Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3589359 A
Publication typeGrant
Publication dateJun 29, 1971
Filing dateJul 24, 1968
Priority dateJul 24, 1968
Publication numberUS 3589359 A, US 3589359A, US-A-3589359, US3589359 A, US3589359A
InventorsJames T Hill
Original AssigneeUs Army
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Unidirectional fiberglass composite drop-foot brace
US 3589359 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventor James T. Hill FOREIGN PATENTS Bowie, Md. 7,72l 3/l9l2 Great Britain... [28/80 gfp 1 7431 121.322 12/1918 Great Britam 128/80 1 e u y v Patented June 29, 1971 OTHFR REFERENCES [73] Assign United states of America Strength of Glass by Games Slayter, AMERICAN represented by the Secretary of the Army CERAMIC SOCIETY BULLETIN, Vol. 3 I, No. 8, August l5,

. l952. Copy in Group 170.

Primary ExaminerRichard A. Gaudlet s4 UNIDIRECTIONAL FIBERGLASS COMPOSITE DROILFOOT BRACE Attorneys-Alva H. Bandy, William G. Gapcynski and 2 Claims, 6 Drawing Figs, Lawrence A. Neureither [52] U.S.Cl 128/80 [5i 1 Int. t A6lf invention relates to a novel foot brace con- Field Of Search 128/80, 87, struc ted of unidirectional fiberglass reinforced with epoxy 50.51 resin. The brace is designed of light flexible plastic and in- 1 Reerenm cued eludes two embodiments. The first is a bilateral drop-foot brace consisting of two fiberglass-epoxy rods disposed on each UNITED STATES PATENTS side of the wearers leg, and extending from a calf band to 2,567,195 9/ 1951 Ellery 128/80 shoe adapters. The second is a fiberglass-epoxy resin posteri- 2,57l,7l7 lO/l95l Howald et al...., 43/18 or, unibar, drop-foot brace having a-contoured brace rod ex- 2,573,698 I l/ l Ellery 128/80 tending from a calf band to a single shoe connection.



I6 BY '1 a ATTORNEY UNIDIRIECTIONAL FIBERGLASS COMPOSITE DROP- FOOT BRACE The invention described herein may be manufactured and used by or for the Government for governmental purposes without the payment to me of any royalty thereon.

BACKGROUND OF THE INVENTION 1. Field of the Invention The invention includes the use of fiberglass reinforced epoxy resin brace rod in a novel design to correct a drop-foot abnormality while leaving the other muscles free to act normally.

2. Description of the Prior Art Prior art appliances have heretofore been constructed out of metal. The use of metal in braces is only partially successful because of the weight of the appliance and the shortened fatigue life due to high notch sensitivity. 1

Conventional plastic laminates have not been successful in this type of application due to low fatigue life.

Wire spring braces, metal braces with no ankle joint, have an average patient life of around 6 weeks. Both the spring and metal rod braces, in addition to being heavy, have a tendency to take a permanent set when bent too far. This could happen in every day usage. These braces also tend to tear the wearer's clothing and snag objects, or when two braces are wom, interlock with each other, tripping the wearer. I

It has been discovered that unidirectional, fiberglass reinforced epoxy resin rods may be easily and cheaply constructed from commercially available impregnated tape. These rods are extremely light, strong, and flexible, and may be tapered or contoured for flexibility.

Accordingly, it is an object of this invention to provide a light, flexible foot brace constructed of unidirectional, fiberglass reinforced epoxy resin rods.

It is another object to provide a foot brace which will correct only a particular abnormality while allowing the wearers other muscles to function normally.

It is a further object to provide a bilateral drop-foot brace having flexible brace rods which will not snag or tear adjacent articles of clothing.

It is yet another object to provide a unibar, posterior, dropfoot brace having a contoured, flexible, brace rod, said flexi ble rod eliminating the necessity for a metal spring connecting the brace to a shoe adapter.

These and other objects will become apparent with reference to the drawings and following discussion.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of the bilateral dropfoot brace of this invention.

FIG. 2 is a side view of the brace of FIG. 1.

FIG. 3 is a side view of the unibar posterior drop-foot brace of this invention.

FIG. 4 is a vertical section of the shoe attachment for the brace of FIG. 2 taken along line 4-4.

FIG. Sis a bottom view of the shoe lift plate of FIG. 2.

FIG. 6 is a partial sectional view of the adapter of FIG. 4.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Fiberglass-epoxy composites offer great flexibility of design due to their extremely high strength-to-weight ratio. The specific compressive strength of these composites is 2.8 times that of steel and 3.7 times that of aluminum. From a practical standpoint, this allows a brace designer a wide latitude of application. For example, in a brace where strength is a prime consideration, a brace could be constructed with almost three times the strength of steel of the same weight, or a brace could be constructed as strong as aluminum which weighs only onefourth as much.

The fatigue strength of unidirectional fiberglass-epoxy composites is 36,000 psi. at 10 cycles, while spring steel and aluminum are 33,000 psi. and 27,000 p.s.i., respectively at 10 cycles. The specific fatigue of the fiberglass-epoxy composite is almost five times that of steel, and over twice that of aluminum.

Another important property in spring applications is the physical energy that is stored when it is deformed from zero stress up to its fatigue limit. The relatively low modulus of the oriented, nonwoven, reinforced fiberglass-epoxy composite, coupled with its high ultimate strength, provides it with nine times greater capacity for stored energy than spring steel.

Notch sensitivity is also important in fatigue application because nicks and scratches from every day use lead to premature failures. Reinforced plastics are far less sensitive to notches than most metals. Aluminum retains only 37 percent of its original fatigue strength, steel 43-47 percent of its original strength, while the fiberglass-epoxy composite retains -90 percent of its original fatigue strength.

In the bilateral brace of FIGS. 1 and 2 fiberglass-epoxy rods, 5, are connected at their upper ends to cuff band, 6, by insertion into sewn pockets, 7. Cuff band, 6, may be constructed of leather and joined, releasably, by any suitable fastening means, 8. If a rigid cuff band is desired, it may be constructed from a form corresponding to the wearer's leg. The rods and the rigid band may be made from the same material and cured to form an integral piece as will be described.

The wearer's shoes, 10, may have a conventional flat channel (not shown) attached to the shoe plate, 11, of FIG. 5. The plate, 11, is of metal and may be riveted to the shoe, 10, or cemented in place or embedded using conventional procedures. It is to be understood that shoe 10 is used as a generic term to include all coverings for the human foot.

Plate, 11, has lateral extensions, 12, which extend beyond the heel of the shoe. Shoe adapters, 15, are then attached to extensions, 12. Adapters, 15, are designed to have an angled extension receiving groove, 16. This angle may be varied depending on the wearer, but the basic principle is to provide a lift from the' horizontal transmitted from the flexible, vertical rods, 5, to the toe of the shoe, 10, through the angled groove, 16, in adapter, 15, and plate, 11.

Adapters, 15, are attached to plate, 11, by setscrews, 17, at holes, 18, in the said plate. After rods, 5, have been cut to the length appropriate to the particular wearer, the ends thereof are inserted in holes, 19, of adapters, l5, and glued in place with any conventional epoxy glue.

The alternate embodiment of FIG. 3, a unibar, posterior drop-foot brace utilizes a contoured, fiberglass reinforced epoxy resin brace rod, 20. The construction of rod, 20, will be described in a subsequent discussion.

Rod, 20, is constructed in a reinforced contour to conform to the posterior of the wearers leg. The upper portion of the rod, 20, may be sewn in a cuff as described for the bilateral rods of FIGS. 1 and 2 or molded into a rigid band as will be described. Shoe connector, 21, is an L-shaped member which may be riveted or cemented to the we-arers shoe or inserted in a precut channel for rigid attachment to shoe, 22. The particular means utilized will be obvious to one skilled in the art. The lift for the toe of shoe, 22, is provided by rubber wedge, 23, which is inserted between rod, 20, and connecter, 21.

Rods, 5, are constructed from commercially available, unidirectional fiberglass tape preimpregnated with epoxy resin. The tape is cut in strips having glass fibers disposed longitudinally within the said strips. The flat strip is then rolled longitudinally as tightly as possible to eliminate a visible hollow core. Additional strips are rolled in the same manner around the rod until the desired diameter is reached. The rod is then spirally wrapped with a commercially available release film applying slight tension to the rod.

It was found that Scotchply Reinforced Plastic, Type 1008, was suitable for the longitudinal roll, and Tedlar, polyvinyl alcohol, and Scotchply XP242 release films were suitable for the spiral roll.

After the rods are rolled the ends are sealed with, for example, transparent adhesive tape, and the rods are cured for 2 hours at l60i5 C. For maximum physical properties, an 18 hour postpcure at 140 C. is necessary.

ln the case where a rigid calf band is necessary the band may be made of 4070 durometer silicone sheeting, which is wrapped around a suitable form of the patients leg. The sheet is then wrapped with a release film. To build successive layers the preimpregnated tape is cut and disposed about the band with the fibers of each successive layer disposed at 90 to the previous layer. The layers are then covered with a release film, and with a 1/32 inch, 70 durometer silicone sheet. This band is cured for 2 hours at l60i5 C. under 25-30 inches of mercury vacuum.

Rods may be attached to the rigid band in the same manner by looping short strips of preimpregnated tape, a release film, and a silicone sheet around an end of the rod. The ends of the strip buildup are disposed against the band prior to curing, and the composite is cured as described above.

To construct the unibar posterior rod, 20, flat strips of preimpregnated tape are laid up over a suitable form that duplicates the contour of the profile of the patients leg. These strips are laid up and cured in the same manner as for the rigid calf band described above.

it will be obvious to one skilled in the art that the sloping contours of rod, 20, result from a selective buildup of preimpregnated pieces at the ankle area, 25, and in the area, 24, of the shoe connection. This is a selective buildup and does not extend into the calf area, 26, where only unidirectional fibers are used.

Rod, 20, may be inserted in a leather cuff or laminated to a rigid band depending on the needs of the wearer as described in relation to the bilateral rods, 5.

The race rods of this invention may be constructed according to laminating processes well known to those skilled in the art and the rods may be secured to the calf bands by a variety of methods. The methods of construction, therefore, are important from the standpoint of constructing brace rods having unidirectional fibers, but they may be varied by lamination procedures obvious to those skilled in art within the scope of this invention.

1 claim:

1. A drop-foot brace comprising:

a. dual flexible brace rods, said rods constructed from fiberglass reinforced, epoxy resin;

b. a calf band attached to the upper ends of said brace rods, and adapted to be releasably secured around the calf of a wearer;

c. a shoe connector disposed at the heel of a brace shoe including a flat plate having a rear portion connected to the heel of the shoe, a forward portion aligned with the sole of the shoe, and lateral extensions; and

d. shoe adapter means for attaching said brace rods to said shoe connector and further including a wedging portion having inclined sections above and below said lateral extensions of said plate and a setscrew which enables the connector plate to be adjusted to set the desired angle between the longitudinal axes of said brace shoe and said brace rods.

. A drop-foot brace comprising:

a. dual flexible brace rods, said rods constructed from fiberglass reinforced, epoxy resin;

. a calf band attached to the upper ends of said brace rods, and adapted to be releasably secured around the calf of a wearer;

c. a shoe connector having a flat plate said connector being disposed at the heel of a brace shoe; and

d. shoe adapter means for attaching said brace rods to said shoe connector, said adapter means including a wedging portion having inclined sections above and below said connector plate and further including means to adjust said connector plate to set the desired angle between the longitudinal axes of the brace shoe and said brace rods.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2567195 *Mar 5, 1946Sep 11, 1951Ellery Emmett COrthopedic drop-foot brace
US2571717 *Feb 16, 1946Oct 16, 1951Libbey Owens Ford Glass CoShaft for fishing rods
US2573698 *Mar 25, 1948Nov 6, 1951Ellery Emmett CStirrup for orthopedic braces
GB121322A * Title not available
GB191207721A * Title not available
Non-Patent Citations
1 *Strength of Glass by Games Slayter, AMERICAN CERAMIC SOCIETY BULLETIN, Vol. 31, No. 8, August 15, 1952. Copy in Group 170.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4408600 *Feb 1, 1982Oct 11, 1983Davis Edward PLeg aid device and method
US5143058 *Nov 6, 1990Sep 1, 1992Care Co. Medical Products, Inc.Foot and leg splint
US5269748 *Feb 16, 1993Dec 14, 1993Restorative Care Of America IncorporatedTherapeutic leg and foot device
US5298013 *Apr 29, 1993Mar 29, 1994Restorative Care Of America IncorporatedMethod of heating the decubitus on the heel of a bedfast patient
US5700237 *Nov 16, 1995Dec 23, 1997Restorative Care Of America IncorporatedDevice for correcting ankle contractures
US6007506 *Jun 15, 1998Dec 28, 1999Heil; DeanMethod of using a shoe & support device
US6102881 *Apr 23, 1999Aug 15, 2000Todd R. QuackenbushHinged drop foot brace
US6908445 *Oct 12, 1998Jun 21, 2005Robert J. WattsAnkle-foot orthosis
US6997891 *Sep 5, 2003Feb 14, 2006Brett VecseyLeg support system
US7266910Aug 27, 2004Sep 11, 2007Ossur HfOrthotic footplate
US7270644Aug 27, 2004Sep 18, 2007Ossur HfAnkle-foot orthosis having an orthotic footplate
US7458950Jul 1, 2005Dec 2, 2008Michael IvanyAnkle foot orthosis
US7513880Jan 10, 2007Apr 7, 2009Ossur HfAnkle-foot orthosis having an orthotic footplate
US7967768Apr 14, 2004Jun 28, 2011Watts Robert JAnkle-foot orthosis
US9259343Mar 15, 2013Feb 16, 2016Newman Technologies LLCDevice for mitigating plantar fasciitis
US20050054959 *Aug 27, 2004Mar 10, 2005Ingimundarson Arni ThorOrthotic footplate
US20050054963 *Aug 27, 2004Mar 10, 2005Ingimundarson Arni ThorAnkle-foot orthosis having an orthotic footplate
US20050177083 *Feb 9, 2004Aug 11, 2005Heil Arlan D.Foot eversion inhibitor
US20070010773 *Apr 14, 2004Jan 11, 2007Watts Robert JAnkle-foot orthosis
US20070197948 *Jan 10, 2007Aug 23, 2007Ingimundarson Arni TAnkle-foot orthosis having an orthotic footplate
USRE33762 *Sep 4, 1990Dec 10, 1991L'nard Associates, Inc.Therapeutic leg and foot device
WO2014143450A1 *Feb 5, 2014Sep 18, 2014Newman Technologies LLCDevice for mitigating plantar fasciitis
U.S. Classification602/28
International ClassificationA61F5/01, A43B7/20, A43B7/14
Cooperative ClassificationA61F5/0113, A43B7/20
European ClassificationA61F5/01D1D2, A43B7/20