Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3578115 A
Publication typeGrant
Publication dateMay 11, 1971
Filing dateOct 21, 1968
Priority dateOct 21, 1968
Publication numberUS 3578115 A, US 3578115A, US-A-3578115, US3578115 A, US3578115A
InventorsMarvin Schneider
Original AssigneeRapid American Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Utility bag
US 3578115 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Marvin Schneider Bryn Mawr, Pa.

[21] Appl. No. 769,313

[22] Filed Oct. 21, 1968 [45] Patented May 11, 1971 [73] Assignee Rapid-Amerimn Corporation Clayton, Del.

[72] lnventor 541 UTILITY BAG 17 Claims, 21 Drawing Figs. [52] US. Cl 190/48, 190/41, 190/53 [51] Int. Cl. A45c 3/00 [50] Field oiSearch 190/41 (Z), 4l1,41-3, 48, 50, 53, 53 (P), 54;150/28, 372, 42, 48, 50; 264/(lnquired) [56] References Cited UNITED STATES PATENTS 1,999,064 4/1935 Marks 190/41(Z)UX 2,471,612 5/1949 2,475,277 7/1949 2,658,543 11/1953 Budnick 150/28 2,681,296 6/1954 Dobbs 1so/28x 2,753,599 7/1956 Pietraszek. 264/45 3,161,216 12/1964 Sloves 150/28 3,254,688 6/1966 Everburg... 150/42x 3,280,870 10/1966 Bundy 150/28x 3,302,679 2/1967 Padovani 150/48 FOREIGN PATENTS 210,161 3/1956 Australia 190/41 1 740,412 11/1955 GreatBritain.... 190/41 z 1,092,004 11/1967 GreatBritain Primary Examiner-Donald F. Norton Attorney-Paul and Paul ABSTRACT: A general utility bag is provided, major components of which are rotationally cast or molded, as an integral monolithic unit, with bottom and closure units being secured thereto by radio frequency heat sealing and wherein other heat sealing operations may be of the radio frequency type. Detail, trim and graining along with simulated stitching is provided as part of the integral molding or casting operation to give the general appearance of a bag constructed of multiple components. Handles are then attached to the bag.

PATENTEDHAYI 1 I97! SHEET 1 OF 5 lllll Ill :IIIIIIIIIIILII: I

m VliNTOR. Marvin Schneider WVM ATTORNEYS- PATENTEU MAY] 1 l97| sum 2 OF 5 INVENTUR. Marvin Schneider ATTORNEYS PATENIEDWmw 3578.115

SHEET 3 0F 5 Fig. /5

INVENTOR- Morvin Schneider BY @AM ATTORNEYS.

PATENTED m1 1 I97! sum u 0F 5 INVENTOR. Marvin Schneider MPM ATTORNEYS PATE-NTED um nan INVEN'I'OR.

' Schneider WJVM . Marvin ATTORNEYS.

UTILITY BAG BACKGROUND OF THE INVENTION In the bag making art, as well as in the broader luggagemaking field, it has become conventional to construct utility bags such as gym bags and like articles from multiple pieces of precut material requiring laborious stitching operations and the like to connect the various components as well as requiring numerous additional operations for adding desired detail, grain effect and the like. Also, an additional operation has been required to add welting along bag comers.

In many instances, particularly in gym bag construction, it has been found desirable to provide the bags with a water-resistant or moistureproof quality, due to the particular nature of the numerous articles which would normally be carried in a gym bag, for example, bathing trunks, wet towels, toiletry articles and the like. The addition of such a water resistant or moisture proofing material has generally been effective on the inside of the bag, to prevent defacing the otherwise pleasing appearance of a constructed bag, to facilitate containing moisture-laden articles carried therein and also to protect bag contents from extemal moisture. This addition of a moisture proof material has generally resulted in a very thin moisture proof material as dictated by economic considerations, requiring for its application an additional finishing operation which can make the construction of a bag prohibitively expensive from a manufacturing standpoint.

Still further, bags of the prior art which have generally been constructed of a fabric or other fibrous material can often result in a rather short life, as the result of the material rotting, due to a highly humid atmosphere to which a bag is normally subjected during use, and further as the result of breaking stitches.

SUMMARY OF THE INVENTION The present invention seeks to overcome the above and other disadvantages of bag construction, and methods of bag manufacturing in providing a bag, major components of which may be molded as an integral unit, to have welting, trim, simulated grain and stitching, and other aesthetic and structural detail molded into the bag during a single formative molding. The bag bottom and other detail, such as a zipper or other closure unit may be then attached to the bag, preferably by radio frequency heat sealing. The other finishing operations required for the bag are minimal to provide a relatively inexpensive, neat appearing, strong, serviceable, waterproof bag adapted fornumerous uses.

Accordingly, it is a primary object of this invention to provide a novel bag construction, as well as a method of manufacture thereof of a bag which is substantially manufactured as a molded unit requiring a minimum number of assembly or other finishing operations.

It is a further object of this invention to accomplish the above object, wherein welting, grain effect, or other detail may be molded integrally with the formation of the basic bag construction.

It is a further object of this invention to accomplish the above objects, wherein a closure unit may be heat-sealed to the bag preferably in a radio frequency sealing operation, and wherein the closure unit may preferably be a zipper having a moldable material secured thereto as part of a separate operation which may then be attached by heat sealing to the bag as indicated above.

It is another object of this invention to provide a moistureresistant bag which may be readily and economically manufactured.

It is a further object of this invention to provide a novel method of manufacture of the bag set forth in the object immediately above.

Other objects and advantages of the present invention will be readily apparent to one skilled in the art from a reading of the following brief descriptions of the drawing FIGS. detailed description of the preferred embodiment, and the appended claims.

IN THE DRAWINGS FIGJI is a top plan view of the bag of this invention.

FIG. 2 is a sideelevational view of the bag of this invention, wherein integrally molded detail is clearly illustrated.

FIG. 3 is a bottom view of a completed bag of this invention.

FIG. 4 is an exploded view of a zipper-type closure unit of this invention, prior to heat-sealing of the zipper to its molded strip.

FIG. 5 is a front perspective view of a partially completed bag according to this invention, with the closure unit disposed thereabove, prior to sealing of the closure unit to the top of the bag.

FIG. 6 is an enlarged transverse sectional view through the closure unit of this invention, taken generally along the line VI-Vl of FIG. 5.

FIG 7 is a front perspective view of an inverted partially completed bag of this invention, wherein a bottom reinforcing panel is also illustrated prior to disposition of the panel into the bag.

FIG. 8 is a front perspective view of a completed bag, according to this invention.

FIG. 9 is an enlarged fragmentary transverse sectional view of the top of an incomplete bag of this invention taken generally along the line IXIX of FIG. 5, wherein there is illustrated that portion of the top of the bag which is removed for insertion of the zipper-type closure member.

FIG. -10 is an enlarged sectional view illustrating the zippertype closure member attached to the bag top of this invention, taken generally along the line X-X of FIG. 8.

FIG. 11 is an enlarged fragmentary transverse sectional view taken through the bottom of the-bag of this invention, generally along the line XI-XI of FIG. 7 and wherein the heatsealed bottom seam and molded feet of the bag are clearly illustrated.

FIG. I2 is an enlarged fragmentary'detail view of that portion of FIG. 5 illustrated by the Roman numeral XII, wherein there is illustrated that portion of the bag to which one end of a handle would be attached.

FIG. 13 is an enlarged transverse sectional view of a fragmentary portion of a bag sidewall, taken generally long the line XIII-XIII of FIG. 12.

FIG. 14 is an enlarged fragmetary transverse sectional view through the handle attachment to the bag. taken generally along the line XIV-XIV of FIG. 2.

FIG. 15 is an enlarged sectional view taken through a detail strip illustrated in FIG. 12, generally along the line XV-XV of FIG. 12 and wherein the simulated stitching is illustrated.

FIG. 16 is a side view of the apparatus of this invention for heat sealing the zipper to a strip of moldable material wherein the closure unit of this invention is assembled prior to connection of the closure unit to a bag.

FIG. 17 is an enlarged transverse sectional view taken through the apparatus of FIG. 16, generally along the line XVlI-XVIIthereof.

FIG. I8 is a side view of another portion of the apparatus of this invention, wherein there is illustrated a means for attaching the completely formed closure member the bag top according to this invention.

FIG. 19 is an enlarged fragmentary transverse sectional view, taken generally along the line XIX-XIX of FIG. 18 and wherein the manner of attachment of the closure member to bag top portions is clearly illustrated.

FIG. 20 is a side elevational view of a portion of the apparatus of this invention wherein a reinforcing panel is heatsealed to the bag bottom of this invention.

FIG. 21 is an enlarged transverse sectional view of a fragmentary portion of the apparatus of FIG. 20, taken generally along the line XXL-XXI of FIG. 20.

Referring now to the drawings in detail, reference in first made to FIGS. I through 3, wherein there is illustrated a completed bag generally designated by the numeral 25, and

comprising sidewalls 26 and 27, a bottom wall 28 (FIGS. 2 and 3), end walls 30 and 31, and a top wall 32 divided into top wall half portions 33 and 34.

Each sidewall 26 and 27 of the bag is provided with a pair of laterally spaced, integral simulated reinforcing strips and 36 extending upwardly from a reinforcing strip portion 37 disposed adjacent to the bottom 28 of the bag, such reinforcing strip detail portions 25, 36 and 37 having simulated stitching recesses 38 therein. formed during the molding process later to be described.

The upper ends of the simulated strips 35 and 36, terminate in simulated handle-attachment portions 40 and 41, respectively, each of which is also provided with simulated stitching indentations 42, and, with particular reference to FIG. 5, each portion 40 and 41 is provided with a transverse slit 43 for facilitating attachment of opposite ends 44 and 45 has attached thereto an associated respective link 47 or 48, which, with particular reference to FIG. 14, is pivotally connected within an eye 50 of a closed U-shaped bracket 51. The bracket 51 has legs 52 and 53, the leg 53 extending inwardly of the bag 25 between the leg 52 and the inside of the detail portion 40. Disposed against the inside of the leg 52 is a fibrous, plastic or the like backing plate 54, which extends across the inside of the bag 25 between slits 43 of adjacent handle-connection portions 41 and 42 on a given sidewall 26 or 27 of the bag 25. The plate 54, legs 52 and 53 of the bracket member 51, and handle-connection portion 40 of the bag 25 are connected by a pair of rivets 55 and 56, with associated respective washers 57 and 58 in engagement against the transverse backing plate 54. The washers 55 and 56 may be avoided if certain types of rigid plastic plates 54 are used. Each handle 46 is thus securely attached to its associated bag sidewall 26 or 27.

Welting 60, or simulated beading is provided, at bag junctures, connecting for example, the sidewall 27 with adjacent portions of end walls 40 and 31, and the adjacent portion 33 or 34 of the top wall 32, for providing additional decorative effect as well as reinforcement. This welting 60 is also molded into the bag at the time of its formation, as are the detail strips 35, 36 and 37 and the handle-attachement portions 40 and 41 of the detail strips.

The welting 60 may be constructed entirely of a plastisol material, if desired, and may also have a wire insert disposed therein and molded in position if this type of bead reinforcing if desired, although such is not generally necessary. Further more, the bead may be constructed as s composite material, one component being a plastisol of a given viscosity suitable for molding (e.g. the same material as used molding the bag sidewalls), and the other component being a more viscous rigidsol material to result in a rigid bead or welt 60. In accordance with this latter construction, the rigidsol may be separately applied to the mold, prior to the molding operation The bottom 28 of the bag 25 is provided with a plurality of feet 61 which may be molded integrally with the bag bottom 28 at the time of bag bottom casting or molding, and prior to heat sealing closed the bag bottom 28. These feet 61 protrude downwardly from the bottom 28 of the bag, as indicated in FIG. 2 and their protrusion in this manner simulates separate attachment, as does the protrusion of the welting 60 and strip portions 35, 36 and 37 simulate separate attachment.

The bottom 28 of the bag 25 is originally provided with a tear seal in the form of an extremely thin connection between opposed halves of the bag bottom which may readily be broken to form a slit 62 therein to facilitate entry of working components therein. The slit 62 is later sealed closed as in FIG. 21. Simultaneously with the sealing of the slit 62, with an appropriate die to provide simulated stitching, transverse slits 63 and 64 (which are also formed by breaking a tear seal of thin material) are also sealed to provide a simulated stitching or grid work generally designated by the numeral 65 on the bottom 28 of the bag, and having an I configuration.

Simultaneously with the formation of the feet 61, grid work patterns 66 may be provided, but preferably such patterns 66 may be provided at a later time simultaneous with the sealing of a reinforcing board 67 FIGS. 7 and 21) of plastic, fibrous material or the like as desired, to the interior of the bag bottom 28, the board 67 (preferably a fibrous board) having been pretreated with a heat-sealing substance. Preferably, the formation of the simulated stitching or grid work 68 and 70, on the bottom 28 of the bag 25, the sealing of the slits 62, 63 and 64, and the securing of the reinforcing board 67, to the bottom 28 of the bag 25 are effected concurrently.

With particular reference to FIG. 9, it is seen that the top 32 of the bag 25 is originally molded with a center portion 72 therein (illustrated in phantom) extending longitudinally thereof, but having notches 73 and 74 on opposite sides to facilitate ready removal thereof. Also, a number of holes 75 are molded in the top 32, for a purpose later to be described. The strip 72 is readily removable, to define an access opening 76 in the top 32 of the bag 25. It is about this opening 76 which the closure member closure member 77 (FIG. 5) is applied.

The closure member 77 is constructed of a zipper 78 comprising a conventional fabric portion 80 having metal teeth 81 and a metal pull 82, the zipper 78 being heat sealed by engagement of the fabric portion 80 thereof with a strip 83 of moldable material having an elongated slot 84 therein and an elongated tab 85, forming a part thereof. The tab 85 has an end portion 86 which is foldable back upon itself as indicated in FIG. 4, to be sealed thereto to form a closed window 87 to receive an identification tag or the like. A hook 88 may also be carried by the strip 83 as illustrated in FIG. 4, for locking the zipper member 78 shut by locking the hook member 88 to the pull 82, in a conventional manner. When the zipper 78 is secured to the strip 83, and the heat sealing operation which is later to be described is completed, the zipper 78 is secured to the strip 83 along a continuous sealing line 90 which simulates stitching.

The closure 70 is then secured to the top 32 of the bag 25, along opposite side portions 33 and 34 thereof, about the opening 76 and partially over the end wall portions 30 and 31 which surround the end portions of the opening 76, also in a heat-sealing operation which is later to be described but which appears when finished to comprise simulated stitching 91 along the seal thereof as illustrated in detail in FIG. 10. The tab 85 remains unsecured to the bag end wall 30.

It will be noted that the zipper could be of the type which lends itself to being moulded integrally to the bag top portions 33 and 34, at the time of their molding, if desired, by the placing of a moldable zipper unit into a mold during the bag molding operation.

In FIGS. 16 and 17, there is illustrated the apparatus for sealing the zipper 78 to the strip 83 to provide the closure 77.

The apparatus comprises a base plate 101 upon which is carried a bottom die member 102, generally of nonheat transmissive material such as nylon or a plastic having a high melting temperature, the member 102 being resiliently carried by lugs 103, which in turn are carried by bosses 104 mounted on the baseplate 101 with compression springs 105 disposed between the member 102 and the bosses 104 as illustrated in FIG. 17. The member 102 is provided with a recess 106 for receiving outermost portions of the strip 83 with the innermost portions of the strip 83 being disposed over a bottom die member 107 which extends entirely around the inner periphery of the strip 83 at the lower surface thereof, the die member 107 having radio frequency heating capabilities for providing heating of the strip 83 when a piston 108 is actuated bringing an upper die member 110, also of radio frequency energy-absorbing qualities downwardly toward the die member 107, at which time a radio frequency generator 111 is actuated to efiect a heat sealing of the zipper 78 onto the strip 83, as illustrated in FIG. 17. A recess 112 is provided in the central portion of the die to accommodate metal portions 81 of the zipper 78. The center portion of the zipper 78 is supported by a bottomdie member 113 also of nylon or plastic construction and not capable of transmitting radio frequency energy, the member 113 being resiliently supported by a spring 114 disposed about a screw 115 carried by the base plate 101. A void 116 is also provided for the bottom of the metal portions 81 of the zipper 78. It will be noted that protrusions 117 of the lower die member 107 provide the recesses 90 which, when the closure member 77 is completely sealed and inverted from the position illustrated in FlG. 17 comprise a simulated stitching effect.

With particular reference to FIGS. 18 and 19, the completed closure member 77 is secured to the top wall 32 of the bag 25 by heat sealing by means of radio frequency energy of the closure member 77 to opposite sides 33 and 34 of the access opening 76. In this regard, a bottom die 120, constructed of a material capable of absorbing radio frequency energy, such as steel, is carried on a base plate 121 and is inserted up through the slit 62 in the bottom 28 of the bag 25, to engage beneath the top wall 32 thereof.

An upper die 122 is then brought down over the top 32 of the bag 25, the upper die 32 conforming generally to the configuration of the top of the bag as viewed in the side view of FIG. 18 and with upper die member 122 carrying radio frequency energy transmission elements 123. A plurality of plungers 124 are carried by the lower die member 120, and are spring biased upwardly by means of springs 125 for urging the plungers 124 into the locating voids 75 of the bag top 32 for precisely locating the bag 25 on the die member 120.

The closure member 77 is maintained in place during the downward movement of the die 120 by suitable spring-biased attachment devices 126 and 127 carried by the base plate 121 and maintaining the closure member 77 against the top 32 of the bag 24. A radio frequency generator 128 which may or may not be the same as the generator 111 is electrically connnected to the members 123 and 120 for generating sufficient energy to heat seal or mold the strip 83 to the top wall 32 of the bag 25.

As the upper and lower dies 122 and 120 respectively are moved toward one another, relatively, deformable foam die coverings 119 and 129 on the adjacent lower and upper die surfaces provide die deformation to offset bag irregularities in walls 32 and 34, and to assure against extrusion of bag wall portions 32 and 34 because of the irregularities.

The next step is to insert the rigidifying bottom board 67 into the bag 25 and to seal the same into position and to close the slit 62 as well as the cross-slits 63 and 64 in the bottom of the bag and also to apply the simulated stitching 68, 70 and 65 to the bottom of the bag as well as the simulated grid-work 66. This is all accomplished in a simultaneous operation by the apparatus indicated in FIGS. and 21.

The bag support 67 is placed inside the bag and the bag 25 is inverted over a lower die member 130 carried on a base plate 131. The lower die member 130 carries an upper portion 132 which is capable of transmitting radio frequency energy. A pair of pivotally movable clamp members 133 and 134 are mounted on respective hinges 135 and 136 carried by upstanding members 137 and 138, respectively, which in turn are secured to the base plate 131, the clamp members 133 and 134 being operative to retain the bag 25 in position over the lower die member 130. When the bag 25 is thus placed over the lower die member 130, the pivotal members 133 and 134 are brought into engagement against the bottom 28 of the bag 25 to retain the same in position. A piston 140 is actuated to drive an upper die 141 vertically downwardly as illustrated by the arrow 142 in FIG. 20, with the upper die 141 having a die plate 143 attached thereto by means of bolts 144. The plate 143 is of a material capable of absorbing radio frequency energy and when brought into contact with the bottom 28 of the bag 25 the radio frequency generator 145 is energized to heat seal between the die plate members 132 and 143 thereby sealing the board 67 to the bottom 28, sealing closed the slit 62, as well as the slits 63 and 64 applying the simulated stitching configurations 65, 68 and 70 and forming grid-work 66, if desired.

The bag 25 is at this point almost completely formed, with the exception of applying the handles 46 in a conventional manner.

It will be appreciated that the principal material of construction of the bag 25 of this invention is a material which must be readily heat-scalable preferably by radio frequency energy and therefore, many plastic, vinyl, rubberlike or latexlike materials are suitable materials for such heat sealing as well as being suitable materials for rotatable casting or molding to form either a pliable or rigid product. It will also be noted that the radio frequency generator may be a conventional unit, such as any of those commercially available which will generate sufficient energy to perform the desired heat scaling functions and render plural components of bag-forming materials to be integral parts of a monolithic molded structure when such materials are secured together.

It will be apparent that various modifications may be made in the construction of the bag of this invention as well as in the method of manufacture, all within the spirit and scope of the invention, as defined in the appended claims. Some such other methods may comprise forming the basic bag construction by other means well-known in the art, as by slush casting, blow molding, or injection molding and the like.

I claim:

1. A bag construction comprising a bottom wall, opposed sidewalls arid opposed end walls connecting said sidewalls and bottom wall, said end walls merging with a top wall also connecting said sidewalls, said bottom wall being generally flat for seating of the bag and having a longitudinal access opening therein, extending between said end walls, all of said walls being constructed of moldable material and being integrally connected as a monolithic molded structure.

2. The bag construction of claim 1, wherein said top wall is provided with an access opening.

3. The bag construction of claim 2, wherein a zipper unit is provided for closing said top access opening, said zipper unit being connected to said top wall on opposite sides of said opening in heat-sealed relation.

4. The bag construction of claim 3, wherein welting is provided between said sidewalls and adjacent portions of said end and top walls, said welting being disposed at wall junctions as a monolithic molded structure, wherein simulated reinforcing detail strips protrude from and are integral with said sidewalls, said detail strips also comprising with said sidewalls a monolithic molded structure, wherein said detail strips are generally a laterally spaced pair and are disposed generally normal to the bag bottom, connected by a third detail strip disposed along a lower portion of a bag sidewall adjacent to said bag bottom, wherein said detail strips are provided with structural indentations in the form of simulated stitching, and wherein a plurality of feet are provided on said bottom wall, said feet being constructed of moldable material and being connected to said bottom wall as a monolithic structure.

5. The bag construction of claim 2, wherein welting is provided between said sidewalls and adjacent portions of said end and top walls, said welting being disposed at wall junctions and comprising a first component of the same material as the bag walls, and a second moldable component of greater viscosity at the time of its application than the viscosity of the bag wall material at the time of its introduction into the mold.

6. The bag construction of claim 2, wherein a stiffener member is applied to said bottom wall, inwardly thereof and secured to said bottom wall.

7. The bag construction of claim 6, wherein said stiffener member is in heat-sealed engagement with said bottom wall.

8. The bag construction of claim 2, wherein a zipper unit is provided for closing said top access opening, said zipper unit being connected to said top wall on opposite sides of said opening in molded relation.

9. The bag construction of claim 1, wherein welting is provided between said sidewalls and adjacent portions of said end and top walls, said welting being disposed at wall junctions as a monolithic molded structure.

10. The bag construction of claim 1, wherein simulated reinforcing detail strips protrude from and are integral with said sidewalls, said detail strips also comprising with said sidewalls a monolithic molded structure.

11. The bag construction of claim 10, wherein said detail strips are generally a laterally spaced pair, and are disposed generally normal to the bag bottom, connected by a third detail strip disposed along a lower portion of a bag sidewall adjacent said bag bottom.

12. The bag construction of claim 11, wherein handles are secured at their ends to upper portions of said laterally spaced detail strips, connected thereto by rivets.

13. The bag construction of claim 10, wherein said detail strips are provided with structural indentations in the form of simulated stitching.

14. The bag construction of claim 1, wherein a plurality of feet are provided on said bottom wall, said feet being constructed of moldable material and being formed with the bag bottom wall as a monolithic structure.

15. A bag formation comprising a bottom wall, opposed sidewalls and opposed end walls connecting said sidewalls and bottom wall, said end walls merging with a top wall also connecting said sidewalls, all of said walls being constructed of moldable material and being integrally connected as a monolithic molded structure, both said top and bottom walls being provided with openable portions.

16. The bag formation of claim 15, wherein said top openable portion comprises a removable tear seal.

17. The bag formation of claim 15, wherein said bottom openable portion comprises a slit-fomiing structure.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1999064 *Feb 12, 1935Apr 23, 1935Marks CharlesOvernight or bathing hand bag
US2471612 *Dec 22, 1945May 31, 1949Harry FreemanThermoplastic luggage frame
US2475277 *Sep 19, 1947Jul 5, 1949Frank O BudnikPlastic bag having fused seams between wall-forming strips and slide-fastener tapes
US2577670 *Nov 3, 1950Dec 4, 1951Edward E AdamsMulticompartment traveling bag
US2658543 *Aug 5, 1950Nov 10, 1953Budnick Frank OMethod of making handbags and products
US2681296 *Aug 13, 1951Jun 15, 1954Frank G DobbsManufacture of sealed enclosures
US2753599 *Jul 10, 1956 Iethud of making a practice ball
US3161216 *Feb 25, 1963Dec 15, 1964Sloves Mechanical Binding CompBank check wallet
US3254688 *Jun 30, 1964Jun 7, 1966American Optical CorpToiletry products cases
US3280870 *Mar 30, 1964Oct 25, 1966William C BundyReceptacle
US3302679 *Feb 15, 1965Feb 7, 1967I S A P S P ABaskets, panniers, bowls and the like
AU210161A * Title not available
GB740412A * Title not available
GB1092004A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3685620 *Sep 23, 1970Aug 22, 1972Rapid American CorpClub bag
US4714143 *May 5, 1986Dec 22, 1987Frank SalibaHandle and panel assembly for portfolio
US5676295 *May 31, 1995Oct 14, 1997Jansport Apparel CorporationMolded rubber base for luggage
US7204388Aug 14, 2002Apr 17, 2007International Molded Packaging CorporationLatchable container system
US7819279Oct 27, 2006Oct 26, 2010International Molded Packaging CorporationLatchable container system
US8382373 *Apr 4, 2009Feb 26, 2013Custom Leathercraft Manufacturing Co., Inc.Wear-point protection system, apparatus and method
WO2008006360A2 *Jul 12, 2007Jan 17, 2008Hartmut OrtliebRucksack, bag or container
Classifications
U.S. Classification190/115, 190/124, 190/119, 190/903
International ClassificationA45C3/00, B29C41/04, B29C65/04, B29C65/00, B29C37/00
Cooperative ClassificationB29C65/04, B29C66/4722, B29C66/305, A45C2003/007, B29L2031/742, B29C37/0057, Y10S190/903, A45C3/00, B29L2005/00, B29C41/04
European ClassificationB29C66/4722, B29C66/305, B29C41/04, A45C3/00, B29C65/04