzed halogenation of the hydrocarbon, or ionic addition to olefinic unsaturation. Various free radical catalysts may be used, such as peroxides, azo compounds, bromine, iodine, as well as light. Ionic catalysts are exemplified by ferric chloride. Methods of halogenation are well known in the art and do not require extensive exemplification or illustration here.

The amount of halogen introduced will depend on the particular hydrocarbon used, the desired amount of amine to be introduced into the molecule, the particular alkylene amine used, and the halogen used. The amount of halogen introduced will generally be in the range from about 1 to 5 halogen atoms per molecule, depending on the reactivity of the resulting halide. On a weight percent basis, the amount of halide will generally range from about 1 to 25, more usually from about 1 to 10.

The halohydrocarbon and alklylene polyamine or polyalkylene polyamine may be brought together neat or in the presence of an inert solvent, particularly a hydrocarbon solvent. The inert hydrocarbon solvent may be aliphatic or aromatic. Also, aliphatic alcohols may be used by themselves or in combination with another solvent, when capable of dissolving the reactants.

The reaction may be carried out at room temperature C.), but elevated temperatures are preferred. Usually, the temperature will be in the range of from about 100 to 225 C. Depending on the temperature of the reaction, the particular halogen used, the mole ratios and the particular amine, as well as the reactant concentrations, the time may vary from 1 to 24 hours, more usually from about 3 to 20 hours. Times greatly in excess of 24 hours do not particularly enhance the yield and may lead to undesirable degradation. It is therefore preferred to limit the reaction time to fewer than 24 hours.

The mole ratio of halohydrocarbon to alkylene amine will generally be in the range from about 0.2 to 10 moles of alkylene amine per mole of halohydrocarbon, more usually 0.5 to 5 moles of alkylene amine per mole of halohydrocarbon. The mole ratio will depend upon the amount of halogen present in the halohydrocarbon, the particular halogen and the desired ratio of hydrocarbon to amine. If complete suppression of polysubstitution of the alkylene polyamines is desired, then large mole excesses of the amine will be used.

Small amounts of residual halogen in the final composition are not deleterious. Generally, the residual halogen as bound halogen will be in the range of 0 to 10 weight percent of the composition. Small amounts of halogen may be present as the hydrohalide salt of the hydrocarbon substituted alkylene polyamines.

Generally, the hydrocarbons used will have aliphatic unsaturation. In particular instances, the amines may react in a way resulting in the elimination of hydrogen halide, introducing further aliphatic unsaturation into the hydrocarbon radical. Therefore, the hydrocarbon radicals usually will be olefinically unsaturated. However, the olefinic unsaturation does not significantly affect the utility of the product, and when available, saturated aliphatic halide may be used.

After the reaction has been carried out for a sufiicient length of time, the reaction mixture may be extracted with a hydrocarbon medium to free the product from any low molecular weight amine salt which has formed. The product may then be isolated by evaporation of the solvent. Further separation from unreacted hydrocarbon or purification may be carried out as desired, e.g., chromatography.

Depending on the particular application of the composition of this invention, the reaction may be carried out in the medium in which it will ultimately find use and be formed at concentrations which provide a concentrate of the detergent composition. Thus, the final reaction mixture may be in a form to be used directly upon dilution in lubricating oils or fuels.

PREPARATION OF SPECIFIC COMPOSITIONS The following examples are olfered by Way of illustration and not by way of limitation.

Example A Into a reaction flask was introduced 950 g. of polyisobutylene (approximate molecular weight:950) dissolved in 1,000 ml. of carbon tetrachloride. The mixture was 8 stirred and chlorine was introduced at a rate of 235-250 ml. per minute, the temperature being maintained at 0 C. After the reaction mixture had taken up 51 g. of chlorine, the introduction of chlorine was terminated, the carbon tetrachloride removed in vacuo and the chlorinated polyisobutylene isolated.

Example B Into a reaction flask was introduced 225 g. of N- bromo-succinimide, 750 g. of polyisobutylene (approximately 930 average molecular weight) and 750 ml. of carbon tetrachloride, the flask swept with nitrogen and the solution heated to 70 C. while maintaining a positive nitrogen pressure on the flask. To the solution was then added dropwise 0.5 g. of benzoyl peroxide in 50 ml. of carbon tetrachloride. At the end of the addition, the solution was cooled and the succinimide filtered off. The carbon tetrachloride was removed in vacuo. Analysis: wt. percent bromine=8.86, 8.80.

Example 1 Into a reaction flask was introduced 873 g. of bromopolyisobutlylene (polyisobutylene of approximately 930 average molecular weight brominated to 4.93 weight percent bromine) and 87 g. of tetraethylene pentamine (a mixture of compounds having the average composition of tetraethylene pentamine). The reaction was stirred for one-half hour and then heated to 185 C. for about 18 hours. At the end of this time, the mixture was allowed to cool, diluted with 3 volumes of n-hexane, and the hydrobromide salt permitted to settle. The supernatant liquid was then decanted and the remaining salt extracted with ethanol and water. After evaporation of the volatile material, the final product analyzed as follows: wt. percent nitrogen=l.1; wt. percent bromine=0.2.

Example 2 Into a reaction flask was introduced 800 g. of a chlorinated paraflinic base oil (average molecular weight approximately 570 chlorinated to approximately 6.4 weight percent) and g. of tetraethylene pentamine and the mixture heated at 185 C. for 6 hours. At the end of this time, the reaction mixture was cooled and diluted with 3 volumes of n-hexane and 1 volume of ethanol followed by dilute sodium carbonate and water washes. The mixture was then heated to reflux and dilute sodium carbonate added until the cloud point was reached, the phases were separated, the organic phase diluted with one volume of ethanol, and then the mixture extracted with water. The volatile products were then pumped from the organic phase. Analysis: wt. percent N=0.53; wt. percent basic N=0.36.

Example 3 Into a reaction flask was introduced 1,780 g. of brominated polyisobutylene (polyisobutylene of approximately 930 average molecular weight brominated to 8.6 weight percent bromine) and 350 g. of a mixture of polyethylene amines having an average composition of tetraethylene pentamine and allowed to stand overnight at ambient temperatures. The mixture was then heated at 150 C. for several hours (approximately 5 to 6), cooled and diluted with several volumes of n-pentane and allowed to stand. The solution was then concentrated to about one-half its original volume, about 1 liter of ethanol and about 1 liter of 10 percent aqueous sodium carbonate added. The phases were separated and the sodium carbonate extraction repeated, followed by washing the hexane phase with water. Volatile materials were removed in vacuo by heating the organic phase to C., leaving a residue of 1,369 g. Analysis: wt. percent nitrogen=2.26, 2.21; wt. percent basic nitrogen=1.09; wt. percent bromine=1.08, 0.99; molecular wt.=2,318 (determined by ThermoNAM, a differential vapor pressure technique).

Example 4 Into a reaction flask was introduced 433 g. of chlorinated polyisobutylene (polyisobutylene of approximately 950 average molecular weight chlorinated to 9.3 weight percent chlorine) and 240 g. of alkylene polyamine having an average composition of tetraethylene pentamine and 640 ml. of benzene added. The mixture was heated to reflux and the benzene distilled off. The residue was then heated at 150 C. for 4 hours. After cooling the reaction mixture and diluting with mixed hexanes, 200 ml. of ethanol was added and the organic phase extracted with 10 weight percent aqueous sodium carbonate, the phases separated and the extraction of the organic phase repeated, the phases separated again and finally the organic phase washed with water. The volatile materials were then removed in vacuo. Analysis: wt. percent nitrogen=4.66, 4.76; wt. percent chlorine=3.16; molecular wt. (ThermoNAM) 1,318.

Example 5 Into a pressure vessel was introduced 1,500 ml. of a solution of 5 parts of chlorinated polyisobutylene (approximately 1,300 molecular weight) and 2 parts of benzene (the solution analyzing to 3.66 weight percent chlorine) and 300 g. of ethylene diamine (the vessel sealed and heated at 150 C. with rocking overnight). The vessel was then allowed to cool, vented and to the reaction mixture was added an equal volume of n-hexane and a one-third volume of ethanol, the resulting mixture being heated to reflux. Approximately one-third volume of water was then added, the phases separated and the hydrocarbon phase isolated. The volatile materials were removed in vacuo (and the residue analyzed). Analysis: wt. percent nitrogen=1.82, 1.83; wt. percent basic nitrogen=1.65, 1.63.

Example 6 Into a reaction flask was introduced 3,000 g. of a 70 weight percent solution in benzene of chloropolyisobutylene (polyisobutylene of approximately 1,300 molecular weight chlorinated to 4.3 weight percent chlorine) and 210 g. of alkylene polyamine having an average composition of triethylene tetramine and the mixture heated to reflux, the benzene stripped off and the mixture further heated at 170 C. for 4 hours. At the end of this time, the mixture was allowed to cool, and then diluted with equal volumes of mixed hexanes and absolute ethanol, heated to reflux and then one-third volume of weight percent aqueous sodium carbonate added. The phases Were separated, and the organic phase washed with water and then the volatile materials removed in vacuo. Analysis: wt. percent nitrogen=1.44; wt. percent basic nitrogen=0.89; wt. percent chlorine=1.45; molecular weight (Thermo NAM)=2,419, 2,371.

Example 7 Following the procedure described in Example 6, 1,500 g. of a 70 weight percent solution in benzene of chloropolyisobutylene (polyisobutylene of approximately 950 molecular weight chlorinated to -10 weight percent) and 155 g. of diethylene triamine were combined. Analysis: wt. percent nitrogen=l.59, 1.60; wt. percent basic nitrogen=0.96, 0.97.

Example 8 Into a reaction flask was introduced 800 g. of benzene, 846 g. of chlorinated polyisobutylene (polyisobutylene of approximately 950 molecular weight chlorinated to 5.6 weight percent) and 300 g. of alkylene polyamine having an average composition of triethylene tetramine and the mixture heated to reflux and benzene gradually stripped oil. The temperature was then increased to 175 C. and maintained for 3.5 hours. After allowing the mixture to cool, equal volumes of both mixed hex-anes and 95 percent ethanol were added and the resulting solution separated into 2 equal portions. One of the portions was allowed to sit in a separatory funnel and the alcoholic phase permitted to separate. The hydrocarbon portion was separated from the alcoholic portion, washed with 10 weight percent aqueous sodium carbonate, followed by washing with water, and the volatile materials then removed in vacuo. Analysis: wt. percent nitrogen=3.03, 3.06; wt. percent basic nitrogen=2.26, 2.28.

Example 9 Into a reaction flask was introduced 600 g. of chloropolyisobutylene (polyisobutylene of approximately 950 molecular weight chlorinated to 5.6 weight percent), 550 m1. of benzene and 220 g. of alkylene polyamine of the average composition of triethylene tetramine and the mixture allowed to stand at ambient temperatures for 2 days. The benzene was then distilled ofl, and the temperature of the mixture raised to C. and maintained for 4 hours. The usual extraction procedure using mixed hexanes and ethanol, followed by sodium carbonate and water washes was carried out and the volatile materials then removed in vacuo. Analysis: wt. percent nitrogen: 4.10, 4.05; wt. percent basic nitrogen=3.07; wt. percent chlorine=0.57; molecular wt. (ThermoNAM)=1,5l0.

Example 10 Following the procedures of the previous examples, 1,500 g. of chloropolyisobutylene (polyisobutylene of approximately 2,700 molecular weight chlorinated to 6.11 weight percent chlorine) was combined with 350 g. of alkylene polyamine having an average composition of tetraethylene pentamine in one liter of benzene. Analysis: wt. percent nitrogen=1.53, 1.53.

Example 11 Following the procedures of the previous examples, 1,423 g. of chloropolyisobutylene (polyisobutylene of approximately 950 average molecular weight chlorinated to approximately 5 weight percent chlorine) was combined with 286 g. of an alkylene polyamine having an average composition of nonaethylene decamine (DowAmine 400 provided by the Dow Chemical Co.) in 1.4 liters of benzene. Analysis: wt. percent nitrogen=4.14, 4.20.

Example 12 Following the procedure of the previous examples, 600 g. of chloropolyisobutylene (polyisobutylene of approximately 2,700 average molecular weight chlorinated to about 2 weight percent chlorine) was combined with 40 g. of alkylene polyamine having an average composition of tetraethylene pentamine in 540 ml. of benzene. Analysis: wt. percent nitrogen=0.99; molecular weight (ThermoNAM) =approximately 4,400.

As already indicated, the compositions of this invention find a wide variety of uses under a wide variety of conditions. The subject compositions find use as detergents and dispersants in lubricating oils for internal combustion engines, automobile engines, in two-cycle engines, as well as in fuels for internal combustion engines, particularly gasoline engines.

UTILITY Preferred compositions which find use in lubricating oils, both for the automobile and the diesel engines, will for the most part have the following formula:

U is alkylene of from 2 to 3 carbon atoms, preferably ethylene;

a is an integer of from 1 to 5, more usually from 2 to 4;

c is an integer or fractional number in the range of from 1 to 3, more usually in the range of 1 to 2, and equal to or less than the number of amine nitrogen atoms,

preferably on the average less than the number of amine nitrogen atoms; and

R is a branched chain aliphatic hydrocarbon radical derived by polymerization of olefins of from 3 to 4 carbon atoms and of from about 700 to 3,000 molecular weight, more usually from about 750 to 2,800 average molecular weight. The preferred R groups are polypropylene and polyisobutylene.

The detergents may be prepared as concentrates having as high as 80 weight percent of the detergent in lubricating oil. Generally, concentrates will vary from about to 80 weight percent. However, when the oil is to be used in the engine, the amount of the detergent generally will vary from about 0.1 to weight percent, more usually from 0.25 to 10 Weight percent. The lubricating oil compositions may therefore vary in the amount of detergent from 0.1 to 80 weight percent.

The compositions of this invention can be used with various base oils which find use as lubricating oils. Naturally occurring base oils include naphthenic base, parafiin base, asphaltic base and mixed base lubricating oils. Synthetic hydrocarbon oils include alkylene polymers, such as polymers of propylene, butylene, l-octene, and mixtures thereof and alkylated aromatic hydrocarbons. Nonhydrocarbon lubricating oils include: alkylene oxide type polymers; carboxylic acid esters such as octyl adipate, nonyl azelate, decyl suberate, butyl alkenylsuccinate, etc.; also, inorganic esters such as phosphates and silicates.

The above base oils may be used individually or in combination, whenever miscible or made so by the use of mutual solvents.

Preferably, the detergents of this invention are used in lubricating oils with an oxidation inhibitor and extreme pressure agent. The preferred inhibitors are metal dithiophosphates, particularly zinc 0,0-di(hydrocarbyl) phosphorodithioate, where the hydrocarbyl groups are generally from 4 to 36 carbon atoms. (Hydrocarbyl is an organic radical composed solely of carbon and hydrogen which may be aliphatic, alicyclic, aromatic or combinations thereof, e.g., aralkyl or alkaryl, and may be aliphatically saturated or unsaturated, e.g., ethylenic unsaturation.) Preferably, the hydrocarbyl groups are alkyl or alkaryl groups. Also, S-alkyl and S-polyalkyleneoxy esters of the phosphorodithioate may be used. Usually, about 6 to 50 mM./kg. of the phosphorodithioate is used in the oil.

Other additives may also be included in the lubricating oil. These additives include pour point depressants, viscosity index improvers, antiwear agents, rust inhibitors, corrosion inhibitors, other detergents and dispersants, etc. Generally, the total amount of additives exclusive of the detergent will be in the range of from about 0.1 to 5 weight percent of the lubricating oil composition.

A special situation in which the detergents of this invention are employed in lubricating oils are lubricating oils for two-cycle engines. In the two-cycle engine, the oil is incorporated with the fuel and burned directly in the piston chamber.

Preferred compositions for use in the two-cycle engine oil have the following formula:

wherein:

U is alkylene of from 2 to 3 carbon atoms, preferably ethylene;

a is an integer of from 1 to 4, preferably 2 to 4;

0 is an integer or fractional number of from 1 to 2,

preferably of from 1 to 1.5; and

R is a branched chain aliphatic hydrocarbon radical derived from a polyolefin obtained from olefins of from 3 to 4 carbon atoms and having a molecular weight in the range of about 650 to 3,000, more usually from about 750 to 2,000. The preferred polymers are polypropylene and polyisobutylene.

Generally, hydrocarbonaceous lubricating oils will be used, particularly petroleum derived, such as the mixed base, parafiinic and naphthenic base oils. Moreover, in place of phosphorodithioate inhibitors, other oxidative inhibitors such as bis(phenols), etc. may be used. When phosphorodithioate additives are used, concentrations in the oil may be as low as one mM./kg. Finally, a halide scavenger for the lead may also be added, usually to enhance the halide already present in the gasoline. Alkylene halide scavengers such as ethylene dibromide may be used with the detergent compositions of this invention, but aryl halides, e.g., dichlorobenzene, are preferred. Other additives, already described for the lubricating oils, may also be included.

EVALUATION In order to demonstrate the wide applicability of the compounds within the scope of this invention, various compounds were tested under a wide variety of conditions simulating a variety of situations in which lubricating oils are used. Three different engine tests were carried out of varying severity and varying demands on detergents to demonstrate the excellent elfectiveness of the compositions of this invention in lubricating oils.

The first test was the L-l Supp. 1 (MIL-L-2l04B, Supp. 1 Specifications). The oil was formulated containing 0.03 weight percent nitrogen and 8 mM./kg. of 0,0- dialkyl phosphorodithioate (alkyl of from 4 to 6 carbon atoms) in a Mid-Continent SAE 30 base oil. The test was carried out for 120 hours, the following table indicating the results.

TABLE I Grooves l Lands 3 Example: 1 4-0. 5-0-0 -0-75 2 4-1-2-1 435--25 Base oil 3 38-18-10-10 3 800-800-800 1 Measured on a rating of 0 to 100, 100 being completely filled. 2 Measured on a rating of 0 to 800, 800 being completely black. 3 Tested under the less severe L-1 conditions (MIL-L-2l04A).

1 Used the same rating as in Table I. 2 Rated 0 to 10, 10 being completely clean.

As a further test of the usefulness of the compositions of this invention in lubricating oils, a modified FL-2 test procedure, as described in June 21, 1948 report of the Coordinating Research Council, was employed. This test simulates automobile engine performance. A standard procedure requires the maintenance of a jacket temperature of 95 F. and a crankcase oil temperature of 155 F.

The Yamaha engine test uses a 75 cc. Model YG-1 motorcycle engine. The same conditions as described for the McCulloch engine are also used for the Yamaha engine.

The following table indicates the results obtained with a Variety of detergents in the McCulloch engine and in the Yamaha engine tests.

TABLE IV Wt. percent Ring in oil of sticking G.D. No. Land dep. candidate Exh. Piston Total detergent PV 1 Top 2nd Top 2nd Top 2nd ports 4 und. rating McCulloch 7 2 360 6 500 250 5 8. 3 37. 6 9 .5 360 8 700 640 7 7.8 30.8 Base 011 4 360 580 610 10 6. 0 28. 7

Yamaha Example 5 7 .6 360 F 10 640 620 12 6 2 30. 2 Base oil .0 360 160 700 750 15 1 4 19. 6

1 PVpiston varnish, 0-10, 10 being clean.

2 GD. No.-groovc deposit number, 0-10, 10 being clean. 3 Land dep.1and deposit number, 0-800, 800 being black. Exh. ports-exhaust ports. 0100% blocked.

5 Piston und.piston underhcad, 0-10, 10 being clean.

at 2,500 r.p.m. and 45 brake horsepower for 40 hours (closely simulating the relatively cold engine conditions which are normally experienced in city driving). At the end of each test, the engine is dismantled and the amount of total sludge (rating of 0 to 50, no sludge being 50) and clogging of the rings and oil screen (rating of 0 to 100, no clogging being 0) is determined. Also, the piston varnish is rated (rating of 0 to 10, no varnish being 10) and the total varnish is evaluated (rating of 0 to 50, no varnish being 50). The above test was modified by increasing the time and periodically raising the oil sump temperature from 165 F. to 205 F. and the water jacket temperature from 95 to 170 F.

Using a Mid-Continent SAE base stock, each condidate detergent was employed at concentrations to provide a constant weight percent of nitrogen; also included in the oil was 10 mM./kg. of zinc 0,0di(alkyl) dithiophos- It is evident from the foregoing results that the compositions of this invention, having a wide variety of structures and a wide variation in hydrocarbon to amine nitrogen ratio, provide effective detergency and dispersancy under a great variety of conditions. Not only are they eflective in the lubricating oils of the automobile engine and in the much hotter conditions in the diesel engine, but they are also effective in two-cycle engines as well. Universality of detergency is only difiiculty achieved and, of course, certain snbgenera within the subject invention will operate more eifectively under some conditions than they will under others. Therefore, as indicated, for particular uses narrower snbgenera are preferred.

For a description of the effectiveness of the compositions of this invention as fuel detergents, reference is made to U.S. Pat. No. 3,438,757, which issued on Apr. 15, 1969.

We claim:

1. A composition of the formula:

phate (alkyl of from 4 to 6 carbon atoms) and 2 mM./ (CHM kg. of zinc 0,0di(alkylphenyl) dithiophosphate (alkyl t: L U H is polypropylene of from 12 to 15 carbon atoms). The N following table indicates the results obtained. (OHM TABLE III Wt. percent of Clogging candidate Piston Total Total Time,

Example: detergent varnish varnish sludging Ring Screen hrs.

1 Base oil 1 1 Engine stopped in approximately 12 hours because it was unable to run any further.

The results demonstrate that the branched chain hydrocarbon substituted polyamines provide excellent versatility in providing detergency and dispersancy under broad gines were used: a Yamaha engine which is used on motorcycles, and a McCulloch engine which is used for chain saws.

In the McCulloch engine test, the engine is a Model 1-81 approximately 85 cc. displacement. The test is carried out for 10 hours, the engine being run at 7,000 r.p.m., at a temperature of 435 F. and with a wide open throttle. Using regular gasoline, a fuel-oil mixture in the ratio of 20:1 is prepared, the oil composition being a blend of detergent in SAE 40 grade base oil, such that wherein:

U is alkylene of from 2 to 6 carbon atoms;

a is an integer of from 0 to 10;

b is an integer of from 0 to 1;

(1+2!) is an integer of from 1 to 10;

c is an integer or fractional number in the range of 1 to 5, and equal to or less than the number of nitrogen atoms in the molecule; and

R is of from 40 to 300 carbon atoms and is an aliphatic or alicyclic branched chain hydrocarbon radical derived from petroleum hydrocanbons or polyolefins of monomers from 2 to 6 carbon atoms, with the proviso that when the monomer is ethylene, it is copolymerized with a higher homologue.

2. A composition according to claim 1, wherein:

a is of from 1 to 6;

the finished oil contained 0.126 weight percent nitrogen. a+2b is of from lto 6;

15 c is of from 1 to 3; and R is a polyolefin of from 50 to 200 carbon atoms.

3. A composition according to claim 1, wherein: b is and R is a polyolefin derived from olefins of from 3 to 4 carbon atoms. 4. A composition of the formula:

U is alkylene of from 2 to 3 carbon atoms;

a is an integer of from 1 to 5;

c is an integer of from 1 to 5 and, on the average, equal to or less than the number of nitrogen atoms; and

R is of from about 600 to 2,800 average molecular weight and is a branched chain aliphatic hydrocarbon polyolefin derived from olefins of from 2 to 6 carbon atoms, with that proviso that when the monomer is ethylene, it is copolymerized with a higher homologue. 5. A composition according to claim 4, wherein:

a is of from 1 to 4;

c is of from 1 to 3; and

R is a polyolefin derived from olefins of from 3 to 4 carbon atoms, and of about 600 to 2,800 average molecular weight. 6. A composition according to claim 5, wherein R is of from about 750m about 2,000 molecular weight.

7. A composition according to claim 4, wherein c is one.

8. A composition according to claim 4, wherein c is in the range of about 1.25 to 3.

9. A composition of the formula:

wherein:

a is in the range of 1 to 5;

c is in the range of 1 to 4 and equal to or less than the number of nitrogen atoms; and

R is a branched chain aliphatic hydrocarbon group derived from olefins of from 3 to 4 carbon atoms and of an average molecular weight in the range of about 650 to 2,800. 10. A composition according to claim 9, wherein:

a is in the range of 1 to 4;

c is in the range of 1 to 2; and

R is polypropenyl or polyisobutenyl of from about 750 to 2,000'molecular weight. 11. A polyisobutenyl ethylene diamine having from 1 to 2 polyisobutenyl groups of from about 650 to 2,800 average molecular weight.

12. A polyisobutenyl ethylene diamine having about 1 polyisobutenyl group of from about 650 to 2,800 average molecular weight.

13. A polypropenyl ethylene diamine having from 1 to 2 polypropenyl groups of from about 650 to 2,800 average molecular weight.

14. A polyisobutenyl diethylene triamine having from 1 to 2 polyisobutenyl groups of from about 650 to 2,800 average molecular weight.

15. A polypropenyl diethylene triamine having from 1 to 2 polypropenyl groups of from about 650 to 2,800 average molecular weight.

16. A polyisobutenyl triethylene tetramine having from 1 to 3 polyisobutenyl groups of from about 650 to 2,800 average molecular weight.

17. A polypropenyl triethylene tetramine having from 1 to 3 polyisobutenyl groups of from about 650 to 2,800 average molecular weight.

18. A polyisobutenyl tetraethylene pentamine having from 1 to 3 polyisobutenyl groups of from about 650 to 2,800 average molecular weight.

19. A polypropenyl tetraethylene pentamine having from 1 to 3 polyisobutenyl groups of from about 650 to 2,800 average molecular weight.

20. A lubricating oil composition having from 0.1 to weight percent of a composition according to claim 1 and an oil of lubricating viscosity.

21. A lubricating oil composition having from 10 to 80 weight percent of a composition according to claim 1 and an oil of lubricating viscosity.

22. A lubricating oil composition having from 0.1 to 80 weight percent of a composition according to claim 4 and an oil of lubricating viscosity.

23. A lubricating oil composition having from 0.1 to 80 weight percent of a composition according to claim 9 and an oil of lubricating viscosity.

References Cited UNITED STATES PATENTS 3,275,554 9/1966 Wagenaar 25250 3,438,757 4/1969 Honnen et al 4472X 3,454,555 7/1969 Van der Voort et al. 252-50X 3,485,601 12/1969 Mehtnedbasich 4472X PATRICK P. GARVIN, Primary Examiner US. Cl. X.R.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3671511 *Apr 23, 1970Jun 20, 1972Eddie G LindstromProcess for preparing polyolefin-substituted amines
US3844958 *Jun 21, 1967Oct 29, 1974Chevron ResHydrocarbyl amines for lubricating oil detergents
US3996024 *Jun 22, 1973Dec 7, 1976Chevron Research CompanyFuel composition
US4022589 *Oct 17, 1974May 10, 1977Phillips Petroleum CompanyFuel additive package containing polybutene amine and lubricating oil
US4100086 *Oct 26, 1976Jul 11, 1978Texaco Inc.Dispersant and lube oils containing same
US4200518 *Mar 22, 1979Apr 29, 1980Chevron Research CompanyHeat exchanger anti-foulant
US4505718 *Aug 20, 1982Mar 19, 1985The Lubrizol CorporationOrgano transition metal salt/ashless detergent-dispersant combinations
US4746447 *Jan 10, 1986May 24, 1988Chevron Research CompanyCarbonate treated hydrocarbyl-substituted polyamines
US4749505 *Jul 8, 1985Jun 7, 1988Exxon Chemical Patents Inc.Olefin polymer viscosity index improver additive useful in oil compositions
US4877416 *Nov 18, 1987Oct 31, 1989Chevron Research CompanySynergistic fuel compositions
US4973336 *Aug 11, 1989Nov 27, 1990Gheysens Jean Louis GFuel additives
US5292444 *Oct 2, 1992Mar 8, 1994Exxon Research And Engineering CompanyLube oil compositions containing fullerene-grafted polymers
US5292813 *Oct 2, 1992Mar 8, 1994Exxon Research & Engineering Co.Fullerene-grafted polymers and processes of making
US5334329 *Oct 7, 1988Aug 2, 1994The Lubrizol CorporationLubricant and functional fluid compositions exhibiting improved demulsibility
US5430105 *Nov 22, 1993Jul 4, 1995Exxon Chemical Patents Inc.Low sediment process for forming borated dispersant
US5455358 *Feb 9, 1994Oct 3, 1995Chevron U.S.A. Inc.Fuel compositions containing alkyl-substituted cyclic urea-substituted amines
US5457211 *Feb 10, 1994Oct 10, 1995Chevron U.S.A. Inc.Hydroxyalkyl-substituted cyclic urea-substituted amines
US5478367 *Oct 11, 1991Dec 26, 1995Exxon Chemical Patents Inc.Fuel oil compositions
US5492641 *Nov 21, 1994Feb 20, 1996Basf Aktiengesellschaftβ-aminonitriles and N-alkyl-1,3-propylenediamines and their use as fuel additives and lubricant additives
US5498809 *May 22, 1995Mar 12, 1996Exxon Chemical Patents Inc.Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5554310 *Jun 9, 1994Sep 10, 1996Exxon Chemical Patents Inc.Trisubstituted unsaturated polymers
US5558802 *Sep 14, 1995Sep 24, 1996Exxon Chemical Patents IncMultigrade crankcase lubricants with low temperature pumpability and low volatility
US5652202 *Aug 15, 1995Jul 29, 1997Exxon Chemical Patents Inc.Lubricating oil compositions
US5663130 *Mar 11, 1996Sep 2, 1997Exxon Chemical Patents IncPolymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5810894 *Dec 20, 1996Sep 22, 1998Ferro CorporationMonoamines and a method of making the same
US5811379 *Jun 17, 1996Sep 22, 1998Exxon Chemical Patents Inc.Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US5814111 *Aug 6, 1996Sep 29, 1998Shell Oil CompanyGasoline compositions
US5945388 *Aug 21, 1994Aug 31, 1999Lubrizol Adibis Holdings (Uk) Ltd.Lubricating oil compositions
US6030930 *May 14, 1997Feb 29, 2000Exxon Chemical Patents IncPolymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives
US6066603 *Jul 21, 1997May 23, 2000Exxon Chemical Patents Inc.Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6071319 *Dec 22, 1998Jun 6, 2000Chevron Chemical Company LlcFuel additive compositions containing aromatic esters of polyalkylphenoxyalkanols and aliphatic amines
US6136051 *Jul 5, 1996Oct 24, 2000Chevron Chemical CompanyMethod and composition for reduction of combustion chamber deposits
US6172015Jul 21, 1999Jan 9, 2001Exxon Chemical Patents, IncPolar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
US6299655 *Jun 30, 1993Oct 9, 2001The Lubrizol CorporationDiesel fuel compositions
US6346129Feb 6, 1995Feb 12, 2002Chevron Oronite Company LlcFuel compositions containing hydroxyalkyl-substituted polyamines
US6368370Feb 6, 1995Apr 9, 2002Chevron Oronite Company LlcFuel compositions containing hydroxyalkyl-substituted amines
US6423670Mar 14, 2001Jul 23, 2002Infineum International Ltd.Lubricating oil compositions
US6468948Jul 21, 1999Oct 22, 2002Infineum Usa L.P.Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6525004May 1, 2001Feb 25, 2003Infineum International Inc.Combustion improving additive for small engine lubricating oils
US6573223Mar 4, 2002Jun 3, 2003The Lubrizol CorporationLubricating compositions with good thermal stability and demulsibility properties
US6627584Jan 28, 2002Sep 30, 2003Ethyl CorporationAutomatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6660050May 23, 2002Dec 9, 2003Chevron U.S.A. Inc.Method for controlling deposits in the fuel reformer of a fuel cell system
US6689723Mar 5, 2002Feb 10, 2004Exxonmobil Chemical Patents Inc.Sulfide- and polysulfide-containing lubricating oil additive compositions and lubricating compositions containing the same
US6824671May 17, 2001Nov 30, 2004Exxonmobil Chemical Patents Inc.Low noack volatility poly α-olefins
US6827750Aug 24, 2001Dec 7, 2004Dober Chemical CorpControlled release additives in fuel systems
US6835218Aug 24, 2001Dec 28, 2004Dober Chemical Corp.Fuel additive compositions
US6855674Dec 2, 2002Feb 15, 2005Infineum International Ltd.Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
US6860241Aug 24, 2001Mar 1, 2005Dober Chemical Corp.Fuel filter including slow release additive
US6869917Aug 16, 2002Mar 22, 2005Exxonmobil Chemical Patents Inc.Functional fluid lubricant using low Noack volatility base stock fluids
US6878676May 8, 2001Apr 12, 2005Crompton CorporationNanosized particles of molybdenum sulfide and derivatives, method for its preparation and uses thereof as lubricant additive
US6949688Oct 6, 2004Sep 27, 2005Exxonmobil Chemical Patents Inc.Low Noack volatility poly α-olefins
US7001531Aug 24, 2001Feb 21, 2006Dober Chemical Corp.Sustained release coolant additive composition
US7581558Jun 5, 2007Sep 1, 2009Cummins Filtration Ip Inc.Controlled release of additives in fluid systems
US7591279Aug 16, 2002Sep 22, 2009Cummins Filtration Ip Inc.Controlled release of additives in fluid systems
US7615519Jul 19, 2004Nov 10, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
US7615520Mar 14, 2005Nov 10, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved antioxidant properties
US7618928Aug 31, 2005Nov 17, 2009Chevron Oronite Company LlcLubricating oil additive composition and method of making the same
US7632788Dec 12, 2005Dec 15, 2009Afton Chemical CorporationNanosphere additives and lubricant formulations containing the nanosphere additives
US7682526Dec 22, 2005Mar 23, 2010Afton Chemical CorporationStable imidazoline solutions
US7709423Nov 16, 2005May 4, 2010Afton Chemical CorporationAdditives and lubricant formulations for providing friction modification
US7737094Oct 25, 2007Jun 15, 2010Afton Chemical CorporationEngine wear protection in engines operated using ethanol-based fuel
US7767632Dec 22, 2005Aug 3, 2010Afton Chemical CorporationAdditives and lubricant formulations having improved antiwear properties
US7772167Dec 6, 2006Aug 10, 2010Afton Chemical CorporationTitanium-containing lubricating oil composition
US7776800Dec 9, 2005Aug 17, 2010Afton Chemical CorporationTitanium-containing lubricating oil composition
US7833953Aug 28, 2006Nov 16, 2010Afton Chemical CorporationLubricant composition
US7833955Nov 8, 2006Nov 16, 2010The Lubrizol CorporationViscosity modifiers in controlled release lubricant additive gels
US7867958Dec 11, 2006Jan 11, 2011Afton Chemical CorporationDiblock monopolymers as lubricant additives and lubricant formulations containing same
US7879774Dec 15, 2006Feb 1, 2011Afton Chemical CorporationTitanium-containing lubricating oil composition
US7879775Jul 14, 2006Feb 1, 2011Afton Chemical CorporationLubricant compositions
US7883638May 27, 2008Feb 8, 2011Dober Chemical CorporationControlled release cooling additive compositions
US7897548Mar 15, 2007Mar 1, 2011Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
US7897552Nov 30, 2007Mar 1, 2011Afton Chemical CorporationAdditives and lubricant formulations for improved antioxidant properties
US7902133Jul 14, 2006Mar 8, 2011Afton Chemical CorporationLubricant composition
US7938277May 27, 2008May 10, 2011Dober Chemical CorporationControlled release of microbiocides
US7947636Feb 27, 2004May 24, 2011Afton Chemical CorporationPower transmission fluids
US8008237Jun 18, 2008Aug 30, 2011Afton Chemical CorporationMethod for making a titanium-containing lubricant additive
US8048834Sep 17, 2007Nov 1, 2011Afton Chemical CorporationAdditives and lubricant formulations for improved catalyst performance
US8109287Jul 22, 2009Feb 7, 2012Cummins Filtration Ip, Inc.Controlled release of additives in fluid systems
US8183314Jun 26, 2009May 22, 2012Exxonmobil Research And Engineering CompanyEmulsion compositions with a polymeric emulsifier
US8207099Sep 22, 2009Jun 26, 2012Afton Chemical CorporationLubricating oil composition for crankcase applications
US8211840Dec 9, 2008Jul 3, 2012Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
US8278254Sep 10, 2007Oct 2, 2012Afton Chemical CorporationAdditives and lubricant formulations having improved antiwear properties
US8288326Sep 2, 2009Oct 16, 2012Chevron Oronite Company LlcNatural gas engine lubricating oil compositions
US8318643Jun 29, 2010Nov 27, 2012Cherron Oronite Technology B.V.Trunk piston engine lubricating oil compositions
US8333945Feb 17, 2011Dec 18, 2012Afton Chemical CorporationNanoparticle additives and lubricant formulations containing the nanoparticle additives
US8377856Sep 14, 2010Feb 19, 2013Afton Chemical CorporationExtended drain diesel lubricant formulations
US8415284Nov 5, 2009Apr 9, 2013Afton Chemical CorporationOlefin copolymer VI improvers and lubricant compositions and uses thereof
US8420583Jan 24, 2008Apr 16, 2013Afton Chemical CorporationOlefin copolymer dispersant VI improver and lubricant compositions and uses thereof
US8425772Jul 29, 2011Apr 23, 2013Cummins Filtration Ip, Inc.Filtration device with releasable additive
US8426608Jan 21, 2011Apr 23, 2013Chevron Oronite Company LlcProcess for preparation of high molecular weight molybdenum succinimide complexes
US8465560Feb 1, 2010Jun 18, 2013Butamax Advanced Biofuels LlcGasoline deposit control additive composition
US8476460Jan 21, 2011Jul 2, 2013Chevron Oronite Company LlcProcess for preparation of low molecular weight molybdenum succinimide complexes
US8486877Nov 18, 2009Jul 16, 2013Chevron Oronite Company LlcAlkylated hydroxyaromatic compound substantially free of endocrine disruptive chemicals
US8546311Mar 10, 2009Oct 1, 2013Volkswagen AktiengesellsschaftMethod for lubricating a clutch-only automatic transmission component requiring lubrication
US8549897Jul 24, 2009Oct 8, 2013Chevron Oronite S.A.System and method for screening liquid compositions
US8557752Mar 22, 2006Oct 15, 2013Afton Chemical CorporationLubricating compositions
US8586520Jun 27, 2012Nov 19, 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US8591747May 26, 2009Nov 26, 2013Dober Chemical Corp.Devices and methods for controlled release of additive compositions
US8632638Nov 15, 2011Jan 21, 2014Chevron Oronite Company LlcMethod for cleaning deposits from an engine fuel delivery system
US8633142Jul 29, 2009Jan 21, 2014Shell Oil CompanyPoly (hydroxycarboxylic acid) amide salt derivative and lubricating composition containing it
US8702968Apr 4, 2012Apr 22, 2014Chevron Oronite Technology B.V.Low viscosity marine cylinder lubricating oil compositions
US8702995May 27, 2008Apr 22, 2014Dober Chemical Corp.Controlled release of microbiocides
US8703666Jun 1, 2012Apr 22, 2014Exxonmobil Research And Engineering CompanyLubricant compositions and processes for preparing same
US8703669Feb 17, 2009Apr 22, 2014Afton Chemical CorporationUltra-low sulfur clutch-only transmission fluids
US8703680Nov 10, 2011Apr 22, 2014Chevron Oronite Company LlcLubricating composition containing friction modifier blend
US8709984Dec 15, 2009Apr 29, 2014Chevron Oronite Company LlcLubricating oil compositions
US8716202Dec 14, 2010May 6, 2014Chevron Oronite Company LlcMethod for improving fluorocarbon elastomer seal compatibility
US8741821Jan 3, 2007Jun 3, 2014Afton Chemical CorporationNanoparticle additives and lubricant formulations containing the nanoparticle additives
US8778857Aug 6, 2009Jul 15, 2014Afton Chemical CorporationLubricant additive compositions having improved viscosity index increase properties
US8796192Oct 29, 2010Aug 5, 2014Chevron Oronite Company LlcNatural gas engine lubricating oil compositions
US8841243Mar 31, 2010Sep 23, 2014Chevron Oronite Company LlcNatural gas engine lubricating oil compositions
US8927469Jul 16, 2012Jan 6, 2015Afton Chemical CorporationLubricant compositions containing a functionalized dispersant
US8933002Nov 10, 2011Jan 13, 2015Chevron Oronite Company LlcLubricating oil compositions
US8969265Mar 19, 2014Mar 3, 2015Chevron Oronite Company LlcLubricating oil compositions
US8969273Feb 18, 2009Mar 3, 2015Chevron Oronite Company LlcLubricating oil compositions
US9062269Mar 15, 2013Jun 23, 2015Exxonmobil Research And Engineering CompanyMethod for improving thermal-oxidative stability and elastomer compatibility
US9062271Oct 30, 2013Jun 23, 2015Chevron Oronite Technology B.V.Process for preparing an overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition
US9062273Aug 3, 2012Jun 23, 2015Chevron Oronite Company LlcLubricating oil compositions containing titanium complexes
US9068134Nov 28, 2012Jun 30, 2015Exxonmobil Research And Engineering CompanyMethod for improving engine wear and corrosion resistance
US9090847Mar 2, 2012Jul 28, 2015Afton Chemical CorporationLubricant compositions containing a heteroaromatic compound
US20040091654 *Nov 3, 2003May 13, 2004Fleetguard, Inc.Controlled release of additives in cooling systems
US20050019236 *Aug 16, 2002Jan 27, 2005Harold MartinControlled release of additives in fluid systems
US20050045527 *Oct 6, 2004Mar 3, 2005Goze Maria Caridad B.Low noack volatility poly alpha-olefins
US20050065043 *Sep 23, 2003Mar 24, 2005Henly Timothy J.Power transmission fluids having extended durability
US20050065044 *May 8, 2001Mar 24, 2005Migdal Cyril ANanosized particles of molybdenum sulfide and derivatives,method for its preparation and uses thereof as lubricant additive
US20050070446 *Sep 25, 2003Mar 31, 2005Ethyl Petroleum Additives, Inc.Boron free automotive gear oil
US20050101494 *Nov 10, 2003May 12, 2005Iyer Ramnath N.Lubricant compositions for power transmitting fluids
US20050101497 *Nov 12, 2003May 12, 2005Saathoff Lee D.Compositions and methods for improved friction durability in power transmission fluids
US20050192185 *Feb 27, 2004Sep 1, 2005Saathoff Lee D.Power transmission fluids
US20050202979 *Mar 9, 2005Sep 15, 2005Ethyl Petroleum Additives, Inc.Power transmission fluids with enhanced extreme pressure characteristics
US20050250656 *May 4, 2004Nov 10, 2005Masahiro IshikawaContinuously variable transmission fluid
US20060003905 *Jul 2, 2004Jan 5, 2006Devlin Cathy CAdditives and lubricant formulations for improved corrosion protection
US20140262950 *Mar 14, 2013Sep 18, 2014Exxonmobil Research And Engineering CompanyHydrohalogenation of vinyl terminated polymers and their functionalized derivatives for fouling mitigation in hydrocarbon refining processes
DE2937677A1 *Sep 18, 1979Apr 3, 1980Exxon Research Engineering CoSchmieroelzubereitung
DE102007023939A1May 23, 2007Jul 10, 2008Afton Chemical Corp.Nanoteilchenadditive und Schmiermittelformulierungen, die die Nanoteilchenadditive enthalten
DE102007056248A1Nov 22, 2007Jul 10, 2008Afton Chemical Corp.Additive und Schmiermittel-Formulierungen für verbesserte Antiverschleißeigenschaften
DE102007061422A1Dec 20, 2007Oct 2, 2008Afton Chemical Corp.Schmierölzusammensetzung für verbesserte Oxidations-,Viskositätsanstiegs-,Ölverbrauchs- und Kolbenablagerungskontrolle
DE102008005330A1Jan 21, 2008Aug 7, 2008Afton Chemical Corp.Schmiermittelzusammensetzung für Biodieselkraftstoffmotorverwendungen
DE102008005874A1Jan 24, 2008Sep 18, 2008Afton Chemical Corp.Additive und Schmiermittelformulierungen für verbesserte Antiverschleißeigenschaften
DE102008009042A1Feb 14, 2008Nov 13, 2008Afton Chemical Corp.Additive und Schmiermittelformulierungen für verbesserte Phosphor-Retentionseigenschaften
DE102009001301A1Mar 3, 2009Sep 24, 2009Audi AgVerfahren zum Schmieren einer Komponente nur für die Kupplung eines automatischen Getriebes, welche Schmierung erfordert
DE102009012567A1Mar 11, 2009Oct 1, 2009Afton Chemical Corp.Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent
DE102009019952A1May 5, 2009Dec 10, 2009Afton Chemical Corp.Kontrollierte Freisetzung von Additiven in Schmiermittelzusammensetzungen für Gasturbinen
EP0351964A1Jun 23, 1989Jan 24, 1990Exxon Chemical Patents Inc.Synergistic combination of additives useful in power transmitting compositions
EP0558835A1Jan 30, 1992Sep 8, 1993Albemarle CorporationBiodegradable lubricants and functional fluids
EP0568873A2 *Apr 23, 1993Nov 10, 1993BASF AktiengesellschaftBeta-aminonitriles and N-alkyl-1,3-propylenediamines as well as their use as fuel and lubricant additives
EP0611818A1Jul 30, 1991Aug 24, 1994Exxon Chemical Patents Inc.Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same
EP0683220A2May 18, 1995Nov 22, 1995Ethyl CorporationLubricant additive compositions
EP0695798A2Aug 2, 1995Feb 7, 1996The Lubrizol CorporationLubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound
EP0695799A2Jul 28, 1995Feb 7, 1996The Lubrizol CorporationCombination of a sulfer compound and specific phosphorus compounds and their use in lubricating compositions, concentrates and greases
EP0713908A1Nov 21, 1995May 29, 1996Ethyl CorporationPower transmission fluids
EP0769546A2Oct 17, 1996Apr 23, 1997The Lubrizol CorporationAntiwear enhancing composition for lubricants and functional fluids
EP1057811A1 *Apr 14, 2000Dec 6, 2000Chevron Chemical Company LLCPolyalkylpyrrolidines and fuel compositions containing the same
EP1331376A2Jan 22, 2003Jul 30, 2003Chevron Oronite Company LLCMethod for removing engine deposits in a reciprocating internal combustion engine
EP1531175A2Nov 8, 2004May 18, 2005Afton Chemical CorporationCompositions and methods for improved friction durability in power transmission fluids
EP1568759A2Feb 24, 2005Aug 31, 2005Afton Chemical CorporationPower transmission fluids
EP1640440A1Aug 30, 2005Mar 29, 2006Infineum International LimitedFriction and/or wear reduction in manual or automated manual transmissions
EP1930401A1Nov 21, 2007Jun 11, 2008Chevron Oronite Company LLCFunctional fluids comprising alkyl toluene sulfonates
EP1942177A2Dec 19, 2007Jul 9, 2008Chevron Oronite Company LLCLubricating oil providing enhanced piston cleanliness
EP1947164A1Dec 19, 2007Jul 23, 2008Chevron Oronite Technology B.V.Engine lubricant with enhanced thermal stability
EP1959003A2Jan 28, 2008Aug 20, 2008Infineum International LimitedSoot dispersants and lubricating oil compositions containing same
EP2000523A1Mar 26, 2008Dec 10, 2008Chevron Oronite S.A.Lubricating oil with enhanced protection against wear and corrosion
EP2031045A1Jul 29, 2008Mar 4, 2009Infineum International LimitedLubricant compositions with reduced phosphorous content for engines having catalytic converters
EP2039741A1Aug 8, 2008Mar 25, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved catalyst performance
EP2042582A2Aug 25, 2008Apr 1, 2009Afton Chemical CorporationSurface passivation and to methods for the reduction of fuel thermal degradation deposits
EP2067843A1Sep 12, 2008Jun 10, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved antioxidant properties
EP2072611A1Nov 11, 2008Jun 24, 2009Afton Chemical CorporationLubricant composition suitable for engines fueled by alternate fuels
EP2075264A1Dec 4, 2008Jul 1, 2009Infineum International LimitedMethod of forming polyalkene substituted carboxylic acid compositions
EP2077316A2Dec 4, 2008Jul 8, 2009Infineum International LimitedLubricant compositions with low HTHS for a given SAE viscosity grade
EP2083024A1Sep 12, 2008Jul 29, 2009Afton Chemical CorporationOlefin copolymer dispersant VI improver and lubricant compositions and uses thereof
EP2083063A1Jan 14, 2009Jul 29, 2009Infineum International LimitedLubricating oil composition
EP2090642A1Jan 27, 2009Aug 19, 2009Infineum International LimitedEngine lubrication
EP2116590A1Feb 2, 2006Nov 11, 2009Infineum International LimitedSoot dispersants and lubricating oil compositions containing same
EP2135925A1Apr 1, 2009Dec 23, 2009Afton Chemical CorporationMethod for making a titanium-containing lubricant additive
EP2143781A1Jun 2, 2009Jan 13, 2010Afton Chemical CorporationFriction modifiers for slideway applications
EP2154230A1Aug 8, 2008Feb 17, 2010Afton Chemical CorporationLubricant additive compositions having improved viscosity index increasing properties
EP2196522A1Oct 19, 2009Jun 16, 2010Afton Chemical CorporationAdditives and lubricant formulations having improved antiwear properties
EP2230292A1Nov 8, 2004Sep 22, 2010Afton Chemical CorporationMethods of lubricating transmissions
EP2236590A1Apr 6, 2009Oct 6, 2010Infineum International LimitedLubricating oil composition
EP2243816A1Jun 21, 2004Oct 27, 2010The Lubrizol CorporationGel additives for fuel that reduce soot and/or emissions from engines
EP2251401A2Apr 27, 2010Nov 17, 2010Afton Chemical CorporationLubricant formulations and methods
EP2261311A1May 4, 2010Dec 15, 2010Afton Chemical CorporationLubricating method and composition for reducing engine deposits
EP2272940A1Sep 13, 2002Jan 12, 2011Afton Chemical Intangibles LLCFuels compositions for direct injection gasoline engines
EP2278327A1Jul 23, 2010Jan 26, 2011Chevron Oronite S.A.System and Method for Screening Liquid Compositions
EP2284248A2Jul 10, 2003Feb 16, 2011The Lubrizol CorporationSlow release lubricant additives gel
EP2290041A2Jul 29, 2010Mar 2, 2011Infineum International LimitedA lubricating oil composition
EP2302020A1Jul 25, 2008Mar 30, 2011Innospec LimitedUse of additives for improving oxidation stability of a fuel oil composition
EP2302023A2Oct 2, 2003Mar 30, 2011R.T. Vanderbilt Company, Inc.Synergistic organoborate compositions and lubricating compositions containing same
EP2325291A1Oct 20, 2010May 25, 2011Afton Chemical CorporationOlefin Copolymer VI improvers and lubricant compositions and uses thereof
EP2366762A1Oct 2, 2003Sep 21, 2011R.T. Vanderbilt Company Inc.Synergistic organoborate compositions and lubricating compositions containing same
EP2371933A1Feb 1, 2007Oct 5, 2011The Lubrizol CorporationTartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
EP2371935A1Feb 24, 2011Oct 5, 2011Afton Chemical CorporationLubricant compositions for improved engine performance
EP2402421A2Jun 22, 2011Jan 4, 2012Chevron Oronite Technology B.V.Trunk Piston Engine Lubricating Oil Compositions
EP2436753A1Oct 2, 2003Apr 4, 2012R.T. Vanderbilt Company Inc.Synergistic organoborate compositions and lubricating compositions containing same
EP2455406A1Nov 6, 2007May 23, 2012The Lubrizol CorporationQuaternary Ammonium Salt of a Polyalkene-Substituted Amine Compound
EP2460870A1Oct 2, 2003Jun 6, 2012R.T. Vanderbilt Company, Inc.Synergistic organoborate compositions and lubricating compositions containing same
EP2489637A1Feb 15, 2012Aug 22, 2012Afton Chemical CorporationCerium oxide nanoparticle additives and lubricant formulations containing the nanoparticle additives
EP2524958A1May 14, 2012Nov 21, 2012Afton Chemical CorporationLubricant compositions containing a heteroaromatic compound
EP2557144A1Aug 10, 2012Feb 13, 2013Afton Chemical CorporationLubricant compositions containing a functionalized dispersant
EP2604676A1Dec 17, 2012Jun 19, 2013Chevron Oronite Technology B.V.Trunk piston engine lubricating oil compositions
EP2687582A1Jun 28, 2013Jan 22, 2014Afton Chemical CorporationLubricant compositions for direct injection engines
EP2727984A1Sep 13, 2013May 7, 2014Infineum International LimitedMarine engine lubrication
EP2735603A1Oct 16, 2013May 28, 2014Infineum International LimitedMarine engine lubrication
EP2765179A1Jan 7, 2014Aug 13, 2014Infineum International LimitedMarine engine lubrication
EP2851412A1Sep 4, 2014Mar 25, 2015Infineum International LimitedMarine engine lubrication
WO1991003529A1 *Sep 8, 1989Mar 21, 1991Chevron ResSynergistic fuel compositions
WO1994024231A1 *Apr 11, 1994Oct 27, 1994Basf AgPoly-1-n-alkene amines and motor fuel and lubricant compositions containing them
WO1998047989A1Mar 19, 1998Oct 29, 1998Exxon Chemical Patents IncPower transmission fluids containing alkyl phosphonates
WO2000009634A1 *Aug 10, 1999Feb 24, 2000Ass OctelDiesel fuel compositions
WO2002010276A2Jul 30, 2001Feb 7, 2002Chor HuangPolymeric mixture useful as viscosity improver for lubricating oils
WO2008013698A1Jul 17, 2007Jan 31, 2008Exxonmobil Res & Eng CoMethod for lubricating heavy duty geared apparatus
WO2008060888A2Nov 6, 2007May 22, 2008Lubrizol CorpQuaternary ammonium salt of a polyalkene-substituted amine compound
WO2008154334A1Jun 6, 2008Dec 18, 2008Infineum Int LtdAdditives and lubricating oil compositions containing same
WO2009119831A1Mar 27, 2009Oct 1, 2009Fujifilm CorporationComposition and method for forming coating film
WO2010005947A2Jul 7, 2009Jan 14, 2010Innospec Fuel Specialties, LLCFuel composition with enhanced low temperature properties
WO2010093519A1Jan 27, 2010Aug 19, 2010Chemtura CorporationFatty sorbitan ester based friction modifiers
WO2010096325A1Feb 11, 2010Aug 26, 2010The Lubrizol CorporationAmine derivatives as friction modifiers in lubricants
WO2010096472A2Feb 17, 2010Aug 26, 2010Chevron Oronite Company LlcMethod for preventing exhaust valve seat recession
WO2010115594A1Mar 31, 2010Oct 14, 2010Infineum International LimitedMarine engine lubrication
WO2010136822A2Jun 1, 2010Dec 2, 2010Innospec LimitedMethod and use
WO2010139994A1Jun 1, 2010Dec 9, 2010Innospec LimitedImprovements in efficiency
WO2010147993A1Jun 15, 2010Dec 23, 2010Chevron Phillips Chemical Company LpOligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
WO2010149712A1Jun 23, 2010Dec 29, 2010Shell Internationale Research Maatschappij B.V.Lubricating composition
WO2011017186A1Jul 29, 2010Feb 10, 2011The Lubrizol CorporationCompositions with fast and slow release components
WO2011026990A1Sep 7, 2010Mar 10, 2011Shell Internationale Research Maatschappij B.V.Lubricating compositions
WO2011102835A1Feb 19, 2010Aug 25, 2011Toyota Jidosha Kabushiki KaishaWet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents
WO2011102836A1Feb 19, 2010Aug 25, 2011Infineum International LimitedWet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents
WO2011141731A1May 10, 2011Nov 17, 2011Innospec LimitedComposition, method and use
WO2011143051A1May 6, 2011Nov 17, 2011The Lubrizol CorporationTartaric acid derivatives in hths fluids
WO2011143418A1May 12, 2011Nov 17, 2011Exxonmobil Research And Engineering CompanyMethod for reducing one or more of deposits and friction of a lubricating oil
WO2012033668A1Aug 30, 2011Mar 15, 2012The Lubrizol CorporationHydroxychroman derivatives as engine oil antioxidants
WO2012051075A2Oct 7, 2011Apr 19, 2012Chevron Oronite Company LlcLubricating composition containing multifunctional borated hydroxylated amine salt of a hindered phenolic acid
WO2012076896A1Dec 8, 2011Jun 14, 2012Innospec LimitedImprovements in or relating to additives for fuels and lubricants
WO2012084906A1Dec 20, 2011Jun 28, 2012Rhodia OperationsFuel additive composition containing a dispersion of iron particles and a detergent
WO2012099736A2Jan 9, 2012Jul 26, 2012Chevron Oronite Company LlcImproved process for preparation of high molecular weight molybdenum succinimide complexes
WO2012163935A2May 30, 2012Dec 6, 2012Shell Internationale Research Maatschappij B.V.Liquid fuel compositions
WO2013003392A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyetheramines
WO2013003405A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyalkylene glycol mono ethers
WO2013003406A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLow viscosity engine oil with superior engine wear protection
WO2013012987A1Jul 19, 2012Jan 24, 2013The Lubrizol CorporationOverbased friction modifiers and methods of use thereof
WO2013013026A1Jul 19, 2012Jan 24, 2013The Lubrizol CorporationCarboxylic pyrrolidinones and methods of use thereof
WO2013055480A1Sep 12, 2012Apr 18, 2013Exxonmobil Research And Engineering CompanyLow viscosity engine oil compositions
WO2013055481A1Sep 12, 2012Apr 18, 2013Exxonmobil Research And Engineering CompanyHigh efficiency engine oil compositions
WO2013055482A1Sep 12, 2012Apr 18, 2013Exxonmobil Research And Engineering CompanyLubricating compositions
WO2013066915A1Oct 31, 2012May 10, 2013Exxonmobil Research And Engineering CompanyLubricants with improved low-temperature fuel economy
WO2013070376A2Oct 11, 2012May 16, 2013Vanderbilt Chemicals, LlcLubricant composition
WO2013074498A1Nov 13, 2012May 23, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013082206A1Nov 29, 2012Jun 6, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine wear and corrosion resistance
WO2013092533A1Dec 17, 2012Jun 27, 2013Total Raffinage MarketingAdditive compositions that improve the lacquering resistance of superior quality diesel or biodiesel fuels
WO2013096532A1Dec 20, 2012Jun 27, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013101256A2Dec 28, 2012Jul 4, 2013Butamax (Tm) Advanced Biofuels LlcCorrosion inhibitor compositions for oxygenated gasolines
WO2013120985A1Feb 15, 2013Aug 22, 2013Total Raffinage MarketingAdditives for improving the resistance to wear and to lacquering of diesel or biodiesel fuels
WO2013151911A1Apr 1, 2013Oct 10, 2013The Lubrizol CorporationBearing lubricants for pulverizing equipment
WO2013181318A1May 30, 2013Dec 5, 2013Exxonmobil Research And Engineering CompanyLubricant compostions and processes for preparing same
WO2013182581A1Jun 5, 2013Dec 12, 2013Evonik Oil Additives GmbhFuel efficient lubricating oils
WO2014008121A1Jun 28, 2013Jan 9, 2014Exxonmobil Research And Engineering CompanyEnhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
WO2014066344A1Oct 22, 2013May 1, 2014The Lubrizol CorporationDiesel detergent without a low molecular weight penalty
WO2014066444A1Oct 23, 2013May 1, 2014Exxonmobil Research And Engineering ComapnyFunctionalized polymers and oligomers as corrosion inhibitors and antiwear additives
WO2014088814A1Nov 21, 2013Jun 12, 2014The Lubrizol CorporationPyran dispersants
WO2015031043A1Aug 12, 2014Mar 5, 2015Lubrizol Advanced Materials, Inc.Non-fused aromatic dispersant composition
WO2015088893A1Dec 5, 2014Jun 18, 2015The Lubrizol CorporationOrganic salts of glyceride-cyclic carboxylic acid anhydride adducts as corrosion inhibitors
WO2015095336A1Dec 17, 2014Jun 25, 2015Chevron Phillips Chemical Company LpMethod for making polyolefins using aluminum halide catalyzed oligomerization of olefins
WO2015099819A1Apr 1, 2014Jul 2, 2015Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2015099820A1Apr 1, 2014Jul 2, 2015Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2015099821A1Apr 1, 2014Jul 2, 2015Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2015099907A1Nov 19, 2014Jul 2, 2015Exxonmobil Research And Engineering CompanyLow viscosity ester lubricant and method for using
WO2015113681A1Dec 4, 2014Aug 6, 2015Basf SePolycarboxylic-acid-based additives for fuels and lubricants