Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3575409 A
Publication typeGrant
Publication dateApr 20, 1971
Filing dateDec 3, 1968
Priority dateDec 3, 1968
Publication numberUS 3575409 A, US 3575409A, US-A-3575409, US3575409 A, US3575409A
InventorsCalvert Rodney K
Original AssigneeMead Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Feeder mechanism
US 3575409 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventor Rodney K.Calvert Dunwoody.Ga. 2| Appl.No. 780,821 [22 Filed Dec.3, 1968 [45] Patented Apr. 20, 1971 [73] Assignee The Mead Corporation [54] FEEDER MECHANISM 11 Claims, 9 Drawing Figs.

52 U.S.Cl 271/27, 271/32 [51] 1nt.Cl B6Sh3/08 [50] FieldofSearch ..271/29,27. 26, 32,1l,5

[56] References Cited UNITED STATES PATENTS 2,268,298 12/1941 Pearson 271/54 2,395,497 2/1946 N0rdquist.... 271/29 2,936,681 5/1960 Earp 27l/llX Matzen 271/29UX Primary Examiner-.loseph Wegbreit Atr0rneyWalter M. Rodgers ABSTRACT: A feeder mechanism for withdrawing an item such as a paperboard blank from a hopper and for moving and depositing the blank at a point of application or use comprises a driving element in the form of a rotatable housing structure mounted on a drive shaft together with a driven element having a pair of spaced cams rotatably supported on the housing structure and arranged with the cams inside the housing and with a motion-tracing element disposed outside the housing. A fixed cam mounted within the housing and provided with a continuous cam surface constitutes a support for a cam-operated pawl. the pawl and cam surface being effective to impart a predetermined motion to one of the cam followers disposed within the housing. A guide block is fixedly mounted to the fixed cam and aids in controlling the motion of the other cam follower and a guide link disposed outside the housing and pivotally connected with the motion-tracing element is interconnected with the main drive shaft by a lostmotion connection and together with the pawls and cam followers imparts a desired operating motion to an article pickup element fixedly mounted on and movable with the motion-tracing element.

Patented April 20, 1971 3 Sheets-Sheet l ATTORNEY Patented April 20, 1971 3 Sheets-Sheet Z5 ATTORNEY FEEDER IVWCIIIANISM The feeder mechanism of this invention is generally similar to and for a generally similar purpose to that disclosed and claimed in US. Pat. No. 3,385,595 granted May 28, I968.

A feeder mechanism constructed according to one form of this invention comprises a rotatable driving element mounted on a drive shaft, a driven element rotatably mounted on and movable with the driving element, a fixed cam disposed adjacent the driving element, a cam surface formed in the cam and disposed about the axis of rotation of the driving element, a pair of cam followers integral with the driven element and spaced radially from the axis of rotation thereof, said cam followers being arranged to engage and to follow the cam surface in different sequences during different portions of a revolution of the driving element, a cam-operated guide pawl pivotally mounted on the cam and movable in coordination with rotation of the driving element facilitates the motion of one of the cam followers while a guide block fixedly mounted on the cam modifies and controls in part the motion of the other cam follower. In one form of the invention the driving element is in the form of a housing in which the fixed cam pawl, guide block and cam followers are mounted. For tracing the motion of one of the cam followers, a motion tracing element is mounted on the driven element and disposed outside the housing and a guide link is pivotally connected to the motion tracing element and interrelated with the drive shaft of the driving element by a lost-motion connection and cooperates with the cam followers to impart desired motion to an article pickup device mounted on and movable with the guide link.

For a better understanding of the invention, reference may be had to the following detailed description taken in conjunction with the accompanying drawings in which:

FIG. I is a generalized schematic side view of a feeder mechanism constructed generally in accordance with this invention;

FIG. 2 is a front view of the mechanism depicted in FIG. I and which is in schematic form;

FIG. 3 is an exploded perspective view showing the principle parts of the driving and driven elements and of the parts associated therewith;

FIG. 4 is an enlarged fragmentary view of a portion of the fixed cam shown in FIG. 3 and which depicts the cam followers in the positions which they occupy relative to the fixed cam at on e particular instant during a revolution of the driving element;

FIG. is a view generally similar to FIG. 4 and depicts the cam followers schematically in the positions which they occupy during subsequent phases of a revolution of the main driving element;

FIG. 6 is a view of the driven element, the cam followers mounted thereon, the motion tracing clement also mounted on driven element as well as the article pickup element pivotally connected to the motion tracing element;

FIG. 7 is an enlarged view of a movable cam affixed to and movable with the rotatable driving element;

FIG. 8 is an enlarged sectional fragmentary view taken along the line as indicated in FIG. 3; and in which FIG. 9 is a view generally similar to FIG. 5 and which shows a plurality of article pickup elements together with their cooperating guide links disposed outside the housing constituting the driving element.

In FIG. I the numeral 1 generally designates one end plate which constitutes a part of the supporting frame for a feeder mechanism embodying this invention. The numeral 2 generally designates a hopper structure affixed to suitable means such as support elements 3 and 4 mounted at one end thereof on end plate I and supported thereby. A similar end plate to that designated by the numeral'l is disposed forwardly of the plane of FIG. I and supports the other end of the mechanism. Disposed within the hopper 2 is a plurality of items to be fed such as are designated at B and which may take the fonn of paperboard blanks arranged to be fed individually by the mechanism of this invention to a suitable folding or gluing machine or the like.

The mechanism constructed according to this invention is generally designated in FIG. 1 by the numeral 5 and comprises a rotatable driving element 6 affixed to and rotatable with shaft 7journaled in end plate I at one end and in a similar end plate not shown in the drawing at the other end of shaft 7. A driven element 8 is disposed within an opening 9 formed in the end plate of housing 6 and a motion tracing element 8A is fixedly mounted to the driven element 8. Article pickup element 10 which preferably is in the form of a suction cup is secured to a guide link 11 pivotally connected by pivot 12 to motion tracing element 8A.

For the purpose of supplying a suction pressure to the article pickup element 10, a pneumatic conduit 13 is interconnected with the suction cup as is schematically shown in FIG. 2 and is also interconnected with a rotatable disc valve I4 which cooperates with a fixed disc valve IS in known manner. The disc valve 15 is connected by a pneumatic conduit I6 to a source of vacuum pressure not shown in the drawings. Thus as shaft 7 and driving element 6 rotate, the valve disc 14 rotates and intermittently supplies suction pressure through pneumatic hose 13 to the article pickup device 10. I

Since portions of the driven element 8 are disposed within the housing which constitutes the driving element 6 and since the driven element 8 according to this invention cooperates with a fixed cam disposed within the housing 6, it is necessary to provide means for holding the cam stationary. In FIGS. 1 and 2 such means is schematically indicated and designated by the numeral 17, such element being fixedly mounted at 18 to end plate I and being connected to the fixed cam which is supported by a suitable bearing disposed about hub structure mounted on shaft 7. In FIGS. 3 the fixed cam is designated by the numeral I9 and the hub and bearing structure which supports the cam I9 is designated by the numeral 20. In FIG. 3, a portion of the housing 6 is designated by the numeral 21 and another portion of the housing structure 6 is designated by the numeral 22. It will be understood that disc 22 is affixed about the shaft 7 and receives the shaft 7 in the circular aperture 23 and that the rotatable element 21 also is supported by and rotates with shaft 7, Of course shaft 7 extends through the opening 24 formed in hub and bearing structure 20.

From FIGS. I and 3 it is apparent that the disc 22 incorporates a plurality of openings 9, 25, 26. In FIG. 2 driven elements are shown schematically are designated by the numerals 8, 27 and 28, it being understood that these driven elements are disposed within the openings 9, 25 and 26 although the suction cups and associated structure are not depicted in the drawings in connection with driven elements 27 and 28 for the sake of clarity and simplicity.

As is apparent from FIG. 3, disc 21 which is part of the driving element 6 is provided with a peripheral cylindrical portion 29. When the parts are assembled, the disc 22 is affixed to the cylindrical portion 29 of housing element 21 in a fluidtight fashion so as to accommodate lubricating material disposed therein. Disc 22 is rigidly secured to shaft 7 so that rotation of the shaft imparts rotation to the driving element 6 formed by discs 21 and 22.

Driven element 8 and if used driven elements 27 and 28 are rotatably mounted on the driving element 6 and are rotatably supported within the apertures 9, 25 and 26. These driven elements are disposed for rotation about their own axes and also rotate about the axis of the shaft 7 as is obvious.

For the purpose of imparting predetermined rotation and bodily movement to driven element 8 and to the other driven elements 27 and 28, each driven element is provided with a pair of cam followers best shown in FIG. 6 in connection with driven element 6 and which are designated by the numerals 29 and 30. These cam followers are rotatably mounted on the arm III which is rigidly affixed to and forms a part of the driven element 6.

For the purpose of controlling the motion of cam followers 29 and 30, a cam surface 32 is formed on fixed cam 19. This cam surface 32 is provided as is best shown in FIG. 3 with a circular portion and with a pair of outwardly protruding segments 33 and 34. The cam followers 29 and 30 proceed, for example, in a counterclockwise direction about the circular portion of cam surface 32 with cam follower 29 in a leading relationship as shown in FIG. 4. Cam follower 29 then is guided into outwardly protruding segment 33 by pawl 35 which is pivotally mounted at 35A to fixed cam 19 and biased in a clockwise direction about pivot 35A by a compression spring 36. Thus with pawl 35 in the position depicted in FIG. 4, cam follower 29 engages the guide surface 37 of pawl 35 and is thereby guided outwardly to occupy the position designated at 29A in FIG. 4.

While cam follower 29 is captured within segment 33 by pawl 35, cam follower 30 swings in a clockwise direction about a center comprising cam follower 29 and thus enters the outwardly protruding segment 34 by moving underneath the guide surface 41 of guide block 42 secured rigidly to cam 19 as is best shown in FIG. 5. Thus the extremities of segments 33 and 34 of cam surface 32 are spaced radially from the remainder of the cam surface by a distance at least as great as the radial spacing of the cam followers from their center of rotation.

For the purpose of removing the pawl 35 from the position shown in FIG. 4 and thereby to accommodate upward movement of cam follower 29 out ofcam surface segment 33, a pawl cam follower 38 is mounted on arm 39 which is secured to and movable with pawl 35 as is best shown in FIGS. 3 and 7. Pawl cam follower 38 follows and cooperates with the movable cam 40 which is affixed to the housing element 21 as best shown in FIG. 3. Thus when pawl cam follower 38 engages the proper portion of movable cam 40, pawl 35 is swung in a clockwise direction about its pivot 35A to occupy the position depicted in FIG. 5.

After pawl 35 swings to the position depicted in H6. 5, continued rotation of driving element 6 forces the driven element 8 to continue its counterclockwise movement about the axis of shaft 7 and thus forces the cam follower 29 to swing out of cam surface segment 33 in a clockwise direction about the cam 30 as a center during the time when cam 30 is entering outwardly protruding cam surface segment 34. This causes the cam follower 29 to occupy the position designated in FIG. 5 at 298 following its movement along a path generally designated by the line 29C. Of course this allows the cam follower 29 move into a position of leading relationship relative to cam follower 30 as depicted at 29D. cam follower 30 being depicted at position 30A after leaving the outwardly protruding segment 34 by following the path designated in FIG 5 by the numeral 308. After this operation is completed, the cam follower 29 is again in a leading relationship relative to the cam follower 30 and proceeds in a counterclockwise direction about the cam surface 32 as is represented by the arrow 43 in FIG. 5.

As is apparent from the drawings, the motion-tracing element 8A is of such length that the center 46 of pivot 12 is spaced from the axis 44 of driven element 8 by the same distance as is the center line 45 of pawl 29 so that pivot 12 traces the motion of pawl 29. Since this is true. and since the guide link H as is best shown in FIGS. 1, 2 and 9 cooperates with motion-tracing element 8A through pivot 12 to control the motion of article pickup device 10, this device follows a generally circular path about shaft 7 and then proceeds radially outward while peripheral movement is briefly slowed or arrested to engage a blank B and to pick the blank up following which action the suction cup carried by pickup element 10 moves radially inwardly while accelerating peripherally and then proceeds in a substantially circular path to deposit the blank to any desired position such as that indicated in dotted lines at B1 in FIG. 1.

While the guide link 11 is shown as being constructed with a bifurcated end portion as indicated at 11A and [1B in FIG. 9 which portions are interconnected with shaft 7 by a lostmotion relationship, it will be understood that this interconnection could constitute other means, it simply being necessary that guide link 11 be adaptable for radial movement relative to the axis of shaft 7 while being pivotally connected at 12 to motion-tracing element 8A. As is obvious from the drawing. the suction cup 10 is securely affixed to and movable with the guide link ll.

From the above description it is apparent that a feeder mechanism constructed according to this invention can be operated at very high speeds due to the fact that the motion is basically rotary in nature and there are no sharp sudden cam angles to be accommodated and because the fixed cam and followers are completely enclosed by the rotatable driving element 6 and hence may be immersed in a lubricating liquid if desired. Furthermore, certain main elements are protected from interference by extraneous means disposed outside the housing 6.

While the mechanism shown in the drawings is arranged and described for motion in a counterclockwise direction, the mechanism is also rotatable clockwise and functions equally well when so rotated. Of course certain minor adjustments might be desirable so as to facilitate rotation in one direction or the other.

lclaim:

l. A feeder mechanism comprising a rotatable driving element, a driven element rotatably mounted on and movable with said driving element, the axis of rotation of said driven element being spaced from the axis of rotation of said driving element, a fixed cam disposed adjacent said driving element, a cam surface formed in said cam and disposed about the axis of rotation of said driving element, and a pair of cam followers attached to said driven element and spaced radially from the axis of rotation thereof said cam surface having at least one segment the extremity of which is spaced radially from the remainder of said cam surface by a distance at least as great as the radial spacing of said cam followers from the axis of said driven element, said cam followers being arranged to engage and to follow said cam surface in a predetermined sequence during one portion of a revolution of said driving means and in a different sequence during another portion of a revolution of said driving means thereby to impart rotation to said driven element relative to said driving element in coordination with rotation of said driving element.

2. A feeder mechanism comprising a rotatable driving element, a driven element rotatably mounted on and movable with said driving element, the axis of rotation of said driven element being spaced from the axis of rotation of said driving element, a fixed cam disposed adjacent said driving element, a cam surface formed in said cam and disposed about the axis of rotation of said driving element and forming an irregular path thereabout, said cam surface being configured so as to form a pair of segments which protrude radially outward from the axis of rotation of said driving element, and a pair of cam followers attached to said driven element and spaced radially from the axis of rotation thereof, said cam followers being arranged to engage and to follow said cam surface in a predetermined sequence during one portion of a revolution of said driving means and in a different sequence during another portion of a revolution of said driving means thereby to impart rotation to said driven element relative to said driving element in coordination with rotation of said driving element.

3. A feeder mechanism comprising a rotatable driving element. a driven element rotatably mounted on and movable with said driving element, the axis of rotation of said driven element being spaced from the axis of rotation of said driving element, a fixed cam disposed adjacent said driving element, a cam surface formed in said cam and disposed about the axis of rotation of said driving element and forming an irregular path thereabout, said cam surface being configured so as to form a pair of segments which protrude radially outward from the axis of rotation of said driving element, a pair of cam followers attached to said driven element and spaced radially from the axis of rotation thereof, said cam followers being arranged to engage and to follow said cam surface in a predetermined sequence during one portion of a revolution of said driving means and in a different sequence during another portion of a revolution of said driving means thereby to impart rotation to said driven element relative to said driving element in coordination with rotation of said driving element. and a guide pawl movably mounted on said fixed cam adjacent one of said outwardly protruding segments and being disposed and configured to engage and guide one of said cam followers into said one segment.

4. A feeder mechanism according to claim 3 wherein a movable cam is mounted on and movable with said driving element and wherein a pawl cam follower is mounted on and movable with said guide pawland arranged to cooperate with said movable cam to impart operating movement to said guide pawl.

5. A feeder mechanism according to claim 4 wherein biasing means is provided for urging said pawl cam follower into operable relationship with said movable cam whereby movement of said one cam follower out of said one segment is accommodated.

6. A feeder mechanism according to claim 3 wherein a guide block is fixedly mounted on said fixed cam adjacent the other outwardly protruding segment of said cam surface and wherein said guide block is disposed and configured to engage and guide the other of said cam followers into and out of said other segment.

7. A feeder mechanism according to claim I wherein said driving element constitutes a housingenclosing said fixed cam and said cam followers and wherein lubricating material is disposed within said housing.

8. A feeder mechanism comprising a rotatable driving element, a driven element rotatably mounted on and movable with said driving element, said driving elementconstituting a housing and said driven element being journaled in a wall of said housing with a portion of said driven element disposed inside said housing and with a portion thereof disposed outside said housing and the axis of rotation of said driven element being spaced from the axis of rotation of said driving element, a fixed cam disposed adjacent said driving element, a cam surface formed in said cam and disposed about the axis of rotation of said driving element and, forming an irregular path thereabout, and a pair of cam followers attached to said driven element and spaced radially from the axis of rotation thereof, said cam followers being arranged to engage and to follow said cam surface in a predetermined sequence during one portion of a revolution of said driving means and in a different sequence during another portion of a revolution of said driving means thereby to impart rotation to said driven element relative to said driving element in coordination with rotation of said driving element.

9. A feeder mechanism according to claim 8 wherein a motion-tracing element is affixed to said driven element outside said housing and constructed and arranged so as to duplicate the motion of one of said cam followers.

10. A feeder mechanism according to claim 9 wherein an article pickup element is pivotally connected with said motion-tracing element.

1]. A feeder mechanism according to claim 10 wherein a radial guide link is pivotally connected with said motiontracing element and wherein said driving element is driven by a rotatable shaft, said shaft and said guide link being interconnected by a lost-motion connection.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2268298 *Nov 17, 1939Dec 30, 1941Continental Can CoBody blank lubricating means for can body forming machines
US2395497 *Nov 26, 1943Feb 26, 1946American Can CoFeeding device
US2915308 *Dec 26, 1957Dec 1, 1959Matzen Julius CAutomatic feeding machines
US2936681 *Jan 30, 1957May 17, 1960Ex Cell O CorpContainer blank feeder mechanism
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3718328 *Feb 12, 1971Feb 27, 1973Latta S IncShingling device
US3831930 *Mar 19, 1973Aug 27, 1974Hamada Printing PressPaper feeding apparatus for use in printing machine
US3837638 *Jan 15, 1973Sep 24, 1974IbmSheet pick-up and feeding device
US4402592 *Apr 2, 1981Sep 6, 1983Hoechst AktiengesellschaftMechanism for transporting printing plates
US4479770 *Dec 8, 1982Oct 30, 1984Plastipak Packaging, Inc.In-mold label dispenser for blow molding machine
US4516765 *Nov 15, 1982May 14, 1985Thiele Engineering CompanyRotary pick and placement machine
US4625575 *Nov 13, 1985Dec 2, 1986The Mead CorporationCam assembly for a feeder mechanism
US4881934 *Feb 27, 1989Nov 21, 1989Kliklok CorporationRotary transfer mechanism
US5019029 *Nov 13, 1989May 28, 1991The Mead CorporationMachine for erecting sleeve type cartons
US5104369 *Jul 3, 1990Apr 14, 1992The Mead CorporationMethod for erecting sleeve type carton
US5176612 *Dec 13, 1991Jan 5, 1993The Mead CorporationHigh speed erecting mechanism for sleeve type carton
US5249916 *May 8, 1992Oct 5, 1993The Mead CorporationCam assembly and feeder mechanism for use in a packaging machine
US6644647Jul 9, 2001Nov 11, 2003Plastipak Packaging, Inc.Apparatus and method for transferring labels from a label magazine for in-mold labeling prior to blow molding
US6649118Jul 9, 2001Nov 18, 2003Plastipak Packaging, Inc.Rotary in-mold labeling
US6649119Jul 9, 2001Nov 18, 2003Plastipak Packaging, Inc.Rotary plastic blow molding system having in-mold labeling
US7695421Feb 1, 2006Apr 13, 2010Graphic Packaging International, Inc.Rotary carton feeder
US8302955 *Jun 17, 2005Nov 6, 2012Hewlett-Packard Development Company, L.P.Rotating vacuum fingers for removal of printing media from an impression drum
US8512623Jan 21, 2011Aug 20, 2013Krones AgLabeler and a labeling method for labeling plastic containers in the blow mold in a rotary blow molder
US8870519Sep 13, 2011Oct 28, 2014Graphic Packaging International, Inc.Carton feeding system
US20110033277 *Sep 12, 2008Feb 10, 2011C.M.S. Costruzione Macchine Speciali S.R.L.Apparatus for unpiling containers, particularly pastry containers
DE102010001192A1 *Jan 25, 2010Jul 28, 2011Krones Ag, 93073Etikettiervorrichtung und -verfahren zum Etikettieren von Kunststoffbehältern in der Blasform in einer Rundläufer-Blasmaschine
EP0182593A1 *Nov 13, 1985May 28, 1986The Mead CorporationCam assembly for a feeder mechanism
EP0429231A1 *Nov 12, 1990May 29, 1991The Mead CorporationA sleeve type carton and feeding method therefor
EP0510953A1 *Apr 23, 1992Oct 28, 1992The Mead CorporationCam assembly and feeder mechanism for use in a packaging machine
EP1522402A1 *Oct 7, 2004Apr 13, 2005Rovema Verpackungsmaschinen GmbHApparatus for feeding folded carton blanks
WO1993011928A1 *Dec 11, 1992Jun 24, 1993Mead CorpHigh speed erecting mechanism for sleeve type carton
Classifications
U.S. Classification271/95, 271/102
International ClassificationB65H3/00, B65H3/42
Cooperative ClassificationB65H3/42
European ClassificationB65H3/42