Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3589697 A
Publication typeGrant
Publication dateJun 29, 1971
Filing dateNov 5, 1969
Priority dateNov 5, 1969
Publication numberUS 3589697 A, US 3589697A, US-A-3589697, US3589697 A, US3589697A
InventorsGladden Kenneth D, Hays Raymond H, Sansom Jack E
Original AssigneeCaterpillar Tractor Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Die-quenched crankshaft
US 3589697 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Inventors Raymond H. Hays Peoria; Jack E. Sansom, Eureka; Kenneth D. Gladden, Washington, all of. 111.

Appl. No, 871,169

Filed Nov. 5, 1969 Division of Ser. No. 553.142. .\1a v 26, 1966. Pat. No. 3.506.501.

Patented June 29, 1971 Assignee Caterpillar Tractor Co.

Peoria, 111.

DIE-QUENCHED CRANKSHAFT 4 Claims, 7 Drawing Figs.

U.S. C1 266/6, 148/146 Int. Cl C2ld 1/62 Field of Search ..f 266/6 PC,

[ 56] References Cited UNITED STATES PATENTS 1,337,465 4/1920 Clson 266/6 1,448,878 3/1923 Smith 266/6 2,255,103 9/1941 Denneen et a1 266/4 2,492,434 12/1949 Mueller 266/6 2,574,564 11/1951 Hogel et a1. 266/4 3,033,548 5/1962 French 266/6 3,294,597 12/1966 Kuchera 148/143 Primary Examiner-Gerald A. Dost Attorney-Fryer, Tjensvold, Feix, Phillips & Lempio ro o 0 054106?) PATENTEU JUH29 l9?! SHEET 1 0F 3 m. m w TAWM mam M H w T WW Mm DnJK AT TORN EYS DIlE-QUENCHED CRANKSHAFT This application is a division of application Ser. No. 553,142, filed May 26, 1966, now U.S. Pat. No. 3,506,501.

This invention relates to a new improved die-quench hardened crankshaft and die-quenching apparatus and method for producing the same.

The current commercial practice of processing forges steel crankshafts is to heat and quench the entire surface for grain refinement and subsequently temper for producing a machineable hardness. After cold straightening and basic machining, the hearing surfaces are induction hardened, reheated to tempering temperature, and then finally finish ground. In some cases the bearing fillets are shot peened prior to final finishing to increase fatigue strength.

Several problems have led to the need for the present invention, each of which has more or less intensified the other. The first of these is the rapidly increasing gas pressures in modern diesel engines as a result of the constant demand for increased horsepower from an engine of given size. These pressures not only add further loading to the crankshaft but also excite more rigorous vibrations which add to crankshaft fatigue. It is, therefore, desirable to provide a crankshaft which would be stronger at its present size and weight without using more expensive alloy steels. Toward this end, attempts have been made to provide the stronger crankshaft by heat treatment.

Unfortunately, heat treatment per se causes several problems, especially with an article of such irregular shape as a crankshaft. One such problem is that in the use ofexisting induction heat-treatment methods, it is necessary to use a steel of high carbon content to get the depth of hardness which is needed for overall shaft strength and proper bearing life. A phenomenon which may be termed longitudinal cracking has occurred in engines utilizing relatively high carbon crankshafts. Such longitudinal cracks develop in the journal surface of the crankshaft during engine operation as a result of the adverse stresses produced from heat generated during bearing seizures. These cracks start a stress point which can lead to ultimate failure of the crankshaft.

During the past few years, the tempering temperature of the crankshafts has been raised from 540 to 740 F. to increase the ductility in the crank surface to prevent longitudinal cracking in field service and, unfortunately, the hardness level has been lowered from Rockwell C 49--57 to the present Rockwell C 40-46. This in turn has reduced the fatigue strength and wear-life of the crankshafts.

A further problem is that if a complete crankshaft is heated and immediately quenched in an open quenching tank, distortion is so great that considerable time is consumed is straightening the cold crankshaft to make it usable. This is not only objectionable from a cost standpoint but it has been proven that when a piece of steel is straightened following heat treatment, some" areas are structurally weakened. In many cases, the distortions so great that it cannot be corrected within the desired limits.

Also in present induction hardening processes it is often necessary that oil holes in the crankshaft be plugged to prevent cracks from forming therein during the quenching operation. After the subsequent induction hardening process, the crankshafts are again straightened and a peening opera tion is done in the area of the pin and main journals. This operation is necessary on present production crankshafts to alleviate undesirable residual stresses causes by the sharp transition between the hardened and relatively unhardened portions of the crankshaft formed by the induction hardening in the fillet area. This tends to relieve the stressed area between the hardened portion of the bearing surfaces and the fillets andeliminate cracks that generally start in this area if no peening is done.

The present invention provides a low carbon content crankshaft which is completely die-quench hardened after substantially all machining operations have been performed thereon and which eliminates the need for the straightening process previously required, the shot peening operation, and the plugging of the crankshaft oil holes. Since low carbon quenched and tempered steels are tougher than high carbon steels at the same hardness level, it is possible to use a low carbon steel at a higher hardness level with no increase in susceptibility to longitudinal cracking, but with marked improvement in fatigue life. As a result of the invention, the final crankshaft hardness is of a higher value, such as Rockwell C 49--54, than that attainable previously without encountering cracking problems, etc. Further, as a result of the novel diequenching apparatus of the present invention, it is possible to harden the entire surface of the crankshaft since when placed within the die the crankshaft is straightened and properly held while jets of water under pressure drastically quench the journals, thereby achieving an excellent surface hardening pattern. While the quenching process is taking place, the entire fixture and crankshaft are submerged and, due to the greatly agitated water from the jets, the hardness pattern is continued out into the cheeks and/or throws of the crankshaft.

The previously required cold straightening operation, the shot peening operation, and the need for plugging the oil holes have all been eliminated as a result of the invention. The straightening operation has been eliminated as a result of the novel die-quenching apparatus which properly retains the crankshaft during the quenching operation. The various other operations are eliminated since the extreme agitation of the water and jets against the retained crankshaft distribute the heat treat pattern evenly throughout the entire exposed surfaces of the crankshaft. Any changes between the hardened surfaces and relatively unhardened surfaces are gradual so as to eliminate the sharp stress concentrations known to crankshafts produced by prior art procedures.

In addition to the advantage of eliminating such previously required operations are straightening after quenching, shot peening and oil hole plugging, the low carbon content diequench hardened crankshaft of the present invention has numerous other advantages such as increased fatigue life, higher surface harness, elimination or longitudinal stress cracking, greater core strength and quench hardened fillets. Moreover, a more economical grade of steel can be used than was previously possible.

Other objects and advantages of the invention will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawing.

In the drawing:

FIG. 1 is a side elevation of one embodiment of diequenching apparatus constructed in accordance with the invention;

FIG. 2 is a partial cross section taken on the line IIII of FIG. 1;

FIG. 3 is a plan view taken on the line III-III of FIG. 2;

FIG. 4 is a cross sectional view taken on the line IV-IV of FIG. 2;

FIG. 5 is a longitudinal view, partially in section, of a modified embodiment of die-quenching apparatus constructed in accordance with the invention;

FIG. 6 is a cross-sectional view taken on the line VI-VI of FIG. 5; and,

FIG. 7 is a cross-sectional view taken on the line VII-VII of FIG. 5.

Referring now to FIG. 1, the die-quenching apparatus of the invention comprises a movable upper platen 10 adapted to cooperate with a work supporting lower platen 12. The platens I0 and 12 are respectively provided with a plurality of upper 14 and lower 16 die blocks which are adapted to receive therebetween a cylindrical workpiece such as the multithrow crankshaft 18, on which the quenching operation is to be performed. It is to be noted that although the die blocks are of like construction, they are of different heights and in different locations, to secure the respective journals of crankshaft 18 in proper position. The lower platen 12 is provided with a plurality, preferably four, of spring-loaded buttons 20 which support the crankshaft by its cheeks 22 when it is first placed in the apparatus. The buttons 20 prevent the crankshaft journals 24 from coming into contact with the cold metal of the die blocks 16 until the upper platen I is lowered into place for commencement of the straightening and quenching operation. Contact of the hot journals with the relatively cold die blocks for any length of time prior to application of the quench water effects a mild quench of the contact area and is detrimental to the quenching operation.

Referring now to FIG. 2 in conjunction with FIG. 1, it can be seen that the platens l0 and 12 and die blocks 14 and 16 are of hollow construction, the die blocks being secured to the platens by suitable retaining means 26 and alignment pins 28. A plurality of conduits as indicated at 30 and 32, are connected to the platens allowing water under pressure to be directed through the platens to the die blocks.

As shown in FIGS. 2, 3 and 4, the upper die blocks 14 and lower die blocks 16 have generally cylindrically shaped opposed surfaces 34 for substantially surrounding the crankshaft 18 when the platens are in closed position. Two or more protruding pads 36 are suitably spaced about each die block surface for contact with and support of the crankshaft journals 24. Suitable retaining bolts 38 (see FIG. 4) are provided for securing and adjusting the pads 36 with respect to their respective die blocks. Shims 40 can be removed or added between the pads and their respective blocks so as to shift the workpiece either laterally or vertically. As shown, a plurality of small passageways 42 are provided in both the cylindrical surfaces 34 of the die blocks and the pads 36 to allow jets of water during the quenching operation to contact as much of the crankshaft journal surfaces as possible. It is important that the external surfaces of the pads 36 be shaped so as to make minimal contact the journals during the quenching operation. Although the pads are shown with accurately shaped external surfaces, these surfaces could be of any other suitable shape such, for example, as triangular with radiused corners providing the support for the variousjournals.

In the modified embodiment shown in FIGS. 7, the upper platen 50 and lower platen 51 receive water through ports 52. Suitably secured to each of the platens, and in fluid communication therewith, are supporting blocks 54 and 56. Upper and lower die blocks 58 and 60 are secured to their respective supporting blocks by retaining bolts 62, the bolt heads of which are accessible thorough normally plugged apertures 64. It should be noted that the pads 66 are an integral part of the die blocks 58 and 60. During the quenching operation, water under high pressure enters port 52, flows through drilled passages 68 into the die block cavity 70 and outwardly through holes 72 to spray against the crankshaft journals.

Since the pads 66 are integrally formed on the die blocks, lateral and vertical adjustment thereof must be made via the die blocks 58 and 60. The die blocks are adjusted vertically by changing shims 74 located between the die blocks and their respective supporting blocks. As best shown with reference to the lower platen 51 (FIGS. 5 and 7), an inverted T-shaped bracket 75 is fastened to the lower platen by means of bolts 76 and alignment pins 78. Located at the midportion of the bar of the T-shaped bracket is a bifurcated leg 80 which closely receives the support block 56. lntegrally formed on the support block 56 are a pair of spaced arms 82 which straddle the leg 80 of bracket 75. The support block 56 is adjustably secured to the bracket 75 by means of fasteners 84 adapted to be received in oversized holes 86 formed in the arms 82. It will be readily understood that after loosening fasteners 84 the 0.200 inches (as measured five Rockwell C points below the surface hardness). Test results have indicated that the above crankshafts, when die-quenched in the apparatus of the invention, have a Total Indicator Runout ofless than 0.020 inches.

In operation, immediately after the crankshaft has been furnace heated to its austenitizing temperature, it is placed in the lower platen and supported above the lower die blocks by the spring-loaded buttons. The buttons prevent the crankshaft journals from coming into contact with the die pads until a very short time prior to the beginning of the quenching cycle. The upper die is then moved into position forcing the springloaded buttons downwardly which allows the crankshaft to be clamped in position as shown in FIGS. 2 and 5.

With the crankshaft clamped in position and with the entire quenching apparatus placed in a tank (not shown), fluid quenchant, preferably water under very high pressure, is directed through the hollow platens and sprayed through the many passages in the dies against the crankshaft journals and fillets. Immediately following the beginning of the quenching spray, the entire crankshaft is submerged and subjected to a drastic-quench so as to cause the hardness case to be extended over the entire crankshaft. Due to the extreme agitation of the water against the retained crankshaft, the heat treat pattern is distributed evenly throughout the entire exposed surfaces of the crankshaft including the oil hole surfaces inside the crankshaft. It is to be understood that the submersion process could be eliminated by providing sufficient water jets in the die-quenching apparatus to spray the entire crankshaft.

We claim:

1. Die-quenching apparatus comprising relatively movable upper and lower opposed platens; a plurality of die blocks supported on said upper platen; a corresponding plurality of lower die blocks supported on said lower platen for mating cooperation with said upper die blocks; said upper and lower die blocks each having an internal cavity and further having generally cylindrical opposed outer surfaces for receiving and substantially surrounding a workpiece when said platens are moved toward each other; a plurality of protruding workpiece supporting pads circumferentially located at spaced locations about the cylindrical surface of each of said die blocks; said workpiece supporting pads having generally arcuate outer surfaces for establishing minimal surface contact with said workpiece; and a plurality of relatively small fluid passageways extending through both the cylindrical surfaces of said die blocks and said workpiece supporting pads, said passageways providing fluid communication with said die block cavities.

2. Die-quenching apparatus as set forth in claim 1 and further comprising a plurality of button means resiliently supported on said lower platen for preventing contact between a workpiece placed thereon and the protruding workpiece supporting pads on said lower die block when said upper and lower platens are moved away from each other.

3. Die-quenching apparatus as set forth in claim 2 and further comprising means for radially adjusting said workpiece supporting pads relative to their respective die blocks.

4. Die-quenching apparatus as set forth in claim 2 and further including means for adjusting said die blocks both horizontally and vertically relative to said platens.

@333? UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 #569,597 Dated June 29, 1971 Invenmfls) RAYMOND HAYS; JACK E. SANSOM. KENNETH D. GLADDEN It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Kbstract, line 8, after "are", insert --provided with a plurality of relatively small fluid--.

Column 1, line 13, "hearing" should read --bearing--.

Column 1, line 57, delete "distortions" and insert ---distortion is--.

Signed and sealed this 28th day of March 1972.

(SEAL) Attest:

EDWARD M.FLETCHER, JR. ROBERT GOTTSCHALK Commissioner of Patents Attesting Officer

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1337465 *Nov 25, 1918Apr 20, 1920Illinois Tool WorksMachine for hardening plates
US1448878 *May 3, 1920Mar 20, 1923Ford Motor CoMethod and machine for tempering bars, shafts, and the like
US2255103 *Oct 15, 1938Sep 9, 1941Ohio Crankshaft CoEquipment for electric heating
US2492434 *Dec 8, 1942Dec 27, 1949Mueller CoProjectile quenching apparatus
US2574564 *Nov 12, 1948Nov 13, 1951Asea AbApparatus for partial surface hardening of crankshafts, camshafts, or like workpieces
US3033548 *Jun 18, 1959May 8, 1962Dorn Iron Works Company VanQuenching fixture
US3294597 *Aug 4, 1965Dec 27, 1966Smith Corp A OMethod for quenching a metal member
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3972744 *Jul 15, 1975Aug 3, 1976Houdaille Industries, Inc.Method of and means for making lightweight, low cost impact resistant bumpers
US4057230 *Mar 3, 1976Nov 8, 1977Caterpillar Tractor Co.Die quench machine and method
US6185978Mar 4, 1997Feb 13, 2001Accra Teknik AbMethod for manufacturing of curved and quenched profiled elements and a die tool for carrying out the method
US6210500 *Nov 4, 1999Apr 3, 2001Federal-Mogul World Wide, Inc.Method of heat treat hardening thin metal work pieces
US6491865Dec 5, 2000Dec 10, 2002Federal-Mogul World Wide, Inc.Heat treat fixture apparatus and method of heat treat hardening thin metal work pieces
US20140064976 *Aug 14, 2012Mar 6, 2014Kevin L. CorcoranRotor keyhole fillet for a gas turbine engine
WO1997035039A1 *Mar 4, 1997Sep 25, 1997Accra Teknik AbA method for manufacturing of curved and quenched profiled elements and a die tool for carrying out the method
WO2001032942A1 *Nov 1, 2000May 10, 2001Federal-Mogul CorporationHeat treat fixture apparatus and method of heat treat hardening thin metal work pieces
U.S. Classification266/117, 148/647
International ClassificationC21D1/62, C21D1/673
Cooperative ClassificationC21D1/673
European ClassificationC21D1/673
Legal Events
Jun 12, 1986ASAssignment
Effective date: 19860515