Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3590888 A
Publication typeGrant
Publication dateJul 6, 1971
Filing dateDec 5, 1966
Priority dateDec 5, 1966
Also published asDE1586562A1, DE6607910U
Publication numberUS 3590888 A, US 3590888A, US-A-3590888, US3590888 A, US3590888A
InventorsClarence B Coleman
Original AssigneeClarence B Coleman
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Composite container and method of handling fluent materials
US 3590888 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 11113,590,888

[72] Inventor ClarenceB.Coleman 3,068,561 12/1962 Jones 220/63X 2401MercedSl.,SanLeandro,Calil. 2.987.216 6/1961 Fletcher 220/63x 94517 3.083.875 4/196 Welty m1... 222/95 21 4 1.816. 599.070 3.159.306 12/1964 Lyall 220/63 12 Filed -2. 3 FOREIGN PATENTS 1451 Pa'cmed 1 1,144,649 2/1963 Germany.... 220/63 66.802 3/1957 'France 222/95 154] COMPOSITE CONTAINER AND METHOD OF HANDLING FLUENT MATERIALS 15 Claims, 17 Drawing Figs.

[52] U.S.Cl 141/5, 141/48. 141/313. 220/63. 222/95 151] lnt.Cl B65b3/00, 865d 25/14. B67c 3/00 1501 FieldofSareh 141/4.5.

21,10, 37, 47. 48. 313.1. 2.59. 63. 69. 70,114. 314; ZZZ/3,95. 183; 53/27. 175; 220/63 Primary Examiner-Theron E. Condon Assistant Examiner-Neil Abrams Attorney-Rubin. Brucker & Chickering ABSTRACT: A composite container is assembled by in troducing a flexible bag, in collapsed condition, into a rigid shell through an opening therein and distending the bag for all-around support by the shell by injecting inflation gas through a multipassage conduit extending through the shell and bag openings; fluent material to be confined is thereafter admitted to the bag while simultaneously exhausting displaced gas through the same conduit means. The material can be discharged through the nozzle means by pumping or by forcing gas into the space between the shell and bag to collapse the bag; or a separate opening can be formed in the bottom of the bag. The two. passages may end at the conduit means, and at least one communicates directly with an upper part of the bag to discharge displaced gas. The conduit means has a plate or bar to position the bottom of the bag within the shell.


g LARENcE B. COLEMAN @mm, 6M1, g &


mm, Emir/u, Wm 8an em ATTORNEYS COMPOSITE CONTAINER AND METHOD OF HANDLING FLUENT MATERIALS The invention relates to a composite container for and to a method of handling fluent material, such as liquids and pulverulent solids, for shipment or storage. More particularly, it is concerned with confining the material within an impervious bag of flexible material which bag is contained within a rigid container or shell in engagement with the inner surface thereof for structural support.

It is known to confine material within a flexible envelope which is inside of a rigid shell. Such composite containers are useful when it is desired to isolate the confined material from the ambient atmosphere regardless of whether the shell is im pervious, and are sometimes used when it is desired to obviate the need to clean the inside of a drum or bottle, as well as to provide a confining wall which is inert relatively to the confined material and/or has a variable volume to limit or avoid the presence of gas in contact with the material when the container is only partly filled, e.g. while emptying the container, or for allowing ullage for thermal changes in volume of the material.

A drawback of prior composite containers of this type was the danger of rupturing the flexible wall. If the wall is distended by the material to be confined, it sometimes presses excessively large parts of the flexible wall against the shell, e.g. as folds, especially at the lower portions where the weight of the material is most effective; this prevents all of the other parts of the wall from engaging smoothly the shell wall. The unsupported parts of the flexible wall are then prone to stretching and rupturing. This danger has made it impracticable to fill such composite containers rapidly from a condition in which the flexible bag is collapsed.

On the other hand, prior containers of this type in which the bag was dilated before the introduction of the fluent material were not well suited to preventing air or other ambient gas from coming into contact with the material within the bag. It is, however, frequently desirable to confine fluent material out of contact with air or other gas that can have a deleterious effect on the material. Further, prior arrangements for venting from the bag the gas which is displaced by the admitted material were not always suitable and often limited the rate at which the material could be introduced if entrainment of the material, especially when pulverulent, by the escaping gas was to be avoided.

Still another drawback of many prior constructions was the difficulty of installing the flexible bag within the shell with facility. This has heretofore been done by using an open-top shell and fitting the bag therein before closing the shell. lt is often desirable to confine the fluent material within a new bag which is clean and compatible with the stored material and/or may contain or be lined with a fresh coating of a treating agent, as for protecting the bag against the material or to dissolve in or to react with the material. The utility of such a composite container could be enhanced by arranging the bag for rapid introduction into the shell and providing means by which the bag can be easily installed within the shell without manipulation of the bag inside of the shell.

Finally, in prior composite container the arrangements for the introduction into the bag of a device for conditioning the material (conditioning" being herein used to include test ing), such as a heater, cooler, stirrer, injection tube, thermometer, or the like, were lacking or awkward to use. There is, however, frequent need to introduce such an instrument into the bag for agitating, circulating or treating the confined material or for controlling its temperature.

Now according to this invention, there is provided a composite container for fluent, nongaseous material which includes a rigid container or shell having at least one opening and a flexible bag which can be introduced through a shell opening in collapsed condition, which bag includes conduit means providing at least one passageway which is in direct communication with an upper part of the bag, for admitting inflation gas into the bag. It is preferable that the conduit means includes two passageways, one for inflating and charging the fluent material into the bag through, the other for simultaneously discharging the inflation gas from the bag. The rigid shell, which may be gastight or gas-pervious, provided with holes, has means such as the said holes or, when gastight, a valved opening or a coupling fitting, through which gas usually air-can escape from the space between the outside of the bag and the inside of the shell, and gas can enter the space when the bag is collapsed during efflux of the confined material. The material can be discharged from the bag through the same conduit means that was used to admit the materially; however, in some embodiments a separate, initially closed, discharge opening is provided or is later formed in the bag. It may be noted that the bag is flexible but preferably not significantly stretchable, e.g. made of polyethylene, polypropylene, polyvinylchloride, or other polymeric material, and has a shape to fit against the inside of the shell for structural support thereby. The bag may be as large as or larger than the container, so that substantially all ofthe bag is supported.

The conduit means is sealed to the bag at an opening of the bag which may be situated as desired, e.g. at the top or near the bottom, and this sea] may be permanent or temporary, e.g. includes adhesives or a mechanical clamp. This conduit means may, in one embodiment, include as the first passageway a dip tube that communicates with a lower part of the bag interior and leads out of the shell at the top, and this dip tube can be vertically adjustable and receive pump means to empty the contents of the bag; it may also terminate near the shell wall, either at the top or at the bottom. The second passageway is arranged to communicate directly with an upper part of the bag interior and may, for example, take the form of a mere opening in a plug fitted to the shell wall, or a tube situated alongside of or concentrically with the dip tube and provided with one or more openings, or may be a riser tube when the opening in the shell is situated near the bottom. Usually the conduit means extends through the same opening in the shell wall asthat through which the collapsed bag is inserted, but a different opening may be used.

The conduit means optionally has an access opening for the introduction into the bag of a conditioning device, which opening can be fitted with a closure to adapt the container for shipment.

The method according to the invention includes the assembly of the composite container by introducing the bag, in collapsed condition and together with the conduit means, into the rigid shell through an opening in the shell, and admitting an inflation gas through a multipassage conduit means which extends into the bag and through a shell opening to dilate the bag and cause it to lie against the inner surfaces of the shell, while gas is exhausted from the space between the bag and the shell. Thereafter the fluent material is introduced through the one passage of the conduit means directly or after fall by gravity to the lower part of the bag while gas which is displaced by the material is discharged through another separate passageway from the upper part of the bag. When the desired amount of material has been charged the bag can be sealed, either at the conduit means or after removing the conduit means from the bag.

Because the inflation gas acts on all internal parts of the bag, all parts are rapidly brought into engagement with the shell and the danger of rupture by stretching the bag is obviated. This danger would exist if liquid were injected directly into a collapsed bag. Further, because the bag is fully distended before the fluent material is introduced, the material can also be charged at a high rate without danger of rupture. in all embodiments, the bag is structurally supported by the shell at least during introduction of the material and subsequent shipment or storage.

It may be noted that the term nongaseous fluent material includes materials that may have a vapor pressure sufficient to generate some gas and/or materials that at some temperatures are so viscous as to be essentially nonfluent.

The invention will be described in greater detail with reference to the accompanying drawings forming part of this specification and illustrating certain preferred embodiments, wherein:

FIG. 1 is an elevation, partly in section, of one embodiment of the composite container;

FIG. 2 is a fragmentary plan of the container;

FIG. 3 is a diagrammatic vertical sectional view, on a reduced scale, showing the discharge of material from the container;

FIG. 4 is an elevation of an accessory tube for causing agitation;

FIG. 5 is a fragmentary elevation view of piping for causing circulation of the material;

FIG. 6 is a sectional view of the bag and conduit means according to a second embodiment, taken on the broken line 6-6 of FIG. 7;

FIG. 7 is a plan of FIG. 6, the pump and agitator being omitted;

FIG. 8 is a vertical section of the bag constructed according to third embodiment;

FIG. 9 is a diagrammatic plan of the bag in collapsed condition and showing, in dotted lines, partial distension according to a fourth embodiment, the outline of the rigid shell appear- FIGS. 10 and 11 are elevations of the fourth embodiment, shown in charging and discharging positions, respectively;

FIG. 12 is a vertical section of a fifth embodiment, before distension of the bag and adjustment of the bag bottom;

FIG. 13 is a fragmentary section of the lower part of FIG. 12 showing the container just before admission of inflation gas;

FIG. 14 is an elevation of the container of FIG. 12 after distension of the bag;

FIG. 15 is an elevation of a removable filling assembly for the fifth embodiment;

FIG. 16 is a vertical sectional view of a sixth embodiment, wherein the conduit means enters the shell at its bottom; and

FIG. 17 is a fragmentary elevation of the plug on an enlarged scale.

Referring to FIGS. 1 and 2, the composite container comprises a rigid shell 15, e.g. impervious to gas and formed of a cylindrical sheet metal sidewall and top and bottom heads 16 and 17, resting on a platform 18. The head 16 has a central opening 19 theedge of which is shaped to receive a closure plate 20 in sealed relation. The head 16 may have an upstanding collar 21 at the opening, the top of the collar being rounded to seal against a bead 22 on the closure plate and to provide an anchor edge for holddown means, such as a contractable drum band 23. I

Welded to the plate 20 at an opening therein is a vertical tube 24 the bottom of which carries a circular plate 25 and optionally having an annular plate 26 welded near the top. This tube has axially spaced openings 27 between these plates, at least one opening being situated at the bottom and at least one near the top. A flexible bag 28, having a top edge defining an opening, is sealed to the tube 24 just above the plate 26, eg by a clamping band 29. The top of the tube 24 is fitted to a junction or tee 30 carrying at the top a plate 31 having two openings: one of these is fitted with a nipple 32 which is internally or externally threaded to receive a closure; the other carries a dip tube 33 which extends almost to the bottom of the tube 24 and is in communication with the interior of the bag 28 at its bottom through the lowermost opening 27. The top of the dip tube carries a valve 34 to which a conduit can be coupled. The tee 30 further has a plate 35 through which it communicates with piping connected to a pressure-relief valve 36 and a valve 37 to which valve a conduit can be coupled. The bag 28 can be collapsed to lie within the confines of the plates 25 and 26 and these plates have diameters less than that of the opening 19, whereby all parts below the closure plate 20 can be inserted through said opening. 1

The plate 20 has openings to which are fitted, respectively, a valve 38 and a pressure-relief valve 39. These communicate with the space within the shell 15 and outside of the bag 28.

The composite container is assembled by inserting the tube 24, with the bag 28 collapsed and situated closely adjacently to the tube, through the opening 19 and securing the plate 20 to the head by the band 23. The tubes 24 and 33 collectively constitute the conduit ineans, the latter providing the dip tube that communicates directly with the bottom of the bag interior and the former defining a passageway which communicates separately with the top of the bag interior. To distend the bag, the valve 38 is opened, the nipple 32 and valve 34 are closed, and the valve 37 is connected to a source of inflation gas under superatmospheric pressure and opened, to admit a blast ofinflation gas. (Alternatively, the valve 37 may be closed and the gas admitted through the valve 34 or the nipple 32.) The inflation gas dilates the bag to the position shown, in engagement with the shell. The relief valve 36 limits the inflation pressure and thereby is a safeguard for the shell. Most of the air which is initially present within the shell is exhausted by escape through the open valve 38, which may then be shut to prevent reentry of air and sagging of the top of the bag to any 7 considerable distance from its position shown; however, such sagging is usually minimal and not always objectionable, and the valve 38 may be left open.

The plate 25 maintains the bag bottom near the head 17 and avoids the danger of damaging the bag bottom by the end of the tube 24 during insertion and while in position. It is also useful during discharge. Further, the plate 26 aids in causing the top of the bag to unfold readily and assume the radial position shown. 1

The valve 34 is coupled to a source of the fluent material to be confined and the valve 37 is opened to the ambient atmosphere or, when the inflation gas is to be collected, to a suitable receiver. The fluent material is then forced into the distended bag through the dip tube 33, e.g. at atmospheric or superatmospheric pressure, and the inflation gas is displaced upwardly with little or no mixing with the material. This displaced gas is exhausted by flow through the openings 27, the tube 24 and the valve 37. When filling is completed the valves 34 and 37 are shut and disconnected from the material source and reservoir, and the container is ready for storage or Shipment.

It may be noted that when it is desired to avoid contact of the fluent material with air, the collapsed bag may initially contain a gas that is inert or not deleterious to the material, either the same as or compatible with the inflation gas, the valves 34 and 37 and the nipple 32 being initially closed. Similarly, such a gas may be used as the inflation gas. Examples are nitrogen, helium, carbon dioxide, ammonia, methane, air, etc., depending upon the nature of the fluent material. A small amount of the inflation gas usually remains within the bag after it is charged with the fluent material. During shipment of storage, thermal expansion of the contents of the bag and shell may result in small movements in the top of the bag, changing the volume of the air space above it.

The material is discharged from the bag according to any of several techniques. In one, illustrated in FIG. 3, a gas such as air is admitted under superatmospheric pressure through the valve 38 which is coupled to a source of gas. The valve 37 and nipple 32 being shut, the valve 34 is coupled to a receiver and opened. The gas entering the shell under pressure collapses the bag and forces the fluent material to flow out through the tube 33. The relief valve 39 protects the shell against excessive pressure from gas admitted through the valve 38. This technique is especially suitable when the material is liquid.

According to another technique, the valve 38 is opened to admit atmospheric air and the receiver which is connected to the valve 34 is evacuated (or a suction pump is applied to the valve 34) to draw out the material through the dip tube 33.

When the material is solid, the shell and bag of the present invention are also advantageously employed provided it is free flowing or flutfy. When it is not free flowing aeration or fluidization of the material can often be used to achieve this characteristic. For example, aerating gas may be advantageously admitted to the bottom of the contents of the bag and shell by using the accessory tube 40 shown in FIG. 4, which is secured within the tube 24 by threading the external lug 41 to the interior of the nipple 32 so as to position the angularly directed, open discharge end 42 opposite one of the bottom openings 27. The aerating gas is supplied through a conduit, not shown, coupled to the threaded coupling 43. The aerating gas is discharged together with the material.

Because the plate 25 maintains the central part of the bag depressed and away from the intake to the tube 33, substantially all of the material can enter the lowermost hole 27 and flow upwards through the tube 33. Only the amount in the shallow space between the top of the plate 25 and the bottom of the tube 33 is not exhausted.

It is evident that the-dip tube 33 can serve as a gauge by making it vertically adjustable within the plate 31 and, if desired, mounting the pump at the bottom of the dip tube. The user can then draw out material until its level within the bag is just below the bottom of the tube 33. I

During storage or shipment the cap closing the nipple 32 can be removed and a conditioning device, such as a stirrer, heater or cooler, inserted into the tube 24. Because of the holes 27, a part of the material will flll this tube. For example, a propeller causing vertical movement through the tube 24 will cause circulation through the part of the bag outside of the tube. Similarly, a heater or cooler will cause thermal circulation.

Circulation of the material or treatment can also be effected by bubbling a gas through it. For this purpose, the tube 40 of FIG. 4 is connected to inject a gas into the part of the bag out side of the tube 24. The injected gas escapes through the valve 37, which may be opened slightly and connected to a receiver, or, when the gas is air and/or used in small amounts, through the relief valve 36.

External circulation of the confined material can also be effected by drawing out material through the tube 33, and pumping it back through the valve 37, if desired after treating it to alter its temperature. An exemplary device for this is shown in FIG. 5, which shows a coupler 44 adapted to be connected to the valve 34, a pump 45 and a eoupler.46 adapted to be connected to the valve 37. A treater 47 can be connected in this circuit, e.g. a device through which a coolant or heating fluid is passed via a line 48.

Referring to FIGS. 6 and 7, wherein the shell is omitted and only the parts attached to the closure plate are shown, the device includes a closure plate 120 having a bead 122 for sealing engagement to the top head of a shell as previously described for the shell 15. The plate has a circular opening to which is welded in sealed relation a cup member 150 to the outside of which the flexible bag 128 is sealed by a clamping band 129. The base of the cup member carries in sealed relation thereto: a sleeve 133a to which is threaded a tube 133 extending to the bag bottom and having a lateral opening 133b at the bottom; a sleeve 124a to which is threaded a tube 124 extending to the bag bottom and having openings 127 at different levels; a coupling nipple 135; and, optionally, a vent nipple 136. The tubes 124 and 133 have flat plates at their lower ends for smooth engagement with the bag. The plate 120 further has a vent nipple 138. The nipples 135, 136 and 138 are threaded to receive closures.

Coupled to the sleeve 133a is a pipe 151 which is connected to a pump 152 having a second pipe 153. Usually the pump is driven to discharge liquid from bag interior, and then the pipes 151 and 153 are suction and discharge pipes, respectively. However, a reversible pump may be used, or one having a flow in the opposite direction may be substituted. A treating device of any type can be inserted into the tube 124. Illustrative is a handoperated agitator which comprises a plunger I54 fitting closely the inside of the tube and situated between the openings 127, which is connected by a rod 155 to a handle 156 By moving the plunger up and down the material is caused to flow through the holes 127 and circulation of the material within the bag is effected.

According to different uses, the nipple 138 may be left open to the atmosphere or be connected to a valve and a pressurerelief valve, as described for the valves 38 and 39. However, the nipple 138 can also be shut with a cap during shipment and storage.

The embodiment being described is adapted for storage and shipment with the pump and, usually, the agitator removed, these being used only during charging or emptying or at the site of use to condition the material. To assemble the container, the conduit means, comprising the cup member 150 and parts carried thereby, with the bag 128 collapsed about the tubes, is inserted into a shell and the plate is sealed' effected by gravity flow or by a pump. The upper ends of the sleeves and nipples in the cup are then closed. Preferably a pressure-relief valve is connected to the nipple 136. The container is now ready for storage or shipment.

Any treating device, such as the plunger 154, can be connected as desired. Further, circulation can be effected as described for the first embodiment in connection with FIG. 5 by connecting the discharge pipe 153 to the nipple 135, or the pipe 40 of FIG. 4 can be inserted into the tube 124 to inject a gas, which is vented through the nipple 135.

The container can be discharged as described previously, using any of the techniques, e.g. applying air under pressure to the nipple 138 and discharging through the tube 133, and/or using the pump 152 to draw off the material.

FIG. 8 shows a third embodiment wherein the conduit means is a pluglike structure 220 adapted to bethreaded into an opening in the shell head. The plug has at least a pair of bores 224 and 233a, the latter being larger and having threaded therein the upper end of a dip tube 233. This tube carries an enlarged flat, circular plate 225 at its bottom end and has a lateral hole 233b at the bottom. Both bores can be closed by threaded caps 257 and 258. The flexible bag 228 is sealed about the lower end of the plug 220 by a sealing band 229, which has an external diameter smaller than the external threads 220a, so that the bag, collapsed against the tube 233, can be inserted into an internally threaded opening in the upper head of a shell, e.g. constructed as is shown in FIGS. 1 or 6 except for the threaded opening. However, this embodiment is especially designed for use in the embodiment of FIGS. 9, 10 and 11, and will be described in greater detail hereinafter. It may be noted however, that the bag of FIG. 8 can be inflated through either bore, preferably the bore 224, and filled and emptied through the tube 233 and bore 233a, using any of the previously described techniques. Displaced inflation gas is exhausted through the bore 224. A treating device can be introduced through the bore 224 for immersion in the fluent material.

Referring to FIGS. 9 through 11, the composite container includes a cylindrical shell 215 having upper and lower heads 216 and 217, the former having an internally threaded opening situated adjacently one side for receiving the plug 220. This head further has an internally threaded vent opening, normally closed by a plug 238, advantageously situated diametrically opposite the hole for the plug 220, although this is not an absolute requirement.

To assemble the container, the bag 228 is initially folded as shown in solid lines in FIG. 9, to lie adjacently about and prin cipally to one side of the tube 233, and then inserted into the shell, the plug 220 being then tightened. The plug 238 being removed to vent the shell, a blast of pressurized inflation gas is admitted through the bore 224. The bag is thereby dilated, passing first through the form shown in dotted lines and eventually assuming the shape of the shell 215. The plug 238 may then be replaced (or a pressure-relief valve mounted in its place). (The folding shown in FIG. 9 may be used also for the prior embodiments, but in the first embodiment it is preferred to have the collapsed bag lie symmetrically about the tube 24.)

The container is charged while in the upright position shown in FIG. 10 by attaching the bore 233a to a source of the fluent material and the bore 224 to the atmosphere or to a receiver for the displaced inflation gas. The container is filled by gravity flow or under pressure. The plugs 257 and 258 are then replaced and the container can be stored or shipped. A pressure relief valve or other safety means may be provided on one of the plug bores if the plug 238 is not replaced by such means.

The container may be emptied in the rotated position of FIG. 11, in which the plug 220 is depressed. In this variant the contents are discharged by gravity through either of the bores, the bore 224 being used at least at the end of the operation to drain the last part of the contents. During the emptying operations the plug 238 or its replacement is removed to permit the bag to collapse, as is indicated in FIG. 11.

FIGS. 12 through 15 show a fifth embodiment in which the bag is filled from the top but emptied from the bottom, and is useful for moving and storing material within a plant. The shell 315 has an upper head 316 and a frustoconical bottom 317 and is supported on a support structure 318 which may have casters. The top head has a vent nipple 338. The bottom head 317 has a central opening fitted with a hinged door 317a, although a sliding plate may also be advantageously employed. The head 316 has a central opening adapted to receive a flexible bag 328 in collapsed condition, the bag being longer than the shell and having an upper end defining an opening which is sealed to an upstanding collar on the head 316 by a clamping band 329. Adapted to fit over the sealed edge of the bag is a cap plate 320, shown in FIG. 15. This plate is provided with suitable means for retaining it in sealed and mechanically firm relation to the bag while being rapidly releasable, such means being represented by radial screws 323. The plate has welded thereto a short tube 333 which is open at the bottom and has its upper end connected to a flexible hose 359. The plate further has a vent tube 324 connected to a second flexible hose 360. The tubes 324 and 333, together with the plate 320, collectively form the conduit means. The bag 328 is open also at the bottom, but is tied to close the bottom by a cord 361.

In assembling the composite container the bag is inserted into the shell from the top in collapsed condition and secured by the band 329, the bottom end being closed as shown in FIG. 12. The bottom end is then pushed up into the shell and the door 317a is closed and latched, as appears in FIG. 13. The closure plate 320 is then attached to the top of the shell and sealed to the bag. A blast of inflation gas is then admitted through the hose 360 to inflate the bag and bring it into engagement with the inner surface of the shell 315. The bag is thereby supported by the shell on all sides. Air initially present in the space between the bag and the shell wall escaped through the nipple 338, which may then be closed with a cap. Plate 320 can be removed, and the bag will be held in place against the shell, if it is imperforate, due to the vacuum resulting from evacuation of the air from between the shell and the bag. The container may then be directly filled through the top opening. Alternatively and when an inert atmosphere is desired or the shell is perforated, the material is admitted via the hose 359 and tube 333 into the dilated bag, displaced inflation air being exhausted through the tube 324 and hose 360. The plate 320 can then be removed and, if desired, a cover 362 attached, as appears in FIG. 14. The vessel is now ready for storage or movement.

To empty the bag the door 317a is opened and the cord 36] is removed (or the bag can be cut) while over a receiver, permitting the material to fall out by gravity.

The embodiment of FIGS. 12 through 15 is especially suited to confining solid material. However, it can also be used when the fluent material is liquid.

FIGS. 16 and 17 show an embodiment wherein the shell 415 has an opening in its side near the bottom head 417 through which the bag 428 is inserted in collapsed condition, wrapped about a guide rod 425, and the upper head 416 has an opening provided with a closure plate 462 which seals the top. The plate 462 has an internally threaded vent opening that can be closed by a plug 438. The conduit means which extends through the bottom opening is constituted by a plug 420 having a bolting flange 463 and a pair of parallel bores which receive short tubes 424a and 433a in sealed relation; the bag being sealed to this plug by a band 429. The outer ends of these short tubes provide coupling means for attaching hoses leading respectively to a source of inflation gas and a source of fluent material or a receiver therefor.

. The bag contains a flexible tube 424 of sufficient stiffness to remain open which is connected at one end by a cord or top 464 to a part of the bag which is near the top when distended. This is attached during construction of the bag. The other end of this tube is fitted to the inner end of the tube 424a. The inner end of tube 433a is connected to one end of a tube 433 which extends through a small horizontal distance and is open toward the bottom. The bar 425 is rigidly carried by the tube 433 (or attached directly to the plug 420).

In assembling the container of FIGS. 16 and 17, the collapsed bag is inserted with the plug 420 at the bottom of the shell and the plug is secured 'to the shell by its bolting flange 463. The guide rod 425 guides the bag into the shell and maintains it in position during subsequent inflation. The plug 438 being removed, a blast of inflation gas is introduced through the tubes 424 and 424a to inflate the bag to the position shown. The plug 438 may then be replaced and the bag is filled with fluent material through the tubes 433a and 433, while displaced gas is discharged through the tubes 424 and 4240. The bag is emptied through the tubes 433 and 433a after removing the plug 438. The charging and emptying operations may follow any of the techniques previously described, and pressure-responsive valves may be provided in lieu of the plug 438 and/or at the outside of the plug 420 as previously described.

It is, of course, possible to introduce the collapsed bag through an opening in the shell other than that through which the conduit means extends. For example, in the last embodiment the bag can be introduced through the opening at the top of the shell, which can further be used to inspect the position of the bag.

It will be noted that in the several views the last two digits of the reference number when alike, denote corresponding parts or parts performing corresponding functions.

It may be noted that the flexible bag can be inserted into the rigid shell at the factory and inflated either there or at the site of filling, or that the bag and conduit means sealed thereto can be shipped from the factory outside of the shell.


1. The method of handling fluent, nongaseous material which comprises the steps of:

sealing a flexible bag to a multipassage conduit means,

inserting said flexible bag in collapsed condition into a rigid shell through an opening therein,

said multipassage conduit means extending through said opening,

injecting inflation gas into said bag through said conduit means while exhausting gas from between said bag and said shell and thereby distending the bag into engagement with the interior of said shell, and

thereafter introducing said material into the distended bag through one passage of the conduit means while exhausting from an upper part of the bag and through another passage of the conduit means gas which is displaced by the entering material.

2. In combination with the steps defined in claim 1, the step of subsequently effecting movement in said fluent material within the bag.

3. In combination with the steps defined in claim I, the step of subsequently discharging said fluent material from the bag by exhausting the material from the lower part of the bag.

4. Method as defined in claim 3 wherein said bag is collapsed as said material is discharged.

5. Method as defined in claim 4 wherein said bag is collapsed by forcing a gas under pressure into the space within the shell and outside of the bag.

6. Method as defined in claim 3 wherein said material is discharged from the bottom of the bag upwardly and through the top of the bag and through one of said passageways.

7. Apparatus for handling nongaseous fluent material comprising:

a rigid shell formed with at least one opening in a wall thereof;

a bag having a flexible wall and insertable into said shell in collapsed condition through said opening and being shaped, when distended, to engage the internal surface of said shell for support thereby,

said bag being formed with an edge portion defining an inlet opening;

conduit means adapted to be mounted on the shell at an opening therein and having coupling means for connection through a source of inflation gas for distending the bag and, subsequently, for filling said bag, said conduit means providing at least two separate passageways of which one is adapted for connection to a source of said fluent material and the other passageway is in direct communication with an upper part of said bag when distended;

guide means fixed to said conduit means and shaped to engage and position the bottom of said bag within the shell;

means sealing said bag edge to said conduit means; and

means for discharging gas from the space between the shell and said bag.

8. Apparatus as defined in claim 7 which includes means for admitting gas into the space between the shell and the bag while discharging the fluent material from the bag, whereby said bag can be collapsed during said discharge.

9. Apparatus as defined in claim 7 wherein said conduit means includes a pair of tubes having different diameters, the larger diameter tube having lateral openings at axially spaced locations and the interior thereof being in communication with one of said passageways and the smaller diameter tube forming at least a part of the other passageway.

10. Apparatus as defined in claim 7 wherein said conduit means includes a pair of tubes, one of said tubes being formed so as to be housed within the other, said other tube having axially spaced openings in communication with the interior of the bag.

11. In combination with apparatus as defined in claim 7 wherein said shell is gastight and in sealed relation to said conduit means: pressure-responsive means for flowing air between said shell and the ambient atmosphere in response to a pressure differential between said space and the atmosphere.

12. Apparatus as defined in claim 7 wherein said conduit means is formed with a passageway shaped for insertion therethrough of a material conditioning device into the bag for contact with said material.

13. In combination with apparatus as defined in claim 7, means for injecting a gas into said material at a lower part of the bag from a source outside of the shell.

14. in combination with apparatus as defined in claim 7, a device for circulating said material, said device including means for continuously withdrawing some of said material from the bag to a point outside of the shell, and means for returning the withdrawn material into the bag.

15. Apparatus as defined in claim 7 wherein one of said passages includes a dip tube and said conduit means comprises a member extending transversely to said dip tube and in sealed relation to said bag edge portion, said dip tube having communication through said member, and the other passageway exwith or exhausted ofinflation gas.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2564163 *Jun 11, 1946Aug 14, 1951Lucien Leperre Jean EmileReceptacle with elastic bag insert and system for filling and emptying the same
US2811178 *Jun 28, 1955Oct 29, 1957Us Rubber CoMethod and apparatus for filling and emptying collapsible containers
US2916058 *Mar 11, 1957Dec 8, 1959George Unthank DouglasCollapsible tanks
US2987216 *Jul 10, 1959Jun 6, 1961Fletcher Robert SDisposable liner for a container
US2989213 *Apr 28, 1958Jun 20, 1961Daggitt Deloss EStorage container with protective liner
US3068561 *Nov 20, 1957Dec 18, 1962Wayne W JonesMethod of installing a flexible tank liner
US3083875 *Jan 12, 1959Apr 2, 1963Welty FrankApparatus for packaging and dispensing beverages or the like
US3097677 *Aug 11, 1960Jul 16, 1963Union Carbide CorpCollapsible containers
US3159306 *Jul 3, 1963Dec 1, 1964Culligan IncWater conditioning tank and liner
US3371822 *Jul 1, 1966Mar 5, 1968Galloway CoBulk delivery, storage and dispensing apparatus for liquid ice cream mixes and the like
US3377766 *Jun 8, 1965Apr 16, 1968Strecton Ind IncLined containers
*DE1144649A Title not available
FR66802E * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3692070 *Dec 1, 1970Sep 19, 1972Fyens Saekkekom Pagni AsMethod of and apparatus for filling a tube or a hose with a solid material, preferably sand
US3797538 *Aug 9, 1971Mar 19, 1974C MolluraFiller-siphon assembly for a water bed
US3902624 *Oct 27, 1972Sep 2, 1975Combustion EngInflatable bag to absorb volume changes in gases within a sealed vessel
US3945534 *Dec 20, 1972Mar 23, 1976Baker & Ady, Inc.Food preparation and dispensing system
US4001450 *Apr 24, 1972Jan 4, 1977Imperial Chemical Industries LimitedMethod of packaging carbonated beverages in flexible containers
US4044912 *Jun 4, 1976Aug 30, 1977Hoover Ball And Bearing CompanyLined container for storing and transporting thick viscous substances such as grease having anti-clogging liner support
US4091952 *Jan 8, 1973May 30, 1978Institut Francais Du Petrole Des Carburants Et Lubrifiants And Societe Anonyme Pour TousTank structure for the storage and distribution of several fluids, particularly hydrocarbons
US4796788 *Aug 26, 1987Jan 10, 1989Liqui-Box CorporationBag-in-box packaging and dispensing of substances which will not readily flow by gravity
US4886190 *Dec 23, 1987Dec 12, 1989The Coca-Cola CompanyPostmix juice dispensing system
US4901886 *May 13, 1988Feb 20, 1990The Coca-Cola CompanyBag-in-tank concentrate system for postmix juice dispenser
US4960227 *Sep 30, 1988Oct 2, 1990Fabricated Metals, Inc.Bulk material container with a flexible liner
US4996760 *Feb 8, 1990Mar 5, 1991Fabricated Metals, Inc.Method of installing a flexible liner within the shell of a bulk material container
US5056571 *Feb 28, 1991Oct 15, 1991Super Sack Manufacturing CompanyContainer fill system
US5072857 *Jun 4, 1990Dec 17, 1991Fabricated Metals, Inc.Bulk material container with flexible liner
US5076471 *May 7, 1990Dec 31, 1991Fabricated Metals, Inc.Bulk material container having a flexible liner with a follower
US5115943 *May 1, 1991May 26, 1992Fabricated Metals, Inc.Bulk material container with a flexible liner
US5183086 *Mar 30, 1992Feb 2, 1993Allwaste Services, Inc.Encapsulation method for the containment of waste and salvageable products
US5339989 *Sep 23, 1991Aug 23, 1994Fabricated Metals, Inc.Bulk material containing having a flexible liner with a follower
US5411179 *Aug 31, 1993May 2, 1995S.O.B. PartnershipSelf-contained beverage dispensing system
US5553749 *Feb 6, 1995Sep 10, 1996S.O.B. PartnershipSelf-contained beverage dispensing system
US5706872 *Mar 19, 1996Jan 13, 1998Schlesinger; SolCollapsible container for bulk transport and handling of heat meltable materials
US6009685 *Dec 18, 1996Jan 4, 2000Dahlberg; Karl MagnusMethod and device for isolated filling of a container
US6328183May 11, 1999Dec 11, 2001Clarence B. ColemanMass flow bulk material bin
US7475796 *May 17, 2005Jan 13, 2009Snyder Industries, Inc.Industrial hopper with support
US7506776Feb 10, 2005Mar 24, 2009Powertex, Inc.Braceless liner
US8162164Apr 17, 2008Apr 24, 2012Podd Stephen DBulk liquid transport system
US8887959 *Jun 28, 2013Nov 18, 2014Nicholas HillSystems for storing beverages
US9156670Oct 15, 2014Oct 13, 2015Nicholas HillSystems for storing beverages
US9168497 *Feb 5, 2013Oct 27, 2015Pall Life Sciences Belgium BvbaSystems and devices for mixing substances and methods of making same
US20060186117 *Feb 24, 2005Aug 24, 2006Powertex, Inc.Discharge apparatus for a shipping container
US20060277783 *May 17, 2005Dec 14, 2006Darwin GartonIndustrial hopper with support
US20070071590 *Sep 21, 2005Mar 29, 2007Podd Stephen DSpillbox system for a shipping container
US20070193649 *Feb 17, 2006Aug 23, 2007Podd Stephen DPressure differential manlid and method of discharging a shipping container using a pressure differential
US20080257893 *Apr 19, 2007Oct 23, 2008Podd Stephen DBulk liquid transport system
US20090053107 *Nov 18, 2005Feb 26, 2009Danfoss A/SMicrofluid device and method for setting up a microfluid device
US20130163371 *Feb 5, 2013Jun 27, 2013Atmi BvbaSystems and devices for mixing substances and methods of making same
US20140326752 *May 6, 2014Nov 6, 2014E I Du Pont De Nemours And CompanyDispensing vessel having a self-supporting secondary container for use in a printing apparatus for depositing a liquid composition on a backplane
CN102627247A *Apr 7, 2012Aug 8, 2012浙江炜驰轻工机械有限公司Filling barrel of filling and can-sealing integrated machine
EP0034025A1 *Jan 30, 1981Aug 19, 1981Fabricated Metals, Inc.Emptiable container for bulk material and having a follower for the material
EP0456403A1 *May 1, 1991Nov 13, 1991Fabricated Metals, Inc.Bulk material container having a flexible liner with a follower
EP1820750A2 *Feb 16, 2007Aug 22, 2007Stephen D. PoddPressure differential manlid and methods of discharging a shipping container using a pressure differential
WO1982003832A1 *May 7, 1981Nov 11, 1982Scholle William RApparatus and method for aseptically filling flexible containers
WO1997034804A1Mar 7, 1997Sep 25, 1997Sol SchlesingerCollapsible container for heat meltable materials
U.S. Classification141/5, 222/95, 220/62.21, 141/48, 141/313
International ClassificationB65D88/62
Cooperative ClassificationB65D88/62
European ClassificationB65D88/62