Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3572893 A
Publication typeGrant
Publication dateMar 30, 1971
Filing dateApr 14, 1969
Priority dateApr 14, 1969
Publication numberUS 3572893 A, US 3572893A, US-A-3572893, US3572893 A, US3572893A
InventorsAppel Arthur V, Bennett Harold F, Betz Howard T, Ohlhaber Ronald L, Pontarelli Donald A
Original AssigneeUs Navy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Steroscopic image display device
US 3572893 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventors Appl. No.

Filed Patented Assignee Harold F. Bennett Pasadena, Calif.;

Howard T. Betz, Chesterton, Ind.; Ronald L. Ohlhaber; Donald A. Pontarelli,

Arthur V. Appel, Chicago, Ill.

Apr. 14, 1969 Mar. 30, 1971 The United States of America as represented by the Secretary of the Navy STEROSCOPIC IMAGE DISPLAY DEVICE 2 Claims, 2 Drawing Figs.

U.S. Cl 350/130, 350/96, 350/131, 350/137, 350/138 Int. Cl G02b 27/22 Field of Search... 350/96 (B),

References Cited UNITED STATES PATENTS 7/1970 Chitayat 250/202 9/1965 Bradley 350/131UX 4/1966 Stein et a1. 250/60 6/1969 Minter..... 350/131 2/1970 Cole 350/96X Primary Examiner-David Schonberg Assistant ExaminerPaul R. Miller Attorneys-Edgar J. Brower, H. H. Losche and Paul S.

Collignon ABSTRACT: An image display system for an aircraft having first and second fiber optic bundles connecting separate periscopes and projection lens and having a first mirror for reflecting images from said projection lens to a spherical mirror which reflects these images into the eyes of an observer.

PATENTED man I97! 3,572,893

Q\ AX, ZI T 4 18 H l2 FIG. 2.


ATTORNEYS 1 STEROSCOPIC IMAGE DISPLAY DEVICE BACKGROUND OF THE INVENTION The present invention relates to a display system suitable for use in an aircraft for viewing an area that is normally not in an observers line of sight. For example, the area being viewed might be behind, beneath, or to the side of an observer.

Various devices have, in the past, been employed to provide views of remote areas by an observer. For example, in US. Pat. No. 3,205,303, which issued Sept. 7, 1965, to William E. Bradley, there is shown an indicator which is attached to a helmet of an observer. Position-sensing means are maintained in predetermined positions with respect to the observer's head to control the position of a remote pickup. The remote pickup supplies a video signal to the indicator which causes the indicator to display a scene viewed by the pickup.

Another remote viewing device is shown in US. Pat. No. 3,244,878,which issued Apr. 5, 1966, to Edward S. Stein and Ralph R. Stevenson. This device provides for the remote viewing of a stereoscopic X-ray picture which is transmitted to a viewer by means of a flexible light transmitting conduit. The unit provides a three-dimensional X-ray image while at the same time allowing for the convenience and safety of the operator by permitting him to view the picture free from the danger of exposure to radiation.

SUMMARY OF THE INVENTION One of the important design requirements for any aircraft cockpit device is that the device be kept small so as to utilize a minimum of space and add a minimum of weight. Smallness is desired so that a large number of devices can be used and so that one device will not block the view of another.

In the present invention, a stereoscopic picture is presented for viewing in an aircraft cockpit without the necessity of having a viewer or display panel which could block an observers view. Apair of optical pickups such as periscopes, are positioned in the direction of an area to be viewed, and fiber optic bundles are used to transmit the stereoscopic image to a first mirror which then reflects the stereoscopic image to a spheri cal mirror. The radius dimension of the spherical mirror is chosen such that the center of the sphere would be approximately where an observer's eyes would be positioned. The spherical mirror then forms two exit pupils in front of the mirror where the observer positions his eyes to see the stereoscopic image.

It is therefore a general object of the present invention to provide an improved device for viewing a stereoscopic image of a remote area which is normally'not in the line of view of an observer.

Other objects and advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a diagrammatic top view of a preferred embodi- DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawing, there are shown two optical pickups 11 and 12, which might be periscopes, or the like, the fiber optic bundles 13 and 14 connect pickups 11 and 12 to projection lens 15 and 16, respectively. Lens 15 and 16 project a stereoscopic image on the surface of mirror 17 which, in turn, reflects the image to aspheric mirror 18. The curvature of mirror 18 is such that two exit pupils 21 and 22 are formed in front of mirror 18 at a position approximately where an observer's eyes would be positioned. Ani observer, by positioning his eyes near exit pupils 21 and 22 obtains a stereoscopic view at the area to which optical picku s 11 and 12 are directed.

Although two fiber optic bun les 13 and 14 are shown in the drawing, it is feasible to employ a single fiber optic bundle and use a time sharing technique. Such a time-sharing system is shown and described in U.S. Pat. No. 3,303,739, which issued Feb. l4, 1967, to Anwar K. Chitayat.

As shown in FIGS. 1 and 2 of the drawings, the present invention permits stereoscopic vision of a remote area without having any obstructions near an observers head and without interfering with normal observer function, such as piloting an aircraft. The present invention permits full and continuous vision in a forward direction.

We claim:

1. A stereoscopic device for viewing a remote area comprismg,

first and second optical pickups oriented in the direction of said remote area, a first reflecting mirror, first and second projection lenses for projecting an image from said optical pickups to said first reflecting mirror, said first projectionlens being optically coupled to said first optical pickup by a first fiber optic bundle, said second projection lens being optically coupled to said second optical pickup by a second fiber optic bundle, and

an aspheric mirror positioned to receive images from said first reflecting mirror and reflect said images to first and second exit pupils whereby an observer can position his eyes near said exit pupils to obtain stereoscopic vision of said remote area.

2. A stereoscopic device for viewing a remote area as set forth in claim 1 wherein said first and second optical pickups are periscopes.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3205303 *Mar 27, 1961Sep 7, 1965Philco CorpRemotely controlled remote viewing system
US3244878 *Sep 19, 1963Apr 5, 1966StevensonStereoscopic chi-ray examination apparatus with light conductive rods to transmit the optical images
US3447854 *Aug 18, 1965Jun 3, 1969Kollsman Instr CorpThree-dimensional viewer
US3493284 *Dec 15, 1967Feb 3, 1970Us NavyVariable apertured radiating diffusing integrating cavity
US3519827 *Jul 11, 1967Jul 7, 1970Optomechanisms IncServomotor controlled positioning means for the optical pickup in stereo viewers using fiber optics
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3904289 *Jan 10, 1975Sep 9, 1975Us NavyFlight simulator visual display system
US3964818 *Mar 28, 1975Jun 22, 1976Humphrey Instruments, Inc.Remote stereo microscope with field mirror reflected ocular paths
US4623223 *May 20, 1985Nov 18, 1986Kempf Paul SStereo image display using a concave mirror and two contiguous reflecting mirrors
US4756601 *Nov 15, 1985Jul 12, 1988Jos. Schneider Optische Werke Kreuznach Gmbh & Co. KgThree-dimensional image-viewing apparatus
US4840455 *Mar 20, 1985Jun 20, 1989Paul Stuart Kempf And Pilar Moreno Family Trust3-dimensional optical viewing system
US5161054 *Dec 19, 1990Nov 3, 1992Texas Instruments IncorporatedProjected volume display system and method
US5552934 *Mar 18, 1994Sep 3, 1996Spm CorporationBackground reflection-reducing plano-beam splitter for use in real image projecting system
US5754344 *Oct 9, 1996May 19, 1998Canon Kabushiki KaishaHead-mounted stereoscopic image display apparatus
US5886818 *Nov 2, 1994Mar 23, 1999Dimensional Media AssociatesMulti-image compositing
US6318868Oct 1, 1999Nov 20, 2001Larussa Joseph A.Interactive virtual image store window
EP0170523A2 *Jul 30, 1985Feb 5, 1986Grumman Aerospace CorporationDisplaying information to aircraft pilots
EP0170523A3 *Jul 30, 1985Jun 25, 1986Grumman Aerospace CorporationDisplaying information to aircraft pilots
WO1993008496A1 *Oct 22, 1992Apr 29, 1993Arnon, TamarBiocular head-up display with separated fields
U.S. Classification359/462, 359/463, 359/472
International ClassificationG02B27/01
Cooperative ClassificationG02B27/01, G02B27/0101
European ClassificationG02B27/01A, G02B27/01