Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3590692 A
Publication typeGrant
Publication dateJul 6, 1971
Filing dateJul 1, 1968
Priority dateJul 1, 1968
Also published asUS3799937
Publication numberUS 3590692 A, US 3590692A, US-A-3590692, US3590692 A, US3590692A
InventorsStanley M Bloom
Original AssigneePolaroid Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Silver halide developing agents and photographic process
US 3590692 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

I United States Patent 3,590,692

[72] Inventor Slanle) M. Bloom. 3,345,166 10/1967 Land et a1 96/29 A I No yagss Primary Examiner-William D. Martin zz y I968 Assistant Examiner-Theodore G. Davis Atlorneys-Brown and Mikulka, Stanley H. Mervis and Mark [45] Patented July 6, 1971 C Jacobs [73] Assignee Polaroid Corporation Cambridge, Mass.

ABSTRACT: Photographic process and product employing silver halide developing agents of quaternary ammonium com- [54] SILVER HALIDE DEVELOPING AGENTS AND pounds of h f l PHOTOGRAPHIC PROCESS 8 Claims, No Drawings P LINK QUAT. wherein DEV 18 a dihydroxyaryl silver halide developlng radi- [52] US. Cl 92/26, l or a di lkox aryl or dialkoxymethoxyaryl precursor 96/53, 96/ 16 thereof; LINK is a hydrocarbon radical of at least 2 and [5 i ll"- v t t 1 preferably 3 carbon atoms or a hydrocarbon radical preceded G039 5/ 54 by and/or interrupted by individual atoms of oxygen or sulfur [50] Field of Search 96/29, 63, with the proviso that an interrupting atom f oxygen or m 76, 95 cannot be closer than two carbon atoms away in the chain from the ositivel char ed nitro en atom of the uaternar [561 Remems ammoniu l radicai QUA T bonde m LINK throug it the pen UMTED STATES PATENTS tavalent nitrogen atom. The preferred mode of preparation of 3,196,015 7/1965 Ryan 96/29 these compounds is by the alkylation of an amine. These com- 3,232,758 2/1966 Holstead et a1 96/29 pounds are especially useful in photography as silver halide 3,326,683 6/1967 Land et a]. 96/29 developing agents.

PATENTEU JUL 6 I97! Fig.2

SHEET 1 [1F 2 INVENTOR BY ?(r z-JM ATTORNEYS PATENTEU JUL 6 |97| SHEET 2 0F 2 INVENTOR ATTORNEYB I OH are good silver halide developing agents. The introduction of positive substituents such as CH and -OCH onto the hydroquinone nucleus of such derivatives increases the development capability of such compounds whereas the introduction of negative substituents decreases it. The positive charge of the pyridinium group might be expected to weaken the developing agent by the withdrawal of electrons from the hydroquinone system. The positive charge on the pyridinium group would be expected to make it easier for the hydroquinone ion to penetrate the negative charge barrier surrounding the silve halide grains, and this action may more than offset the electron withdrawal effect.

When such developing agents were utilized in diffusion transfer processing compositions which, as is known in the art, have a high pH of about 13, it was found that the developing agent fragmented. It has now been found that if a linking group containing at least two and preferably three carbon atoms is present between the positively charged nitrogen atom and the hydroquinone radical, or at least two carbon atoms between the positively charged nitrogen atom and any other atoms, such as oxygen or sulfur atoms, comprising a part of said linking group that such fragmentation will not occur. The utilization of the linking group also overcomes any electron withdrawing effect attributed to the quaternary nitrogen atom while still maintaining the benefits to be derived from the positive charge in regard to the penetration of the negative charge barrier.

Accordingly, it is one object of the present invention to provide novel quaternary ammonium compounds which are alkali stable silver halide developing agents suitable for use in diffusion transfer processes.

Another object is to provide novel processes and processing compositions for forming images by a diffusion transfer process wherein the novel compounds are utilized as the silver halide developing agent.

Still another object is to provide procedures for the preparation of the novel compounds.

Other objects of this invention will in part be obvious and will in part appear hereinafter.

The invention accordingly comprises the processes involving the several steps and the relation and order of one or more of such steps with respect to each of the others, and the products and compositions possessing the features, properties and the relation of elements which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.

For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description.

The novel compounds of this invention may be represented by the formula:

(2) DEVLlNK--QUAT wherein DEV is a dihydroxyaryl silver halide developing radical; or a dialkoxyaryl or dialkoxymethoxy precursor thereof, or a monoamine monohydroxy silver halide developing radical; or a nitroalkoxyaryl or nitroalkoxymethoxyaryl precursor thereof; LINK is a divalent organic radical bonded to a nuclear carbon atom of DEV and to QUAT through a pentavalent nitrogen atom of QUAT, wherein the atom of LINK next adjacent to DEV is selected from among oxygen, sulfur and carbon, the remainder of said radical being a linear two to nine carbon atom hydrocarbon chain or a hydrocarbon chain which is interrupted by individual oxygen or sulfur atoms, with the proviso that an interrupting atom of oxygen or sulfur is not bonded to the carbon atom of LINK bonded to said pentavalent nitrogen atom of QUAT, and QUAT is a cyclic or acyclic quaternary ammonium radical which is bonded through the pentavalent nitrogen atom thereof to LINK and which radical when acyclic has three of its valences filled by three unsubstituted or halogen substituted hydrocarbon groups, and which radical when entirely cyclic comprises a heterocyclic ring which fills three of its valences, and which radical when partially cyclic and partially acyclic, contains an acyclic unsubstituted or halogen substituted hydrocarbon group to fill one valence, two other valences being filled by a heterocyclic ring, said rings containing in addition to the nitrogen atom bonded to the LINK --radical, carbon atoms, hydrogen atoms and optionally an atom selected from the group consisting of nitrogen, oxygen, selenium and sulfur.

As noted above, it has unexpectedly been discovered that these dihydroxyaryl containing developing agents are stable in high concentrations of alkali and as such can be utilized in diffusion transfer processing compositions, which as is known in the art, are generally of the pH of about 13 or more. This is surprising in view of the fact that compounds of the formula:

wherein DEV is a dihydroxyaryl silver halide developing radical; R R R R and R are hydrocarbon substituents and M comprises the atoms necessary to complete a heterocyclic ring, when placed in strongly alkaline media, liberate the pertinent amine compound. This liberation is easily attested to as, for instance, by the smell of pyridine being liberated from an alkaline solution of the compound:

l O H The novel compounds of this invention for ease and simplicity may be represented by the formula:

(3) LA,RD wherein L is an unsubstituted, alkylsubstituted or halogen substituted monovalent radical selected from the group consisting of phenyl and naphthyl rings substituted in ortho or para positions with respect to each other by 7 H and --NH,, at least one ofsaid positions being substituted by -OH or the precursors thereof, wherein the precursor group for -OH is an alkoxy or alkoxymethoxy group. and the precursor for NH is -NO,,

A is selected from the group consisting of oxygen and sulfur. e is l or 0', R is a divalent radical of the formula. 2l 2 -tlm' l 2ln 2 2[ 2 4lm l 2]n 2 wherein m is a number from 0 to 4 inclusive; n is a number from O to 8 inclusive; the sum of m-l-n being not greater than 8;

D is a cyclic, acyclic, or part cyclic part acyclic quaternary ammonium radical selected from the group of radicals of the formulas:

wherein each 0 and T are acyclic hydrocarbon or halogen substituted hydrocarbon groups, M represents the atoms necessary to complete a heterocyclic ring and contains in addition to carbon and hydrogen atoms, optionally an atom selected from the group consisting of nitrogen, oxygen, sulfur and selenium, and X is an anion whose presence is necessary to balance the positive charge of the pentavalent nitrogen such as halide, methyl sulfonate, and p-toluene sulfonate.

As has been indicated, the compounds of this invention are within the formula:

(3) L A, R -D L, as has been indicated is an ortho or para dihydroxy bisalkoxy or bisalkoxymethoxyaryl radical.

As examples of useful dihydroxyphenyl radicals comprising L" substituents, mention may be made of orthodihydroxyphenyl, paradihydroxyphenyl and nuclear-substituted derivatives thereof, e.g., chloro, methyl, phenyl, and/or methoxysubstituted derivatives thereof, particularly nuclear-substituted p-dihydroxphenyls such as methylhydroquinonyl, pmethylphenylhydroquinonyl, chlorohydroquinonyl, methoxyhydroquinonyl, 2,6-dimethylhydroquinonyl, 2,6-dimethoxyhydroquinonyl, 2-methoxy-G-methylhydroquinonyl, 2,3- dimethylhydroquinonyl, 2,5,6,-trimethylhydroquinonyl, etc.

As examples of useful dihydroxynaphthyl silver halide developing radicals comprising L," mention may be made of any of the above dihydroxyphenyl radicals wherein the benzene ring is replaced by a naphthalene ring and the other substituents are appropriately situated.

As examples of useful dialkoxyaryl and dialkoxymethoxyaryl radicals for this invention, mention may be made of the above dihydroxyphenyl radicals wherein the hydroxyl groups are replaced by alkoxy groups containing from one to five carbon atoms, and the aryl ring is either a benzene ring or a naphthalene ring.

As examples of useful nitrogen containing silver halide developing radicals, mention can be made of any of the abovementioned dihydroxyaryl radicals wherein one of the hydroxyl groups is replaced by an -NH, group. The precursors for such nitrogen containing developing radicals are those radicals which contain an NO group ortho or para to the hydroxyl precursor group. As examples of such nitroalkoxyaryl and nitroalkoxymethoxyaryl radicals, mention may be made of 2-nitro, S-ethoxy benzene and any of the dihydroxyaryl radicals above wherein one hydroxyl group is replaced by a nitro group and the other hydroxyl group is replaced by an alkoxy or alkoxymethoxy group.

A,, previously defined. taken together with R comprise the total linking unit between the silver halide developing radical and the quatemary ammonium radical, D.

As illustrations of suitable alkylene radicals comprehended by R. mention may be made of radicals such as As examples of some hydrocarbon substituents containing unsaturation that are suitable as R radicals, mention can be made of radicals such as As examples of R radicals containing ether and thioether linkages, mention can be made of It should be noted that any R substituent that comprises purely hydrocarbon units must contain at least two and preferably three carbon atoms in the chain to avoid cleavage of the molecule when it is placed in a strongly alkaline environment. lf oxygen or sulfur atoms are present in the chain, there should not be an atom of one of these bonded to the same carbon atom as is bonded to the pentavalent nitrogen atom of D, nor should such an atom be bonded directly to the pentavalent nitrogen atom of D. Here too, the necessity for two carbon atoms between such oxygen or sulfur atoms is to avoid cleavage in an alkaline medium.

D is a quaternary ammonium radical. As is known, quaternary ammonium compounds are organic compounds containing a pentavalent nitrogen atom. Generally they can be considered as derivatives of ammonium compounds wherein the four valences usually occupied by the hydrogen atoms are occupied by organic radicals. Generally the organic radicals are joined directly to the pentavalent nitrogen through a single or double carbon-to-nitrogen bond. The term quaternary ammonium, as used herein, is intended to cover compounds wherein the pentavalent nitrogen is one of the nuclear atoms in a heterocyclic ring as well as those wherein each of the four valences is attached to separate organic radicals. Note the formulas above.

Typical quaternary ammonium radicals include 2-picolinium-p-toluenesulfonate, pyridinium bromide, triethylamine chloride, 3-quinolinium bromide, n-methyl piperidinium iodide, trimega chlorobutylamine methyl sulfonate, etc.

While the preferred quaternary ammonium radicals are those where Q, T and M are all hydrocarbon, it is understood as set forth above that these Q, T and M groups can contain other hetero atoms. As such, typical cyclic quaternary ammonium radicals suitable for use in this invention would include those derived from compounds of the thiazole, selenazole, oxazole, imidazole and indole series among others.

In a preferred embodiment of this invention, L is a dihydroxyphenyl radical, AR is an alkylene radical of two to 10 carbon atoms inclusive, and D is a quaternary ammonium radical. Such compounds are represented by the formulas wherein z is an integer of from 2 to l inclusive.

Another preferred embodiment comprises compounds wherein L is a bisdialkoxyphenyl radical, AR and D are of the significance indicated at formula Such compounds are represented by the formulas Ql HehH l dY wherein z is an integer of from 2 to inclusive, and y is an integer of from 1 to 5 inclusive.

In the scope of formulas (4) and (5), typical preferred compounds include l-(2', S'clihydroxyphenyl) propyl-3-pyridinipropy1-4- methylquinolinium bromide and N-7(2, S'dimethoxyphenum bromide, N-'y(2', S'-dihydroxyphenyl) yl)butyl-pyridinium tosylate, which are of the formulas:

CH -CHr-CHr-N Br- I OH carom-Curie i411, Br-

I OH

01f -onz-o CH; cur-bf CHg-S0r l CH3 14) O CH O CH3 I OH In general, the novel compounds of this invention can be prepared by several methods. One such method comprises reacting a tertiary amine, such as pyridine, with a halogen substituted alkyl acetal, such as a compound of the formula:

0 wherein y is an integer of from 1 to 5 inclusive This intermediate product is reacted with hydrogen ion, such that the aldehyde derivative is prepared. This aldehyde compound is reacted in base with an acetophenone such as the compound of the formula:

v l- 3H:

l O CH;

to give rise to a product of the formula:

OCH:

which can then be reduced, such as by hydrogen, to a dialkox \'phenyl quaternary ammonium compound,

() OCH;

merrily-Q A-i 11a.x

\V IHCHzh-E) wherein y and z are as previously defined, and X is or CH SO or its ortho dialkoxy equivalent, is reacted with a tertiary amine, as for instance a compound of the formula:

CH; and a. product of the formula:

mcn -o is obtained. Dealkylation of the alkoxy groups prepares the dihydroxy compound, if such is desired.

Compounds containing the optional A group, namely an atom of oxygen or sulfur, and an all hydrocarbon R, are prepared by a slightly different alkylation process. This is necessary in view of the fact that the dihydroxy compounds cannot be prepared by the aforementioned synthesis in view of the inability of any reagent to differentiate between the alkoxy groups in the 2,5 positions and the alkoxy group that would be in the 1 position. Therefore, to prepare compounds containing the optional A, group, an alkoxyalkoxy compound such as the one of the formula 0 CH OICHi-lyH OCHgOlCHzlvH or its ortho equivalent, wherein A, y andzare as previously defined, is reacted with a compound such as toluene sulfonyl chloride in an organic base such as pyridine to prepare an intennediate of the formula:

oomo cnnyrr which is then reacted with any tertiary amine, such as triethyl amine to yield an end product of the formula:

oonzo orn n Treatment of the above with dilute mineral acid removes the alkoxymethyl groups and prepares the dihydroxy product.

Compounds containing ether or thioether groups in the R unit of LA R-D are prepared by treating compounds of the following formulas:

OCHzOlCHrlyH y and A are as previously defined, or their ortho equivalents with reagent such as Nal-l in dimethylsulfoxide followed by the addition of one mole of ethylene oxide or its sulfur counterpart. More than one ether or thioether units can be added to increase the size ofR" by increasing the number of moles of ethylene oxide or ethylene sulfide added in the addition step. The preferred mode, however, is the unimolar addition followed by a NaH treatment between the additions of each mole of ethylene oxide or sulfide. Following the addition of the ether units to the starting materials, the same alkylation processes are carried out as well as same treatment to remove the alkoxymethyl groups. It is, of course, understood that other epoxide units such as propylene oxide, etc., can be added in like manner.

The removal of the protective alkoxy groups to form the desired hydroxy-substituted compounds may be accomplished by known hydrolysis techniques A typical dealkylation process involves complexing the group to be removed with boron tribromide. followed by decomposition of the resulting complex with water. Another dealkylation process comprises treatment of the methoxy intermediate with aqueous HBr or HBr in acetic acid.

The various reaction conditions. e.g., time, temperature, pressure, selection of solvents to form the reaction mixture, etc., are not critical to the practice of this invention unless so indicated within the confines of this application, and will therefore be readily apparent to the skilled artisan in the light of the foregoing descriptive material. The essence of the invention is, therefore, the aforementioned selection ofsteps, in the order described to obtain the desired end product, as well as the end product itself.

The invention will be illustrated in greater detail in conjunction with the following specific examples which set out representative preparations of the novel compounds of this invention, which, however, are not limited to the details therein set forth and are intended to be illustrative only.

EXAMPLE I Preparation of N-y(2', '-dihydroxyphenyl) propyl pyridinium bromide.

ln a nitrogen atmosphere, g. of lithium aluminum hydride (M.W. 37.95), 0.4 moles, was slurried in 200 cc. of dry ether. 87 g. of2,S-dimethoxydihydrocinnamic acid, 0.416 moles, in 550 cc. of dry ether was added dropwise. The addition of the ether caused the dihydrocinnamic acid to reflux without the addition of extra heat. Stirring was continued for a period of 1 hour. Sufficient water was added dropwise, to decompose excess lithium aluminum hydride.

620 cc. of 10 percent H 80 were added to the reaction vessel. A two layer system resulted. The ether layer was separated and washed several times with an aqueous solution of NaH- CO cautiously, and then with water and dried. The ether was evaporated off leaving a fluid oil comprising 2,5-dimethoxyphenyl propyl alcohol. 54 g. of the approximately 70 g. of said alcohol were cooled to 10 C. To this was added 40 g. of PBr 0.14 moles dropwise. The temperature was permitted to reach room temperature and the mixture was stirred for 2 hours and then allowed to stand overnight. It was heated to 80 C. for 0.5 hours and then cooled and poured onto ice mixed with water. The end product which was 2', 5'- dimethoxyphenyl 3-propyl bromide was extracted with ether, washed and dried. 52 g. (0.2 moles) of the bromide and 15.8 g. (0.2 moles) of pyridine in 200 cc. of dioxane were heated for 52 hours, with two layers being formed. The desired product, a yellow viscous oil, was separated and then refluxed overnight in approximately 350 cc. of 48 percent HBr, while under nitrogen. The nitrogen blanket was maintained until most of the liquid evaporated. The remainder was cooled and acetone was added. The resulting precipitate was washed in acetone, collected and dried under vacuum. Approximately 16 g. of an orange-tan product was obtained. The product was recrystallized from ethanol, melting point 167 C. for analysis. The analysis was in agreement with the assignment of the structure as N-'y(2', 5'-dihydroxyphenyl)propyl pyridinium bromide.

Analysis.Calculated for C H XO BI (percent): Nitrogen,4.52%. Found (percent): Nitrogen, 4.52%.

EXAMPLE II 4-methylquinolinium bromide.

3-( 2', 5' dimethoxyphenyl) propanal, 34.0 g., 0.2 moles, was dissolved in 400 ml. of percent ethanol. Sodium borohydride, 7.4 g., 0.2 moles, was added and the reaction mixture refluxed two hours. The solvent was removed in vacuo and water and ethyl ether were added. The ether extract was washed with water, dried (anhydrous magnesium sulfate) and concentrated to a heavy oil. The oil, 27 g., 79 percent, 3-(2', S'dimethoxyphenyl)propanol was used directly. An infrared analysis showed that no aldehyde remained unreacted.

The 3-(2', 5 dimethoxyphenyl)propanol, 27 g., 0.137 moles, was cooled to 10 and phosphorous tribromide 20 g., 0.074 moles, was added dropwise with stirring. The reaction was allowed to rise to room temperature and was stirred for an additional two hours and finally heated at 80 for one-half hour. The reaction mixture was poured into ice water and the product extracted into ethyl ether. The ether was washed with water and dried. The crude 3-(2, 5-dimethoxyphenyl)propyl bromide was obtained by removal ofthe ether.

Attempts to purify a sample of the crude product by distillation at 18 mm. pressure and a temperature of 155 C. gave a clear liquid which was largely converted to a methoxy chroman. Because of this sensitivity to heat, the crude product was used directly in the synthesis of the quaternary salt.

The propyl bromide product, 5.6 g., 0.04 moles, and 4- methylquinoline, 5.6 g., 0.04 moles, were dissolved in 40 ml. dioxane and heated on the steam cone two days. On cooling, two layers were obtained. The dioxane layer was decanted and ethyl ether-ethyl acetate trituration was used to obtain the product. The crude solid was taken up in 60 ml. of concentrated hydrobromic acid and the reaction mixture refluxed 2% hours. The HBr was removed by evaporation on the steam cone using a nitrogen stream. Trituration of the residue with acetone gave 2 g. of N--y(2', 5-dihydroxyphenyl)propyl-4"- methylquinolinium bromide which was crystallized from ethanol, m.p. 238-9.

The photographic utilization of the novel compounds of this invention will be illustrated in greater detail in conjunction with the following specific examples which set forth representative processes and which are not intended to be limiting, but are meant to be illustrative only.

EXAMPLE III A photosensitive element was prepared by coating a gelatin subcoated film base at a speed of 15 feet per minute with a solution comprising 2 g. ofa compound ofthe formula:

I O H comprising:

Water cc. NaOh 5 g.

Hydroxyethyl cellulose Benzotriazole 1 g.

After an imbibition period of approximately 1 minute. the spreader element was separated and it was found that a good negative image was present in the photosensitive element ln the following example. the novel compounds of this invention are utilized in a diffusion transfer process wherein unreduced (i.e., the hydroquinone form) quaternary ammonium developing agent is transferred by imbibition to an imagereceiving layer and upon aerial oxidation, e.g., by oxygen in the air upon separation of the image-receiving layer from the photosensitive element, is caused to undergo an oxidative coupling with a second molecule of the quaternary ammonium developing agent. ln this reaction, an active methylene group present on the QUAT portion of one molecule couples to the quinonyl portion of an oxidized DEV-LlNKQUAT molecule, whereby a colored immobile polymeric" compound is formed in the image-receiving element in the areas corresponding to the undeveloped areas of the photosensitive element. Such a transfer process forms the subject matter of a copending application Ser. No. 741,548 in the name of Stanley M. Bloom herewith, now US. Pat. No. 3,537,852. It is to be understood that not all compounds of the formula DEV- LlNK-QUAT are capable of participating in an oxidative reaction of this nature. Only the compounds which are capable of generating an enamine can so participate and then only if the pH has been adjusted to facilitate the self coupling reactton.

EXAMPLE lV A photosensitive element was prepared by coating a gelatin subcoated film base at a speed of feet per minute with a solution comprising 1 g. ofa compound of the formula:

which was dissolved in 100 cc. of a solution containing 5.0 g. cellulose acetate hydrogen phthalate in a 1:1 mixture, by volume, of methoxyethanol and ethanol. After this coating dried, a blue-sensitive silver iodobromide emulsion was coated thereupon at a speed of 10 feet per minute and allowed to dry. This photosensitive element was exposed and processed by spreading an aqueous processing composition between the thus exposed photosensitive element and a superposed imagereceiving element, said aqueous processing composition comprising:

Water 100cc.

NaOH 5g.

EXAMPLE V Utilizing a pair of standard iodobromide panchromatic sensitized negatives, the compound was tested as a developing agent against 4-methylphenylhydroquinone, a control developing agent whose developing characteristics are well known in a diffusion transfer process.

The processing compositions utilized comprised 100 cc. of water to which was added 3.8 g. of hydroxyethyl cellulose. 11.2 g. of per cent pure KOH, 0.93 g. of the test compound and 0.6 g. of 4-methylphenyl hydroquinone. respectively. In duplicate tests, the negatives are exposed under conditions so that one-half of each negative is totally unexposed and the other half of the negative is totally exposed. The thus exposed negative and an image-receiving element are brought into superposed relationship and the processing composition is spread therebetween as the exposed negative and the imagereceiving element are advanced at a constant rate between a pair of rollers. The resulting sandwich is scanned by infrared light. All the components of the sandwich are transparent to infrared light except for silver formed by development. It is to be noted that no silver is deposited on the receiving layer by diffusion transfer since a silver solvent is not present in the processing compositions. The reduction in infrared transmission due to silver formation as a function of imbibition time is reproduced electronically as a trace on a time and density grid on an oscilloscope tube, and the resulting oscilloscope tracing is photographed. The'upper line in each such oscilloscope tracing represents the initiation of the development of exposed silver halide and the amount of silver developed in a given time in the fully exposed areas of the negative. The lower line represents the initiation of the development of unexposed silver halide in the totally unexposed areas of the negative and the amount of unexposed silver halide developed and therefore is a direct representation of the amount of fog development. The results of this test indicating the difference in fog buildup by the two developing agents are set forth graphically below:

It is seen that the test compound is a better discriminatory developer, i.e., the delta density difference between exposed and unexposed areas was greater with the test compound that with the 4'-methylphenyl hydroquinone.

The compounds of the present invention can also be utilized as mordanting developing agents in accordance with the concepts of the novel image forming process of Howard C. Haas, the subject matter of which is found in copending application Ser. No. 740,965, filed June 28, 1968, now abandoned. The following nonlimiting example is incorporated herein from said copending application to illustrate the utilization of the compounds of the present invention as silver halide developing agents which will interact with gelatin when they are oxidized to form in the photosensitive emulsion an imagewise distribution ofa mordant for a negatively charged dye, such as an acid dye. When such a dye is associated with the instant compounds, it is mordanted in place in the developed areas of the photosensitive emulsion where it is free to transfer from the undeveloped areas to form a transfer image.

EXAMPLE VI A photosensitive element was prepared as follows: 3.75 g. of C.I. 15080 Direct Red 3, Benzo Brilliant Geranine B, of the formula:

SOsNa was dissolved in 45 cc. of water. This solution was emulsified by means ofa high shear mechanical agitator, with an aqueous solution of g. of IO percent gelatin, to obtain a uniformly blended mixture. 50 cc. of the resulting dye dispersion were mixed with 78 cc. of water and then coated upon a subcoated film base. After this coating dried, a blue-sensitive silver iodobromide emulsion was coated thereupon at a coverage of 317.9 mg. per square foot of silver and allowed to dry. This photosensitive element was exposed and processed by spreading, between the thus exposed photosensitive element and a superposed image-receiving element, an aqueous processing composition comprising:

Water 90g.

NaOh 4g.

Hydroxyethyl cellulose 3g.

N-y(2', 5'-dihydroxyphenyl) propyl-pyredinium bromide 3g. The image-receiving element comprised baryta paper coated with a layer of a 2:1 mixture, by weight, of polyvinyl alcohol and polyA-vinyl-pyridine. After an imbibition period of ap proximately one minute, the image-receiving element was separated and contained a red-positive image.

From the examples above, it is evident that the compounds of the present invention have particular utility as silver halide developing agents in diffusion transfer processes. both dye and silver.

It will be apparent that the relative proportions of developing agents and other ingredients and materials illustrated in the above examples may be varied to suit the requirements of one skilled in the art. Thus, it is within the scope of this invention to substitute alkalies other than sodium hydroxide in the processing composition. Likewise, it is also contemplated that where desirable the processing or developing compositions may be modified by the inclusion of other common components of developer compositions such as restrainers, preservatives, accelerators, etc. Where the processing compositions are to be employed in silver diffusion transfer processes, they may have incorporated in them as a further ingredient a silver halide solvent such as sodium thiosulfate. if the processing composition is to be applied to the emulsion by being spread thereon in a thin layer, it may also include a filmforming thickening agent such, for example, as a high molecular weight polymer, e.g., hydroxyethyl cellulose or sodium carboxymethyl cellulose. Thus, by adding sodium thiosulfate to the pertinent compositions, e.g., Example In, illustrated above and using an imagereceiving layer containing silver precipitating agents as is well known in the art, in conjunction with the photosensitive element, a silver transfer image may be obtained.

It will be apparent that, by appropriate selection of the support and coatings forming the image-receiving element from among suitable known opaque and transparent materials, it is possible to obtain either a positive reflection print or a positive transparency.

As examples ofuseful color image-receiving materials, mention may be made of nylon, e.g,, N-methoxymethyl-polyhexamethylene adipamide, polyvinyl alcohol, and gelatin, particularly polyvinyl alcohol or gelatin containing a dye mordant such as poly-4-vinylpyridine.

The utility of the compounds of this invention is by no means limited to diffusion transfer processes for they may be satsifactorily employed in conventional multistage multibath photographic processes in black-andwhite or color photography. A typical developer composition would include in addition to a compound of this invention, ingredients as sodium hydroxide, sodium sulfite and potassium bromide. After development is completed, any unreacted developing agent is washed out of the photosensitive element preferably with an alkaline washing medium or other medium in which unreacted developing agent is soluble.

In the preceding portions of the specification, the expression color has been used. This expression is intended to include the use ofa plurality ol'colors to obtain black.

Since certain changes may be made in the above products and processes and compositions without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.

I claim:

1. In a diffusion transfer process which comprises the steps of developing an exposed silver halide emulsion with an aqueous alkaline solution of a silver halide developing agent, forming an imagewise distribution of a diffusible image-forming component, and transferring at least a portion of said imagewise distribution of said image-forming component by diffusion in alkaline solution to an image-receiving layer to provide a transfer image, the improvement which comprises said process in the presence of at least one compound selected from those represented by the formula:

L-A,,-R-D wherein L is an unsubstituted, alkylsubstituted or halogen substituted monovalent radical selected from the group consisting of phenyl and naphthyl rings substituted in ortho or para positions with respect to each other by .A--OH and ANH at least one of said positions being substituted by A--OH;

A is selected from the group consisting of oxygen and sulfur;

e is 1 or 0; R is a divalent radical of the formula:

2l 2 4]ml 2]" z wherein m is a number from 0 to 4 inclusive; n is a number from O to 8 inclusive; the sum of m+n being not greater than 8;

D is a cyclic, acyclic, or part cyclic part acyclic quaternary ammonium radical selected from the group of radicals of the formulae:

wherein each Q and T are acyclic hydrocarbon or halogen substituted hydrocarbon groups, M represents the atoms necessary to complete a heterocyclic ring and may contain in addition to carbon and hydrogen atoms, an atom selected from the group consisting of nitrogen, oxygen, sulfur and selenium, and X is an anion selected from the group consisting of halide, methyl sulfonate and p-toluenesulfonate.

2. (Amended) The process of claim 1, the step which comprises conducting said process in the presence of at least one compound selected from those represented by the formulae:

OH and wherein z is an integer of from 2 to 10 inclusive, and A is selected from the group consisting of oxygen and sulfur; and

D is a cyclic, acyclic or part cyclic part acyclic quaternary ammonium radical selected from the group of radicals of the formulact wherein each and T are acyclic hydrocarbon or halogen substituted hydrocarbon groups, M represents the atoms necessary to complete a heterocyclic ring and may contain in addition to carbon and hydrogen atoms, an atom selected from the group consisting of nitrogen, oxygen, sulfur and selenium, and X is an anion selected from the group consisting of halide, methyl sulfonate and p-toluenesulfonate.

3. The process as defined in claim 1 wherein the compound represented by the formula:

lA -R-D is selected from the group consisting of N-'y(2', dihydroxyphenyl) propylpyridinium bromide, N- 'y( 2 5 -dihydroxyphenyl) propyl-2"- methyliquinolinium bromide and N- 'y(2', 5'-dihydroxyphenyl) propyl- 4"-methyliquinolinium bromide.

4. The process of developing a latent image in a silver halide emulsion which comprises treating said emulsion with an aqueous alkaline solution in the presence of a compound selected from those represented by the formula:

LARD wherein L is an unsubstituted, alkylsubstituted or halogen substituted monovalent radical selected from the group consisting of phenyl and naphthyl rings substituted in ortho or para positions with respect to each other by AOH and A-NH at least one of said positions being substituted by AOH;

A is selected from the group consisting of oxygen and sulfur;

e is 1 or 0; R is a divalent radical of the formula:CH

[ 2 ]m' 2in z 2[ 2 4]m z ],,CH, wherein m is a number from 0 to 4 inclusive; n is a number from 0 to 8 inclusive; the sum ofm n being not greater than 8;

D is a cyclic, acyclic, or part cyclic part acyclic quaternary ammonium radical selected from the group of radicals of the formulae:

r X- k." T

and

formulae:

wherein each 0 and T are acyclic hydrocarbon or halogen substituted hydrocarbon groups, M represents the atoms necessary to complete a heterocyclic ring and may contain in addition to carbon and hydrogen atoms, an atom selected from the group consisting of nitrogen, oxygen, sulfur and selenium, and X is an anion selected from the group consisting of halide, methyl sulfonate and p-toluenesulfonate.

6. A process of developing a latent image in a silver halide emulsion which comprises treating said emulsion with an aqueous alkaline solution in the presence of a compound selected from the group consisting of N- y(2, 5'-dihydroxyphenyl) propyl-pyridinium bromide, N-'y( 2, 5'-dihydroxyphenyl) propyl-4- methylquinolinium bromide and N- 'y(2', 5-dihydroxyphenyl)propyl-2-methylquinolinium bromide.

7. (Amended) A photographic product comprising a plurality of layers, at least one of said layers including a silver halide emulsion, and at least one of said layers including a compound selected from those of the formulae:

and

I OH

wherein z is an integer of from 2' to 10 inclusive, and A is selected from the group consisting of oxygen and sulfur;

D is a cyclic, acyclic or part cyclic part acyclic quaternary ammonium radical selected from the group of radicals of the formulae:

wherein each and T are acyclic hydrocarbon or halogen substituted hydrocarbon groups, M represents the atoms UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent 3,590 .692 Dated 11111;, 6 1q71 InV8nt0 Stanley M B'lnmn It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

IN THE CLAIMS:

Claim 1, line 14, after "comprises" insert "conducting".

Claim 1, line 21, -oH" should read Claim 1, line 21, "A-NH should read "--NH Claim 1, line 22, "AOH" should read OH" Claim 4, line 41, "AOH" should read "OH" Claim 4 line 41, "ANH should read "-NH Claim 4, line 42, "AOH" should read "OH" Claim 4, lines 44-46, the formulae should read:

Signed and sealed this 27th day of June 1972.

(SEAL) Attest:

EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Atteating Officer- Commissioner of Patents FORM r c-1050 (10-69) uscoMM-Dc norm-P60 Q I.I.S GOVIINIIINY PIINTHG OFFICE II" O-ll-IJI

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3196015 *Jan 31, 1962Jul 20, 1965Polaroid CorpDiffusion transfer process
US3232758 *Apr 11, 1960Feb 1, 1966Eastman Kodak CoPhotographic diffusion transfer process
US3326683 *Sep 27, 1962Jun 20, 1967Polaroid CorpDiffusion transfer photographic process using 4, 6-diamino-ortho cresol
US3345166 *Mar 9, 1961Oct 3, 1967Polaroid CorpPhotographic process whereby a fully developed and fixed negative is formed concurrently with a positive silver transfer image
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4199354 *Dec 20, 1974Apr 22, 1980Eastman Kodak CompanyBallasted image-dye providing materials
US4199355 *Jun 24, 1975Apr 22, 1980Eastman Kodak CompanyPositive-working immobile photographic compounds and photographic elements containing same
US4278598 *Sep 1, 1976Jul 14, 1981Eastman Kodak CompanyPositive-working immobile intramolecular nucleophilic displacement compounds and photographic elements containing same
US4294915 *Jul 11, 1980Oct 13, 1981Polaroid CorporationSilver halide developing agents
US4383023 *Oct 1, 1981May 10, 1983E. I. Du Pont De Nemours And CompanyUsing a positive- or negative-charged tanning developer and oppositely-charged mordant; gelatin-silver halide photographic films;
Classifications
U.S. Classification430/241, 430/484, 430/485, 430/542, 430/213, 430/371, 430/941, 430/218, 430/222, 430/566, 430/435
International ClassificationG03C5/30, G03C8/36, C07D213/20, C07D215/10
Cooperative ClassificationC07D215/10, G03C5/3021, C07D213/20, Y10S430/142, G03C8/36
European ClassificationG03C8/36, G03C5/30H, C07D215/10, C07D213/20