US3573646A - High stability emitter follower - Google Patents

High stability emitter follower Download PDF

Info

Publication number
US3573646A
US3573646A US842530A US3573646DA US3573646A US 3573646 A US3573646 A US 3573646A US 842530 A US842530 A US 842530A US 3573646D A US3573646D A US 3573646DA US 3573646 A US3573646 A US 3573646A
Authority
US
United States
Prior art keywords
emitter
emitter follower
output
transistor
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US842530A
Inventor
Pieter De Wit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Application granted granted Critical
Publication of US3573646A publication Critical patent/US3573646A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower

Definitions

  • an emitter follower amplifier is a single-stage degenerative amplifier in which the output is taken from across the emitter resistor.
  • This circuit is essentially an impedance matching device for matching a high impedance cir- SUMMARY OF THE INVENTION
  • the present invention utilizes a complementary pair of transistors arranged in an emitter follower configuration to provide a low impedance output which is substantially inde pendent of temperature.
  • the emitter follower circuit is biased to allow equal currents to flow through the transistors. Since one transistor is an NPN and the other is an PNP, the baseemitter voltage drops of the respective transistor cancel each other. Therefore, any temperature induced changes in the base-emitter junctions of these transistors will be in opposite directions and will cancel each other.
  • FIGURE is a schematic diagram of the high stability emitter follower.
  • FIG. 1 there is shown the schematic diagram of the high stability emitter follower utilizing an N PN and PNP transistor.
  • the input voltage is applied to the base 11 of transistor 14 which is an NPN transistor at terminal 10.
  • the collector 12 of transistor 14 which is coupled to terminal 15 receives the positive power supply voltage that is applied thereto.
  • the emitter 13 of transistor 14 is coupled to ground by means of emitter resistor 16.
  • the base 18 of transistor 21 which is a PNP transistor is directly connected to the emitter 13 of transistor 14.
  • the positive power supply voltage at terminal 15 is coupled to emitter 19 of transistor 21 by means of emitter resistor 17.
  • the collector 20 of transistor 21 is directly coupled to ground.
  • the output voltage of the high stability emitter follower is taken from terminal 22 which is directly coupled to emitter 19 of transistor 21.
  • the transistor 14 When a positive voltage is applied to terminal 10, the transistor 14 will begin to conduct. The voltage at the emitter 13 will begin to rise (go positive) and this voltage which is also applied to the base 18 of transistor 21 will cause transistor 21 to conduct. As transistor 21 begins to conduct the voltage at the emitter 19 decreases from substantially the positive power supply voltage which is applied at terminal 15 to a lower but positive value. When the initial circuit turn-0n perturbations have subsided and the transistors 14 and 21 are fully conducting, the base-emitter voltage drop of transistor 14 cancels the base-emitter drop of transistor 21. Therefore, the input voltage which is applied at terminal 10 is substantially equal to the output voltage that appears at terminal 22.
  • the base-emitter junctions of transistois 14, 21 will be affected in substantially the same manner by any increase 'or decrease in temperature thereby maintaining the corresponding cancellation of the respective base-emitter voltage dropsL- Therefore, for circuit applications where extremely stable operation over a temperature range is required, the high stability emitter follower which was described above will be found to be useful. Over the full military temperature range (-55 to l25 C.), the DC output drift is 2 millivolts. The following mathematical computation will more fully demonstrate the cancellation process which occurs within the circuit.
  • the output of the first stage (the emitter 13 of transistor 14) is given by:
  • V the voltage at the emitter 13 V,-,, the applied input voltage VE the base-emitter voltage drop of transistor 14.
  • An emitter follower apparatus for providing a stable output voltage over a wide temperature range comprising in combination'.
  • first emitter follower having a first predetermined voltage drop, said first emitter follower having a first input and first output;
  • a second emitter follower having a second predetermined voltage drop
  • said second emitter follower having a second input and second output
  • said first and second emitter followers being operated at substantially equal current levels
  • said first predetermined voltage drop being substantially equal to but opposite to said second predetermined voltage drop
  • said first input receiving signal, said first output being directly connected to said second input, and second output providing an output signal.
  • said first emitter follower comprises a transistor having a base, collector and emitter electrodes, said base electrode comprising said first input, said emitter electrode comprising said first output, said base and emitter electrodes forming a junction, and said junction having a first predetermined voltage drop.

Abstract

An emitter follower apparatus having a low impedance output which is independent of temperature by cancelling the voltage drifts due to base-emitter diode changes in two cascaded emitter followers.

Description

United States Patent Pieter De Wit Baltimore, Md. 842,530
July 17, 1969 Apr. 6, 1971 Inventor Appl. No. Filed Patented Assignee by the Secretary of the Air Force HIGH STABILITY EMI'I'IER FOLLOWER The United States of America as represented- [56] References Cited UNITED STATES PATENTS 2,963,656 12/1960 Parris 330/17 3,100,876 8/1963 Schulz 330/17 Primary Examiner-Roy Lake Assistant Examiner-Lawrence J. Dahl Attorneys-Harry A. Herbert, Jr. and George Fine ABSTRACT: An emitter follower apparatus having a low impedance output which is independent of temperature by cancelling the voltage drifts due to base-emitter diode changes in two cascaded emitter followers.
Patented April 6, 1971 INVENTOR. fire)? DE Wu BY x HIGH STABILITY EMITTER FOLLOWER BACKGROUND OF THE INVENTION Generally, an emitter follower amplifier is a single-stage degenerative amplifier in which the output is taken from across the emitter resistor. This circuit is essentially an impedance matching device for matching a high impedance cir- SUMMARY OF THE INVENTION The present invention utilizes a complementary pair of transistors arranged in an emitter follower configuration to provide a low impedance output which is substantially inde pendent of temperature. The emitter follower circuit is biased to allow equal currents to flow through the transistors. Since one transistor is an NPN and the other is an PNP, the baseemitter voltage drops of the respective transistor cancel each other. Therefore, any temperature induced changes in the base-emitter junctions of these transistors will be in opposite directions and will cancel each other.
It is one object of the invention, therefore, to provide an im proved high stability emitter follower apparatus having a substantially constant output voltage over a large temperature,
variation. g g V It is another object of the invention to provide an improved emitter follower having high stability when operated over a wide temperature range.
It is another object of the invention to provide improved emitter follower having substantially the same voltage which is applied to its input at its output.
These and other advantages, features and objects of the invention will become more apparent from the following description taken in connection with the illustrative embodiment in the accompanying drawing, wherein the FIGURE is a schematic diagram of the high stability emitter follower.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. 1, there is shown the schematic diagram of the high stability emitter follower utilizing an N PN and PNP transistor. The input voltage is applied to the base 11 of transistor 14 which is an NPN transistor at terminal 10. The collector 12 of transistor 14 which is coupled to terminal 15 receives the positive power supply voltage that is applied thereto. The emitter 13 of transistor 14 is coupled to ground by means of emitter resistor 16. The base 18 of transistor 21 which is a PNP transistor is directly connected to the emitter 13 of transistor 14. The positive power supply voltage at terminal 15 is coupled to emitter 19 of transistor 21 by means of emitter resistor 17. The collector 20 of transistor 21 is directly coupled to ground. The output voltage of the high stability emitter follower is taken from terminal 22 which is directly coupled to emitter 19 of transistor 21.
When a positive voltage is applied to terminal 10, the transistor 14 will begin to conduct. The voltage at the emitter 13 will begin to rise (go positive) and this voltage which is also applied to the base 18 of transistor 21 will cause transistor 21 to conduct. As transistor 21 begins to conduct the voltage at the emitter 19 decreases from substantially the positive power supply voltage which is applied at terminal 15 to a lower but positive value. When the initial circuit turn-0n perturbations have subsided and the transistors 14 and 21 are fully conducting, the base-emitter voltage drop of transistor 14 cancels the base-emitter drop of transistor 21. Therefore, the input voltage which is applied at terminal 10 is substantially equal to the output voltage that appears at terminal 22. It maybe noted that the base-emitter junctions of transistois 14, 21 will be affected in substantially the same manner by any increase 'or decrease in temperature thereby maintaining the corresponding cancellation of the respective base-emitter voltage dropsL- Therefore, for circuit applications where extremely stable operation over a temperature range is required, the high stability emitter follower which was described above will be found to be useful. Over the full military temperature range (-55 to l25 C.), the DC output drift is 2 millivolts. The following mathematical computation will more fully demonstrate the cancellation process which occurs within the circuit. The output of the first stage (the emitter 13 of transistor 14) is given by:
V =the voltage at the emitter 13 V,-,, the applied input voltage VE the base-emitter voltage drop of transistor 14.
The output of the second stage (transistor 21) which appears at terminal 22 is,
' where V thevoltage at emitter 19 v V the base-emitter voltage drop of transistor 21. Therefore, the base-emitter voltage drops of transistor 14, 21 cancel each other and the input voltage v,-,, equals the output voltage V,,,,,. The base-emitter diodes will track each other very closely when operated at substantially equal current levels. This may be accomplished by adjusting either emitter resistor 16 or 17.
The results of the stability test which was performed with this circuit are tabulated below. In the test circuit, the value of the emitter resistors 16, 17 was 50 K. ohms and the power supply voltage was +14 V DC. It may be noted that over the full temperature range the drift was 2 millivolts.
Temperature C It should be noted that this circuit provides a low impedance voltage source which is substantially independent of temperature.
lclaim:
1. An emitter follower apparatus for providing a stable output voltage over a wide temperature range comprising in combination'.
a first emitter follower having a first predetermined voltage drop, said first emitter follower having a first input and first output;
a second emitter follower having a second predetermined voltage drop, said second emitter follower having a second input and second output, said first and second emitter followers being operated at substantially equal current levels, said first predetermined voltage drop being substantially equal to but opposite to said second predetermined voltage drop, said first input receiving signal, said first output being directly connected to said second input, and second output providing an output signal.
2. An emitter follower apparatus as described in claim 1 wherein said first emitter follower comprises a transistor having a base, collector and emitter electrodes, said base electrode comprising said first input, said emitter electrode comprising said first output, said base and emitter electrodes forming a junction, and said junction having a first predetermined voltage drop.
3. An emitter follower apparatus as described in claim 1 wherein said second emitter follower comprises a transistor having a base, collector and emitter electrodes, said base electrode comprising said second input, said emitter electrode comprising said second output, said base and emitter electrodes forming a junction, and said junction having a second predetermined voltage drop.
5. An emitter follower apparatus as described in claim 3 wherein said transistor of said second emitter follower comprises a PNP device.

Claims (5)

1. An emitter follower apparatus for providing a stable output voltage over a wide temperature range comprising in combination: a first emitter follower having a first predetermined voltage drop, said first emitter follower having a first input and first output; a second emitter follower having a second predetermined voltage drop, said second emitter follower having a second input and second output, said first and second emitter followers being operated at substantially equal current levels, said first predetermined voltage drop being substantially equal to but opposite to said second predetermined voltage drop, said first input receiving signal, said first output being directly connected to said second input, and second output providing an output signal.
2. An emitter follower apparatus as described in claim 1 wherein said first emitter follower comprises a transistor having a base, collector and emitter electrodes, said base electrode comprising said first input, said emitter electrode comprising said first output, said base and emitter electrodes forming a junction, and said junction having a first predetermined voltage drop.
3. An emitter follower apparatus as described in claim 1 wherein said second emitter foLlower comprises a transistor having a base, collector and emitter electrodes, said base electrode comprising said second input, said emitter electrode comprising said second output, said base and emitter electrodes forming a junction, and said junction having a second predetermined voltage drop.
4. An emitter follower apparatus as described in claim 2 wherein said transistor of said first emitter follower comprises an NPN device.
5. An emitter follower apparatus as described in claim 3 wherein said transistor of said second emitter follower comprises a PNP device.
US842530A 1969-07-17 1969-07-17 High stability emitter follower Expired - Lifetime US3573646A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84253069A 1969-07-17 1969-07-17

Publications (1)

Publication Number Publication Date
US3573646A true US3573646A (en) 1971-04-06

Family

ID=25287554

Family Applications (1)

Application Number Title Priority Date Filing Date
US842530A Expired - Lifetime US3573646A (en) 1969-07-17 1969-07-17 High stability emitter follower

Country Status (1)

Country Link
US (1) US3573646A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898486A (en) * 1972-10-25 1975-08-05 Bosch Gmbh Robert Stabilized threshold circuit for connection to sensing transducers and operation under varying voltage conditions
US3969637A (en) * 1973-01-10 1976-07-13 Hitachi, Ltd. Transistor circuit
DE2636156A1 (en) * 1975-08-12 1977-02-17 Tokyo Shibaura Electric Co VOLTAGE FOLLOW-UP
US4354163A (en) * 1980-04-30 1982-10-12 Ford Aerospace & Communications Corporation High voltage buffer amplifier
EP0531903A2 (en) * 1991-09-11 1993-03-17 Kabushiki Kaisha Toshiba Television receiving apparatus
EP0608998A2 (en) * 1993-01-29 1994-08-03 National Semiconductor Corporation A unity-gain, wide bandwidth, bipolar voltage follower with a very low input current
EP0951142A2 (en) * 1998-04-14 1999-10-20 Eastman Kodak Company Cmos imager column buffer gain compensation circuit
EP2201686A1 (en) * 2007-10-17 2010-06-30 Autoliv ASP, INC. Voltage controlled oscillator with cascaded emitter follower buffer stages

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963656A (en) * 1959-05-26 1960-12-06 Burroughs Corp Temperature stable transistor amplifier
US3100876A (en) * 1960-04-28 1963-08-13 Hewlett Packard Co Transistor amplifier having low output noise

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963656A (en) * 1959-05-26 1960-12-06 Burroughs Corp Temperature stable transistor amplifier
US3100876A (en) * 1960-04-28 1963-08-13 Hewlett Packard Co Transistor amplifier having low output noise

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898486A (en) * 1972-10-25 1975-08-05 Bosch Gmbh Robert Stabilized threshold circuit for connection to sensing transducers and operation under varying voltage conditions
US3969637A (en) * 1973-01-10 1976-07-13 Hitachi, Ltd. Transistor circuit
DE2636156A1 (en) * 1975-08-12 1977-02-17 Tokyo Shibaura Electric Co VOLTAGE FOLLOW-UP
US4354163A (en) * 1980-04-30 1982-10-12 Ford Aerospace & Communications Corporation High voltage buffer amplifier
EP0531903A2 (en) * 1991-09-11 1993-03-17 Kabushiki Kaisha Toshiba Television receiving apparatus
EP0531903A3 (en) * 1991-09-11 1993-06-09 Kabushiki Kaisha Toshiba Television receiving apparatus
EP0608998A2 (en) * 1993-01-29 1994-08-03 National Semiconductor Corporation A unity-gain, wide bandwidth, bipolar voltage follower with a very low input current
EP0608998A3 (en) * 1993-01-29 1995-08-09 Nat Semiconductor Corp A unity-gain, wide bandwidth, bipolar voltage follower with a very low input current.
EP0951142A2 (en) * 1998-04-14 1999-10-20 Eastman Kodak Company Cmos imager column buffer gain compensation circuit
EP0951142A3 (en) * 1998-04-14 2003-01-29 Eastman Kodak Company Cmos imager column buffer gain compensation circuit
EP2201686A1 (en) * 2007-10-17 2010-06-30 Autoliv ASP, INC. Voltage controlled oscillator with cascaded emitter follower buffer stages
EP2201686B1 (en) * 2007-10-17 2015-01-07 Autoliv ASP, INC. Voltage controlled oscillator with cascaded emitter follower buffer stages

Similar Documents

Publication Publication Date Title
US3310688A (en) Electrical circuits
US3290520A (en) Circuit for detecting amplitude threshold with means to keep threshold constant
US2802067A (en) Symmetrical direct current stabilization in semiconductor amplifiers
US2986650A (en) Trigger circuit comprising transistors
US3673508A (en) Solid state operational amplifier
GB736063A (en) Transistor amplifier
GB798523A (en) Improvements relating to transistor amplifier circuits
US3023368A (en) Direct coupled transistor amplifier
US3573646A (en) High stability emitter follower
US3622801A (en) Pulse generator having adjustable threshold level
US3546564A (en) Stabilized constant current apparatus
US2949546A (en) Voltage comparison circuit
US3260947A (en) Differential current amplifier with common-mode rejection and multiple feedback paths
US3694748A (en) Peak-to-peak detector
US5172017A (en) Integrated circuit arrangement including a differential amplifier which generates a constant output voltage over a large temperature range
GB1297867A (en)
US3018446A (en) Series energized transistor amplifier
US3099802A (en) D.c. coupled amplifier using complementary transistors
US20200403579A1 (en) Variable gain amplifier device
US3452281A (en) Transistor amplifier circuit having diode temperature compensation
US3660774A (en) Single stage differential amplifier
US3328607A (en) Trigger circuit having adjustable signal sensitivity
US3373369A (en) Temperature stabilized transistor amplifier
US3005956A (en) Current amplifier for low impedance outputs
US3100877A (en) Transistor amplifier with constant input impedance