Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3585983 A
Publication typeGrant
Publication dateJun 22, 1971
Filing dateMar 5, 1968
Priority dateMar 5, 1968
Publication numberUS 3585983 A, US 3585983A, US-A-3585983, US3585983 A, US3585983A
InventorsFreed Paul S, Kantrowitz Adrian, Schilt Wladimir
Original AssigneeKantrowitz Adrian, Freed Paul S, Maimonides Medical Center, Schilt Wladimir
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cardiac assisting pump
US 3585983 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [7 2] Inventors Adrian Kautrowltz;

Wladlmir Schilt; Paul S. Freed, all 01 c/o Malmonides Medical Center 4802 Tenth St., Brooklyn, N.Y. 11219 [21 Appl. No. 710,596

[22] Filed Mar. 5, 1968 [45] Patented June 22, 1971 [54] CARDIAC ASSISTING PUMP 6 Claims, 3 Drawing Figs.

[52] U.S.Cl. 128/1, 1281214, 128/344 [51] lnt.Cl A6lb 19/00 [50] FleldoiSeareh l28/1,2l4, 344, DIG. 3, 348

[56] References Cited UNITED STATES PATENTS 3,504,662 4/1970 Jones 128/ 1 3,266,487 8/1966 Watkins et a1. 128/1 3,467,101 9/1969 Fogarty et al 128/348 OTHER REFERENCES Moulopoulos et a1. TRANS. AMER. SOC ARTlFlC. INTER. ORGANS, V01. VIII ap. 1962 pp. 85- 87 (copy in Op 335) Khalil et al. TRANS. AMER. SOC. ARTlFlC. lNTER.

ORGANS, Vol. June 1967 pp Primary ExaminerDa1ton L. Truluck Attorney-Browdy, Neimark and Norman J. Latker ABSTRACT: An intra-arterial cardiac assisting device is provided having a nonelastic polyurethane balloon which is inflated periodically for diastolic augmentation by utilization of helium. The leading end of the device, which is passed into the aorta as a catheter, has a pressure transducer therein.

CARDIAC ASSIS'I'ING PUMP The present invention relates to a cardiac assisting pump, and, more particularly, to an autosynchronous intra-arterial balloon pumping system for temporary cardiac assistance.

Fourteen of every I patients with acute myocardial infarction suffer profound cardiogenic shock. Of these patients, from 9to l3 are unresponsive to medical therapy and need some form of effective circulatory assistance. Accordingly, a vital need has existed for quickly combating profound cardiogenic shock in a relatively simple mechanical manner. While the treatment of cardiogenic shock has undergone numerous developments in recent years, primarily in the field of drug therapy, the mechanical devices which have been suggested (e.g. for elevating diastolic pressure while reducing systolic pressure) have involved extensive surgical procedures. Accordingly, the need has existed for speedy initiation of mechanical diastolic augmentation, and the best mechanical approach heretofore contemplated has involved intra-arterial balloon pumping.

In 1962 Moulopoulos et al. used an intra-arterial latex rubber balloon as a device for diastolic augmentation. In' 1962 Clauss et al. also experimented with intra-arterial balloon pumping. However. the devices contemplated were ,not generally satisfactory. Problems in prior art devices included providing a satisfactory catheter diameter, obtaining sufficiently biologically compatible materials from which the devices could be formed. providing a sufficiently great bore within the catheter to permit satisfactory inflation. the safety factor of the balloon itself. correct timing of the pumping and proper insertion of the intra-arterial pump into the aorta.

' Moulopoulos. Topaz and Kolff Diastolic Balloon Pumping in the Aorta-A Mechanical Assistance to the Failing Circulation. American Heart Journal (I962) Vol. 63. p. 669.

2 Clauss, Missier, Reed and Tice "Assisted Circulation by Counterpulsation with an lntraaortic Balloon. .\lethods and Effects." Dig. th Annual Conf. on Engineering in Medicine and Biology. I962. p.44.

It is therefore an object of the present invention to overcome the deficiencies of the prior art, such as indicated above.

It is another object of the present invention to provide for intra-arterial cardiac assistance in a new, improved and unobvious manner and to provide a novel intra-arterial cardiac assisting pump.

' It another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance. It is another object of the present invention to provide a novel intra-arterial cardiac assisting device providing a practical means of rapid, effective assistance to the patient in profound, refractory cardiogenic shock.

It is another object of the present invention to provide an intra-arterial cardiac assisting pump having a relatively small diameter catheter, utilizing materials which are biologicallyv compatible and utilizing a low density driving gas, which pump is effective in its intended purpose.

It is another object of the present invention to provide an autosynchronous balloon pumping system for temporary cardiac assistance having an intra-arterial portion which senses,

pressures in the aorta and assists in the correct timing of thei 60 pumping.

It is another object of the present invention to provide intraarterial cardiac assisting pump which can be simply inserted the aorta during use.

These and other objects of the nature and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the drawings wherein:

FIG. 1 is a partly broken away, partly schematic diagram of one embodiment of an intra-arterial cardiac assisting pump in i accordance with the present invention;

FIG. 2 is a view like FIG. 1, showing another embodiment of the present invention; and

FIG. 3 is a schematic illustration of an autosynchronous intra-arterial cardiac assisting balloon pump, showing ex- .into an artery, and which subsequently takes on the shape of tracorporeal components.

An intra-arterial assisting device in accordance with the present invention comprises, in general, two major components, namely an extracorporeal unit 10 (FIG. 3) and an intracorporeal unit 12. A first embodiment of an intracorporeal unit 12 is shown in FIG. I, while a second embodiment, similar in many respects to the embodiment in FIG. 1, is shown in FIG. 2.

Briefly, the intracorporeal unit 12 includes a hollow elongated arterial catheter portion 14, an inflatable, nonelastic balloon portion 16, and a perforated reenforcing portion 18. The extracorporeal unit 10 includes, very generally, a source 50 of gas under pressure (preferably helium), a solenoid valve unit 52 for periodically feeding the helium into the intracorporeal unit 12 and suitable electronic means for receiving a signal from the body in which the intra-arterial cardiac assisting device has been placed (such as ECG signals through leads 58 and $6) and using such signal for the opening and closing periodically of the solenoid valve 52.

The intra-arterialcardiac assisting device of the present invention works in the following manner. Normally, the heart pumps blood into the aorta, the bodys main artery leaving the heart, during a period of time termed cardiac systole. The following period of time, during which the heart is not pumping, but is filling with blood, in termed cardiac diastole.

When the heart is in need of assistance, the intracorporeal unit is passed through the bodys skin into a suitable artery (such as the femoral artery) and passed toward the heart so that the balloon 16 is in the thoracic aorta just below the location where the subclavian artery branches from the aorta.

When the electronic means embodied in the extracorporeal components receives an appropriate signal from the body, the solenoid valve is actuated so as to admit helium through the catheter I4, through the perforations in the reenforcing por-,

tion 18, and finally into the balloon 16 at the beginning of cardiac diastole, thus inflating the balloon. During cardiac diastole the resistance to flow in the vessels of the heart, i.e. the coronary arteries, is at a minimum. Inflation of the balloon 16 at this time increases the flow through the coronary arteries and pumps blood along the aorta toward the neck and head and toward the kidneys, liver, stomach and other organs.

Deflation of the balloon 16 at the end of cardiac diastole aids the heart by reducing the pressure in the aorta which the heart must normally pump against during cardiac systole. This permits the heart to pump a large volume of blood with each contraction and also reduces the pressure in the left ventricle, or main pumping chamber of the heart, at the end of cardiac diastole. The combined effects of inflation and deflation of the balloon in this manner provide significant aid to the heart in need of assistance.

Describing the intracorporeal unit 12 of FIG. 1 in greater detail, it will be seen that the leading end 20 of the device comprises a stainless steel housing 22 in which is incorporated .a pressure transducer 24 having suitable insulated electrical ,leads 26, which pass backwardly through the perforated reenforcing element 18 and along the catheter portion 14, as illustrated, to a junction 28 and then to an electrical lead carrying .portion 30 terminating in an electrical outlet 32. While the housing 22 is preferably formed of stainless steel, it will be understood that any rigid, biologically inert material may be used for such housing. In addition, other rigid materials can be used and can be coated with a biologically compatible material such as polyurethane. f The housing 22is connected to the end of the hollow, elongated, perforated reenforcing element 18, such as by being inserted therein. Such reenforcing element 18 preferably comprises a flexible braided tube of metal wires, such as copper braid, conventionally used as electrical shielding. Such copper braid has been found to be highly advantageous since it is flexible and conforms to the shape of the artery during operation of the intracorporeal unit, and also permits the flow therethrough of the inflating gas into the balloon 16. Where the reenforcing element 18 comprises the copper braid, the lead 26 from the pressure sensor transducer is woven into the copper braid l8.

Along a portion 34 of the device 12 of FIG. 1, the copper braid l8 and the catheter 14 are coextensive, the copper braid being soldered or otherwise adhered tight over the preferably etched end of the catheter l4. Overlying the entire copper braid 18, at least a portion of the housing 22 (preferably the entire housing 22) and the entire length of the junction portion 34 is the very thin walled, flexible, generally nonelastic, inflatable balloon 16, desirably formed of polyurethane. Polyurethane is the preferred material since it is not only biologically compatible, but it has the best combination of desirable physical properties such as abrasion resistance, ease of handling, tensile strength, and resistance to elastic inflation.

The catheter portion 14 is, as described above, a hollow elongated tube adapted, along with the housing 22, the reenforcing element 18 and the balloon 16, to be inserted into the artery. It is, accordingly, essential that the outer diameter of the catheter 14 be sufficiently small to permit its insertion into the artery. While the catheter 14 may be formed of any suitable material which is sufiiciently flexible to permit it to be bent, or coiled, it is necessary that its outer surface be provided with a biologically compatible material. Thus, the catheter 14 may be formed of vinyl plastic material coated with polyurethane; however, it is preferably formed of polytetrafluoroethylene which is, itself, biologically compatible and which has other desirable properties. Particular advantages of polytetrafluorethylene include its inertness and its very smooth surface.

It is preferred in the FIG. 1 embodiment that the catheter 14 be formed of two concentric polytetrafluoroethylene tubes, the outer of which has been heat shrunk about the inner, the sensor leads 26 being retained between the two concentric tubes. it will be understood, of course, that the catheter portion 14 is sufficiently long so that the balloon 16 may be deposited in the aorta while the junction 28 remains outside the body. The catheter l4 continues beyond the junction 28, as an extracorporeal tube 36, terminating in a connector 38 for attachment to the solenoid valve unit 52.

. The intracorporeal unit 12 of FIG. 2 is, in many respects,

similar to that described above in relation to FIG. 1. The primary distinctions include the use of a temperature-compensated pressure sensor having two transducer elements 24 and 24', and the use of a copper braid 18 which extends not only the length of the balloon 16 and along only a small portion of the catheter 14, but which spans the catheter 14 along its entire length, the leads 26 from the pressure transducer elements 24 and 24' being woven into the copper braid 18 along its entire length. In addition, an extracorporeal housing 40 is provided of suitable semiflexible plastic, such as molded polyurethane, into which the gas connection 3% and the electrical connection 32 are embedded for improved ease of connection with the solenoid valve unit 52. Also, instead of the polytetrafluorethylene catheter, polyurethane is extruded over the copper braid 18. Since all external surfaces of the entire assembly except for the connectors to the solenoid valve 52 and the electrical outlet are made of polyurethane, very highly reliable junctions between these surfaces can be achieved.

The extracorporeal unit includes, besides the source 50 of helium under pressure and suitable passageways and pressure regulating valves and metering devices therealong passing to the solenoid valve unit 52, as part of the control means, a modified double beam oscilloscope 60 and a recorder 62. The patient's ECG is recorded through leads 58 and passed through to the oscilloscope 60 through the leads 56. Central aortic pressure is measured by the pressure transducer elements 24 and 24' and passed through the leads 26 to the oscilloscope 60 and from these through leads 66 to the recorder 62. In turn, the oscilloscope 60 passes a signal through a lead 64, based on information received through the leads 58 and 26 from the body, to control the opening and closing of the solenoid valve 52. By means of the modified double beam oscilloscope 60, a preselected point of the ECG or of the central aortic pressure controls the solenoid valve 52. Phase and duration of inflation cycle can be adjusted independently.

The function of the electronic control (e.g. modified dual beam Tektronix 565 oscilloscope) is to recognize the occurrence of an R-wave on the ECG initiate a time delay up to the end of cardiac systole. At the beginning of cardiac diastole, the electronic control energizes the solenoid valve and maintains it energized until the end of cardiac diastole. For example, the commercial oscilloscope is modified by the addition of a relay, controlled by the 13+ gate, which connects power to the solenoid valve.

The following specific example of the manufacture and use of an intra-arterial cardiac assisting pump is presented by way of illustration and not by way of limitation, so that those skilled in the art may better understand how the present invention may be practiced.

An extracorporeal unit 10, such as shown in FIG. 3, is provided with a source of helium 50 under pressure and an electronically controlled solenoid valve 52. The intracorporeal unit comprises a flexible polyurethane balloon 16 with a Teflon" (polytetrafluorethylene) catheter 14 attached to one end, the entire intracorporeal unit being capable of being sterilized.

The balloon 16 is made by coating a glass mold with a l0- l5 percent polyurethane tetrahydrofuran solution. The resulting balloon has a wall thickness of only 0.100-0125 mm., but the material is so tough that it can withstand pressure of 250 mm. Hg. without undergoing elastic deformation, and it will withstand considerably greater pressure before bursting. The resultant balloon 16 thereby provides for a wide margin of safety during actual use. The so-formed balloon may be l0- l7 cm. long and 1-2 cm. in diameter, depending upon the size of the aorta for which it is intended and the pumping volume required. As illustrated in FIGS. 1 and 2, the balloon 16 tapers at each end to a cylindrical sleeve which is about 3 centimeters long and about 0.4 to 0.5 centimeter in diameter.

A section of woven flexible copper tubing (electrical shield- 7 ing), approximately 3-5 mm. in diameter, is introduced into the balloon 16, spanning its length, to serve as the elongated, perforated reenforcing element 18.

A pressure transducer 24 of the semiconductors straingauge type, provided with a stainless steel housing 22, is then tightly fitted into the end of the device proximal to the heart. The junction is then sealed with a coating of the polyurethane solution. Thus positioned, the pressure transducer is insensitive to pressure changes within the balloon 16, but records blood pressure changes at the site where the device is positioned, such as within the aorta.

The catheter portion 14 is then interfitted with the end of the balloon 16 and the end of the copper braid 18 along the portion 34. The catheter 14 may fit inside the copper braid 18, or it may fit over the end of the balloon 16. In the latter case, the catheter consists of two concentric, heat-shrinkable Teflon tubes. The catheter 14 is 60-70 cm. long and has a 5 mm. outside diameter. The leads 26 from the transducer 24 are interwoven with the braid 18 along its length and, where the braid 18 ends, the leads may either be carried within the catheter 14, or where the catheter comprises two concentric tubes, between such tubes. As is seen, the catheter connects the intra-arterial balloon 16 and the extracorporeal unit 10.

For catheterization, the intracorporeal unit is stiffened by the insertion of a long catheter guide which reaches to the leading end of the braided tube 18 which elongates the tube 18 thereby reducing its diameter to aid insertion. When the balloon 16 has been placed within the aorta, the guide is withdrawn and the woven copper tube, acting as a reenforcing means, allows the balloon 16 to regain its flexibility.

In operation, the assembled unit is driven by a low density gas, preferably helium. lt is necessary to use a low density gas to assure its rapid passage through the narrow catheter and into the balloon 16 through the mesh of the copper tubing.

By means of the modified dual-beam oscilloscope 60, a preselected point either of the central aortic pressure, as obtained from the transducer 24, or of the ECG, controls the solenoid valve of the pumping unit causing the helium to flow into the balloon 16 very quickly to inflate such balloon 16 to its preselected nonelastic maximum diameter.

It will be obvious to those skilled in the art that various changes may be made without departing from the scope of the invention and that the invention is not to be considered limited to what is shown in the drawings and described in the specification.

What we claim is:

1. An intra-arterial cardiac assisting pump comprising:

a hollow elongated arterial catheter portion having an outer diameter sufficiently small to permit the insertion thereof into an artery, at least the outer surface thereof being provided with a biologically compatible material;

a hollow elongated, perforated reenforcing element having a leading end and extending along at least a portion of said catheter and extending beyond the end of said catheter portion, said perforated reenforcing element having approximately the same diameter as said catheter portion and forming an extension thereof;

a very thin-walled, generally inelastic, cylindrical polyurethane balloon portion surrounding said perforated reenforcing element and in gas sealing relationship with said catheter portion, said balloon portion having an area in cross section when inflated of approximately 20-80 times as great as that of the said reenforcing element;

means for periodically feeding low density gas to said balloon through said catheter and reenforcing element to periodically inflate said balloon to its maximum inelastic diameter; and

internal pressure measuring means including a pressure transducer located at and connected to the leading end of said reenforcing element, electrical leads passing from said transducer through said reenforcing element and catheter, and means to translate the electrical signal from said transducer.

2. A pump in accordance with claim 1 wherein said transducer is provided with a rigid housing, said housing comprising said connection to the end of said reenforcing element.

3. A pump in accordance with claim 2, wherein said catheter is formed of polytetrafluoroethylene.

4. A pump in accordance with claim 2 wherein said reenforcing element comprises a flexible braided tube.

5. A pump in accordance with claim 4 wherein said braided tube is metallic.

6. A pump in accordance with claim 5, wherein said polyurethane balloon has an inflated diameter on the order of l2 cm., wall thickness on the order of 0.l000.l25 mm., and a length of about l0l7 cm., and wherein said catheter and braided tube have outer diameters of about 5 and 3-5 mm., respectively.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3266487 *Jun 4, 1963Aug 16, 1966Sundstrand CorpHeart pump augmentation system and apparatus
US3467101 *Sep 30, 1965Sep 16, 1969Edwards Lab IncBalloon catheter
US3504662 *May 16, 1967Apr 7, 1970Avco CorpIntra-arterial blood pump
Non-Patent Citations
Reference
1 *Khalil et al. - TRANS. AMER. SOC. ARTIFIC. INTER. ORGANS, - Vol. June 1967 - pp
2 *Moulopoulos et al. - TRANS. AMER. SOC ARTIFIC. INTER. ORGANS, Vol. VIII ap. 1962 pp. 85 87 (copy in Gp 335)
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3707960 *Sep 3, 1970Jan 2, 1973Us HealthBalloon cardiac assisting pump having intraaortic electrocardiographic electrodes
US3720199 *May 14, 1971Mar 13, 1973Avco CorpSafety connector for balloon pump
US3900033 *Mar 7, 1973Aug 19, 1975Ortho Pharma CorpDilator for cervical canal
US4051840 *Jan 5, 1976Oct 4, 1977Sinai Hospital Of DetroitDynamic aortic patch
US4077394 *Aug 25, 1976Mar 7, 1978Mccurdy Martin DIntegral pressure sensor probe for a cardiac assistance device
US4259960 *Oct 15, 1979Apr 7, 1981The Kendall CompanyCatheter with non-adhering balloon
US4276874 *Nov 15, 1978Jul 7, 1981Datascope Corp.Elongatable balloon catheter
US4292974 *Jan 30, 1980Oct 6, 1981Thomas J. FogartyDilatation catheter apparatus and method
US4448195 *May 8, 1981May 15, 1984Leveen Harry HReinforced balloon catheter
US4535757 *Mar 12, 1982Aug 20, 1985Webster Wilton W JrAutoinflatable catheter
US4646719 *Jun 11, 1984Mar 3, 1987Aries Medical IncorporatedIntra-aortic balloon catheter having flexible torque transmitting tube
US4655748 *Sep 4, 1985Apr 7, 1987Aisin Seiki KabushikikaishaCannula for infusion of fluid
US4692148 *Mar 28, 1986Sep 8, 1987Aisin Seiki Kabushiki KaishaIntra-aortic balloon pump apparatus and method of using same
US4733652 *Jul 15, 1987Mar 29, 1988Aisin Seiki Kabushiki KaishaIntra-aortic balloon
US4809681 *Mar 30, 1987Mar 7, 1989Aisin Seiki Kabushiki KaishaElectrocardiographic measurement method for controlling an intra-aortic balloon pump
US5484385 *Apr 21, 1994Jan 16, 1996C. R. Bard, Inc.Intra-aortic balloon catheter
US5556382 *Aug 29, 1995Sep 17, 1996Scimed Life Systems, Inc.Balloon perfusion catheter
US5591129 *May 15, 1995Jan 7, 1997Scimed Life Systems, Inc.Perfusion balloon angioplasty catheter
US5720723 *Apr 23, 1996Feb 24, 1998Scimed Life Systems, Inc.Balloon perfusion catheter
US5817001 *May 27, 1997Oct 6, 1998Datascope Investment Corp.Method and apparatus for driving an intra-aortic balloon pump
US5904666 *Aug 18, 1997May 18, 1999L.Vad Technology, Inc.Method and apparatus for measuring flow rate and controlling delivered volume of fluid through a valve aperture
US5961490 *Jan 26, 1998Oct 5, 1999Scimed Life Systems, Inc.Balloon perfusion catheter
US5968013 *Aug 21, 1997Oct 19, 1999Scimed Life Systems, Inc.Multi-function dilatation catheter
US6042532 *Mar 9, 1998Mar 28, 2000L. Vad Technology, Inc.Pressure control system for cardiac assist device
US6132363 *Sep 30, 1998Oct 17, 2000L.Vad Technology, Inc.Cardiovascular support control system
US6231498 *Jun 23, 1999May 15, 2001Pulsion Medical Systems AgCombined catheter system for IABP and determination of thermodilution cardiac output
US6511412Oct 16, 2000Jan 28, 2003L. Vad Technology, Inc.Cardivascular support control system
US6616597 *Dec 12, 2000Sep 9, 2003Datascope Investment Corp.Intra-aortic balloon catheter having a dual sensor pressure sensing system
US6735532Nov 18, 2002May 11, 2004L. Vad Technology, Inc.Cardiovascular support control system
US6746431Apr 16, 2001Jun 8, 2004Pulsion Medical Systems AgCombined catheter system for IABP and determination of thermodilution cardiac output
US6935999Dec 3, 2002Aug 30, 2005Datascope Investment Corp.Intra-aortic balloon catheter having a dual sensor pressure sensing system
US7025718Nov 19, 2002Apr 11, 2006Jonathan WilliamsMethod and device for correcting in-vivo sensor drift
US7066874Jan 6, 2004Jun 27, 2006Bay Innovation Group, LlcDevices and methods for blood flow assistance
US7087039Aug 11, 1997Aug 8, 2006Scimed Life Systems, Inc.Perfusion balloon angioplasty catheter
US7112170Oct 12, 2004Sep 26, 2006Datascope Investment Corp.Intra-aortic balloon catheter having a dual sensor pressure sensing system
US7229403May 17, 2006Jun 12, 2007Datascope Investment Corp.Intra-aortic balloon catheter having a dual sensor pressure sensing system
US7468050Dec 24, 2003Dec 23, 2008L. Vad Technology, Inc.Long term ambulatory intra-aortic balloon pump
US7614998Feb 24, 2004Nov 10, 2009Yossi GrossFully-implantable cardiac recovery system
US7731675Mar 15, 2006Jun 8, 2010Maquet Cardiovascular LlcGuidable intravascular blood pump and related methods
US7811221Feb 10, 2005Oct 12, 2010Yossi GrossExtracardiac blood flow amplification device
US8540618Feb 2, 2004Sep 24, 2013L-Vad Technology, Inc.Stable aortic blood pump implant
US8608637Jan 12, 2012Dec 17, 2013Nupulse, Inc.Internal drive line for ventricular assist device
US8684905 *Feb 21, 2012Apr 1, 2014Nupulse, Inc.Intra-aortic balloon pump assembly for ventricular assist device
US20120149970 *Feb 21, 2012Jun 14, 2012Nupulse, Inc.Intra-aortic balloon pump assembly for ventricular assist device
DE2915089A1 *Apr 12, 1979Oct 30, 1980Datascope CorpBallonkatheder
EP0119296A1 *Aug 30, 1983Sep 26, 1984Baylor College of MedicineAn apparatus for intra-aortic balloon monitoring and leak detection
EP0192574A1 *Feb 19, 1986Aug 27, 1986Medicorp Research Laboratories CorporationCirculatory and coronary intra-aortic balloon assistance pump
EP0192575A1 *Feb 19, 1986Aug 27, 1986Medicorp Research Laboratories CorporationCoronary perfusion pump
EP0234046A1 *Dec 29, 1986Sep 2, 1987Aisin Seiki Kabushiki KaishaIntra-aortic balloon apparatus
EP0249338A2 *May 12, 1987Dec 16, 1987C.R. Bard, Inc.Retroperfusion catheter
EP0425361A1 *Oct 22, 1990May 2, 1991OviCatheter for artificial pulmonary ventilation of a patient
EP1207934A2 *Sep 1, 2000May 29, 2002A-Med Systems, Inc.Guidable intravascular blood pump and related methods
EP1652471A1Dec 10, 2001May 3, 2006Datascope Investment Corp.Intra-aortic balloon catheter having a dual sensor pressure sensing system
EP1982742A2Dec 10, 2001Oct 22, 2008Datascope Investment Corp.Intra-aortic balloon catheter having a fiberoptic sensor
EP2275162A2Dec 10, 2001Jan 19, 2011Datascope Investment CorporationIntra-aortic balloon catheter having a fiberoptic sensor
WO1981002110A1 *Jan 29, 1981Aug 6, 1981T FogartyDilatation catheter apparatus and method
WO1983003204A1 *Mar 12, 1982Sep 29, 1983Wilton W Webster JrAutoinflatable catheter
WO1995028974A1 *Apr 7, 1995Nov 2, 1995Bruno MaugeriCounterpulsation device with intra-aortic balloon for continuous measurement of the left ventricular stroke volume
WO1996034531A1May 3, 1996Nov 7, 1996G Van Wijnsberghe En Co N VMethod of delivering animals to a processing area and an apparatus therefor
WO2002047743A2Dec 10, 2001Jun 20, 2002Datascope Investment CorpIntra-aortic balloon catheter having a dual sensor pressure sensing system
WO2002047751A2Dec 10, 2001Jun 20, 2002Datascope Investment CorpIntra-aortic balloon catheter having a fiberoptic sensor
Classifications
U.S. Classification600/18, 604/103.13, 604/914
International ClassificationA61M25/00, A61M1/10
Cooperative ClassificationA61M2025/0002, A61M1/1072
European ClassificationA61M1/10E51D
Legal Events
DateCodeEventDescription
Mar 30, 1987AS02Assignment of assignor's interest
Owner name: L VAD TECHNOLOGY, INC., 70 GALLOGLY RD., PONTIAC,
Effective date: 19850919
Owner name: SINAI HOSPITAL OF DETROIT
Mar 30, 1987ASAssignment
Owner name: L VAD TECHNOLOGY, INC., 70 GALLOGLY RD., PONTIAC,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO CONDITIONS RECITED;ASSIGNOR:SINAI HOSPITAL OF DETROIT;REEL/FRAME:004699/0248
Effective date: 19850919
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SINAI HOSPITAL OF DETROIT;REEL/FRAME:004699/0248
Owner name: L VAD TECHNOLOGY, INC., A CORP. OF MI,MICHIGAN