US3593537A - Process and apparatus for rapidly cooling a small thermal load - Google Patents

Process and apparatus for rapidly cooling a small thermal load Download PDF

Info

Publication number
US3593537A
US3593537A US813959A US3593537DA US3593537A US 3593537 A US3593537 A US 3593537A US 813959 A US813959 A US 813959A US 3593537D A US3593537D A US 3593537DA US 3593537 A US3593537 A US 3593537A
Authority
US
United States
Prior art keywords
vessel
fluid
load
pressure
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US813959A
Inventor
Robert W Stuart
Walter H Hogan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryogenic Technology Inc
Azenta Inc
Original Assignee
Cryogenic Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryogenic Technology Inc filed Critical Cryogenic Technology Inc
Application granted granted Critical
Publication of US3593537A publication Critical patent/US3593537A/en
Assigned to FIRST NATIONAL BANK OF BOSTON, AS AGENT reassignment FIRST NATIONAL BANK OF BOSTON, AS AGENT CONDITIONAL ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: HELIX TECHNOLOGY CORPORATION
Assigned to HELIX TECHNOLOGY CORPORATION, A CORP OF DE reassignment HELIX TECHNOLOGY CORPORATION, A CORP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FIRST NATIONAL BANK OF BOSTON THE, AS AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats

Definitions

  • a primary object of this invention to provide a simple, easily constructed device of very rapidly cooling a relatively small load. It is another object of this invention to provide a device of the character described which is easily activated, inexpensive enough to be expendable after a single use, and flexible in its application to various types of refrigeration loads. It is yet another object of this invention to provide such a device which can be made in very small, lightweight units. It is yet another important object of this invention to provide a very rapidly cooled infrared detector. It is another important object of this invention to provide a method for rapidly cooling infrared detecting devices. Other objects of the invention will in part be obvious and will in part by apparent hereinafter.
  • the invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combinations of elements and arrangement of parts which are adapted to effect such steps all as exemplified in the following detailed disclosure and the scope of the invention will be indicated in the claims.
  • FIG. 1 is a cross section of one embodiment of the apparatus in which the high-pressure vessel is spherical;
  • FIG. 2 is a cross section of another embodiment in which the high-pressure vessel is a sphere with an elongated extension.
  • the thermal load to be refrigerated is mounted within a high-pressure vessel such that at least one surface of the load is exposed to high-pressure fluid contained within the vessel.
  • a valve-controlled vent tube communicates between the interior and exterior of the vessel and preferably the vent tube inlet within the vessel is relatively close to the surface of the refrigeration load exposed to the fluid.
  • the vessel is charged with high-pressure fluid and at the time refrigeration of the load is desired the valve in the vent tube is opened in a manner to bleed off some of the high-pressure fluid from within the vessel.
  • Simon expansion the fluid in the vessel is very rapidly cooled and thus cools the refrigeration load.
  • the fluid bled off from the interior of the vessel may be used to cool the outside wall of the vessel thus minimizing the amount of refrigeration lost to cooling the vessel which is constructed of a material having a low thermal conductivity at cryogenic temperatures.
  • FIG. 1 illustrates the use of a spherical vessel.
  • a thick-walled, highpressure vessel formed of a low thermal conductivity material, such as glass fiber-reinforced resins, to prevent consuming the available refrigeration in cooling the vessel wall.
  • a window 11 Into the wall of vessel 10 and forming a part thereof is sealed a window 11 to which is attached an infrared detector 12, or other device to be cooled, in such a way that it is exposed to high-pressure fluid of volume 14 defined by the vessel wall.
  • lead wires 13 are provided through the wall to the external atmosphere.
  • the vessel 10 is conveniently charged with high-pressure fluid through a charging line 15 which may be sealed off once the pressure has been built up to a desired level within the vessel. If desired, the inlet charge line 15 may be so formed as to be reusable.
  • a vent tube 16 communicates between the interior volume 14 of the vessel and the area external of the vessel wall.
  • this vent tube is so positioned within the vessel as to be very close to the surface of the detector as indicated by the small gap 17.
  • Vent tube 16 has an external valve 18 which, when opened,permits the high-pressure fluid to bleed out of the volume 14 into conduit 16. Cooling is accomplished through a process which isgenerally known as Simon expansion.
  • the gas that remains in volume 15 thermodynamically pushes some of the gas out of the vessel and therefore the gas that remains experiences an isentropic expansion.
  • the fluid contained within volume 14 is nitrogen under a pressure of about 1,200 atmospheres and the bleedofi is continued until the nitrogen has reached atmospheric pressure, it should be theoretically possible to obtain a fluid within volume 14 at 77 K., 35 percent of which would be liquid. This calculation assumes no heat leak to the surrounding atmosphere.
  • the vessel 10 is constructed of a material which has very low heat conductivity at the cryogenic temperatures involved. Such a material is preferably a glass fiber-filled resin.
  • a second way of minimizing heat transfer and hence heat loss to the walls of the vessel 10 is to provide means for'defining a fluid passage around the vessel walls and discharging the cold low-pressure gas which exits through vent tube 16 through valve 18 into the passage.
  • FIG. 1 it will be seen that there is provided around substantially the entire exterior wall of the vessel 10 an outer spherical wall 20 formed of a material such as a'resin or plastic.
  • This outer wall defines with the outer surface of the vessel 10 a fluid passage 21 having a plurality of small gas release ports 22.
  • the passage 21 is in communication with vent tube 16 through a connecting piece 25 ,which may have associated with it a valve 26.
  • a branch conduit 27, having valve 28, communicates with joining member'25 so that it is possible, if desired, to discharge either all or aportion of the cold low-pressure fluid into the atmosphere rather than into fluid passage 21.
  • FIG. 2 in which like reference numerals refer to like components in FIG. 1, there is added an elongated extension or neck so that the pressure vessel has in essence a spherical body 30 with an integral extension 31.
  • the extension is sealed with a window 32 and ring 33.
  • the load is affixed to the inside surface of the window 32 and leads 13 are provided for external connection where necessary.
  • the vent tube 16 extends through the extension passage 34 and terminatesnear the surface of load 12.
  • all of the fluid bled from the vessel is discharged into fluid passage 21, which could if desired be also extended to enclose, at least partially, the extension 31.
  • the vessel 10 or 30/31 may be filled with high-pressure nitrogen between about 10,000 and 20,000 psi.
  • high-pressure nitrogen between about 10,000 and 20,000 psi.
  • the entire apparatus may be constructed in a relatively small size, i.e., about two inches in diameter, and the valve 18 to effect refrigeration may be of any type which can be automatically actuated upon a given signal.
  • the entire device is adaptable to installation on a missile and is capable of cooling the infrared detector down to about 80 K. by the time the missile requires guidance from the infrared detector. It is, of course, within the scope of this invention to form the apparatus in any desired size and to use any load within the volume 14. It is, however, particularly adaptable to small devices and to small refrigeration loads.
  • a rapid cooldown refrigeration device comprising in combination a. a high-pressure vessel adapted to contain fluid under high pressure and formed of a material having low thermal conductivity at cryogenic temperatures;
  • a valve-controlled fluid conduit extending within said vessel and positioned to be directed at and close to said load, said fluid conduct providing communication between the interior and exterior of said vessel, whereby when highpressure fluid is rapidly discharged from said vessel said fluid undergoes rapid cooling and refrigerate said load.
  • a refrigeration device in accordance with claim I including means to define a fluid passage around at least a portion of the outer surface of said vessel and connecting means to connect said conduit means with said fluid passage.
  • An infrared detector adapted for very rapid cooldown, comprising in combination a. a high-pressure vessel adapted to contain fluid under high pressure and formed of a material having low thermal conductivity at cryogenic temperatures;
  • infrared-detecting means internal of said vessel and mounted on the surface of said window;
  • An infrared detector in accordance with claim 8 including means to define a fluid passage around at least a portion of the outer surface of said vessel and connecting means to connect said conduit means with said fluid passage.
  • a method of rapidly cooling a small refrigeration load comprising the steps of a. exposing a load to be refrigerated to a volume of highpressure fluid contained within a high-pressure vessel;

Abstract

A small thermal load such as an infrared detector is exposed to a high-pressure inert fluid contained within a small highpressure vessel. A valve-controlled vent tube extending through the wall of the vessel provides means for controllably bleeding off fluid from the vessel and hence for rapidly developing refrigeration. The fluid bled off may be circulated around the vessel surface to minimize loss of refrigeration in cooling the vessel wall.

Description

United States Patent Robert W. Stuart Wakefield;
Walter H. Hogan, Wayland, both of, Mass. 813,959
Apr. 7, 1969 July 20, I971 Cryogenic Technology, Inc.
Waltham, Mass.
Inventors Appl. No. Filed Patented Assignee PROCESS AND APPARATUS FOR RAPIDLY COOLING A SMALL THERMAL LOAD 12 Claims, 2 Drawing Figs.
us. ca 62/62, 62/54, 62/259, 62/514 Int. Cl. 1 25b 19/00 Field of Search 62/514,
[56] References Cited UNITED STATES PATENTS 646,459 4 1900 Place 62/54 x 662,217 11/1900 Brady 62154 X 1,835,699 12/1931 Edmonds 62/54 X 3,025,680 3/1962 De Brosse et al. 62/514 X 3,203,477 8/1965 Collard 62/259 X 3,369,370 2/1968 Todd,.lr. et al 62/514X Primary Examiner-Albert W. Davis, Jr. Attorney-Bessie A. Lepper ABSTRACT: A small thermal load such as an infrared detector is exposed to a high-pressure inert fluid contained within a small high-pressure vessel. A valve-controlled vent tube extending through the wall of the vessel provides means for controllably bleeding off fluid from the vessel and hence for rapidly developing refrigeration. The fluid bled off may be circulated around the vessel surface to minimize loss of refrigeration in cooling the vessel wall.
PAIENIED JUL 20 1911 Robert W. S'ruorf Walter H Hogan INVENTORS Attorney PROCESS AND APPARATUS FOR RAPIDLY COOLING A SMALL THERMAL LOAD This invention relates to an apparatus and method for refrigerating a small load such as an infrared detector. For certain applications, particularly for infrared sensor cooling, there is a requirement for very rapid cooldown. Such cooling may be of relatively short duration and the apparatus used must often be expendable. Cooling of such devices is now normally accomplished through Joule-Thomson cooling. However, any Joule-Thomson cooling system must, of necessity, be relatively complicated in design and expensive to construct. Moreover, it requires a short but significant time to accomplish cooldown by any Joule-Thomson apparatus.
It would, therefore, be desirable to have a simple, inexpensive device capable of achieving very rapid cooldown and of delivering refrigeration to a small thermal load at such a rate and in such a manner as to make cooling of this device almost instantaneous.
It is, therefore, a primary object of this invention to provide a simple, easily constructed device of very rapidly cooling a relatively small load. It is another object of this invention to provide a device of the character described which is easily activated, inexpensive enough to be expendable after a single use, and flexible in its application to various types of refrigeration loads. It is yet another object of this invention to provide such a device which can be made in very small, lightweight units. It is yet another important object of this invention to provide a very rapidly cooled infrared detector. It is another important object of this invention to provide a method for rapidly cooling infrared detecting devices. Other objects of the invention will in part be obvious and will in part by apparent hereinafter.
The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the apparatus embodying features of construction, combinations of elements and arrangement of parts which are adapted to effect such steps all as exemplified in the following detailed disclosure and the scope of the invention will be indicated in the claims.
For a fuller understanding of the nature and objects of the invention reference should be had to the following detailed description taken in connection with the accompanying drawings in which FIG. 1 is a cross section of one embodiment of the apparatus in which the high-pressure vessel is spherical; and
FIG. 2 is a cross section of another embodiment in which the high-pressure vessel is a sphere with an elongated extension.
In the device of this invention, the thermal load to be refrigerated is mounted within a high-pressure vessel such that at least one surface of the load is exposed to high-pressure fluid contained within the vessel. A valve-controlled vent tube communicates between the interior and exterior of the vessel and preferably the vent tube inlet within the vessel is relatively close to the surface of the refrigeration load exposed to the fluid. The vessel is charged with high-pressure fluid and at the time refrigeration of the load is desired the valve in the vent tube is opened in a manner to bleed off some of the high-pressure fluid from within the vessel. By the process known as Simon expansion, the fluid in the vessel is very rapidly cooled and thus cools the refrigeration load. The fluid bled off from the interior of the vessel may be used to cool the outside wall of the vessel thus minimizing the amount of refrigeration lost to cooling the vessel which is constructed of a material having a low thermal conductivity at cryogenic temperatures.
One embodiment of the apparatus of this invention is illustrated in FIG. 1 which illustrates the use of a spherical vessel. In this embodiment there is provided a thick-walled, highpressure vessel formed of a low thermal conductivity material, such as glass fiber-reinforced resins, to prevent consuming the available refrigeration in cooling the vessel wall. Into the wall of vessel 10 and forming a part thereof is sealed a window 11 to which is attached an infrared detector 12, or other device to be cooled, in such a way that it is exposed to high-pressure fluid of volume 14 defined by the vessel wall. In the case where an infrared detector is the load, lead wires 13 are provided through the wall to the external atmosphere. The vessel 10 is conveniently charged with high-pressure fluid through a charging line 15 which may be sealed off once the pressure has been built up to a desired level within the vessel. If desired, the inlet charge line 15 may be so formed as to be reusable.
A vent tube 16 communicates between the interior volume 14 of the vessel and the area external of the vessel wall. Preferably this vent tube is so positioned within the vessel as to be very close to the surface of the detector as indicated by the small gap 17. By positioning vent tube 16 in a manner to be closely associated with the surface of the load 12, and by placing the vent tube so that its inlet end is aligned with the surface to be cooled, it is possible to effectively concentrate the refrigeration at that surface. Vent tube 16 has an external valve 18 which, when opened,permits the high-pressure fluid to bleed out of the volume 14 into conduit 16. Cooling is accomplished through a process which isgenerally known as Simon expansion. Thus, the gas that remains in volume 15 thermodynamically pushes some of the gas out of the vessel and therefore the gas that remains experiences an isentropic expansion. For example, if the fluid contained within volume 14 is nitrogen under a pressure of about 1,200 atmospheres and the bleedofi is continued until the nitrogen has reached atmospheric pressure, it should be theoretically possible to obtain a fluid within volume 14 at 77 K., 35 percent of which would be liquid. This calculation assumes no heat leak to the surrounding atmosphere.
There is, of course, some refrigeration lost to cooling the walls of the vessel 10. This may be minimized in two ways. First, the vessel 10 is constructed of a material which has very low heat conductivity at the cryogenic temperatures involved. Such a material is preferably a glass fiber-filled resin. A second way of minimizing heat transfer and hence heat loss to the walls of the vessel 10 is to provide means for'defining a fluid passage around the vessel walls and discharging the cold low-pressure gas which exits through vent tube 16 through valve 18 into the passage. Thus, in FIG. 1 it will be seen that there is provided around substantially the entire exterior wall of the vessel 10 an outer spherical wall 20 formed of a material such as a'resin or plastic. This outer wall defines with the outer surface of the vessel 10 a fluid passage 21 having a plurality of small gas release ports 22. The passage 21 is in communication with vent tube 16 through a connecting piece 25 ,which may have associated with it a valve 26. A branch conduit 27, having valve 28, communicates with joining member'25 so that it is possible, if desired, to discharge either all or aportion of the cold low-pressure fluid into the atmosphere rather than into fluid passage 21.
In the embodiment of FIG. 2, in which like reference numerals refer to like components in FIG. 1, there is added an elongated extension or neck so that the pressure vessel has in essence a spherical body 30 with an integral extension 31. This configuration may be more convenient to build into some systems. The extension is sealed with a window 32 and ring 33. As in FIG. 1, the load is affixed to the inside surface of the window 32 and leads 13 are provided for external connection where necessary. The vent tube 16 extends through the extension passage 34 and terminatesnear the surface of load 12. In the embodiment of FIG. 2 all of the fluid bled from the vessel is discharged into fluid passage 21, which could if desired be also extended to enclose, at least partially, the extension 31.
As an example of the operation of this apparatus, the vessel 10 or 30/31, may be filled with high-pressure nitrogen between about 10,000 and 20,000 psi. By bleeding off the high-pressure fluid from volume 14 through vent tube 16 at such a rate that only a fraction of a second is required to reduce the fluid to a low pressure, i.e., close to atmospheric pressure within'volume 14, it is possible to reach temperatures as low as 77 K. and to effect a cooldown of the load, i.e., infrareddetector 12, in as short a time as one-tenth ofa second. Inasmuch as in the refrigeration developed there will probably be formed within the volume 14 (or 14/34) a small quantity of liquid nitrogen, refrigeration will be supplied to the load within the volume over a period of time until such liquid has evaporated and the volume within the vessel reaches a temperature above the cryogenic level.
The entire apparatus may be constructed in a relatively small size, i.e., about two inches in diameter, and the valve 18 to effect refrigeration may be of any type which can be automatically actuated upon a given signal. Thus, the entire device is adaptable to installation on a missile and is capable of cooling the infrared detector down to about 80 K. by the time the missile requires guidance from the infrared detector. It is, of course, within the scope of this invention to form the apparatus in any desired size and to use any load within the volume 14. It is, however, particularly adaptable to small devices and to small refrigeration loads.
It will thus be seen that the objects set forth above among those made apparent from the preceding description are efficiently attained, and since certain changes may be made in carrying out the above method and in the construction set forth without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
We claim:
1. A rapid cooldown refrigeration device comprising in combination a. a high-pressure vessel adapted to contain fluid under high pressure and formed of a material having low thermal conductivity at cryogenic temperatures;
b. high-pressure fluid within said vessel,
c. a load to be refrigerated having at least a portion of its surface within said vessel directly exposed to said highpressure fluid;and
d. a valve-controlled fluid conduit extending within said vessel and positioned to be directed at and close to said load, said fluid conduct providing communication between the interior and exterior of said vessel, whereby when highpressure fluid is rapidly discharged from said vessel said fluid undergoes rapid cooling and refrigerate said load.
2. A refrigeration device in accordance with claim 1 wherein said vessel is spherical in shape.
3. A refrigeration device in accordance with claim 1 wherein said vessel is spherical with an integral elongated neck.
4. A refrigeration device in accordance with claim 1 wherein said load is an infrared detector mounted on a window forming a portion of the wall of said vessel.
5. A refrigeration device in accordance with claim 1 wherein said vessel is formed of a glass fiber-reinforced synthetic resin.
6. A refrigeration device in accordance with claim I including means to define a fluid passage around at least a portion of the outer surface of said vessel and connecting means to connect said conduit means with said fluid passage.
7. A refrigeration device in accordance with claim 6 wherein said connecting means has fluid flow control means associated therewith.
8. An infrared detector adapted for very rapid cooldown, comprising in combination a. a high-pressure vessel adapted to contain fluid under high pressure and formed of a material having low thermal conductivity at cryogenic temperatures;
b. a window transparent to infrared radiation sealed into the wall of said vessel and forming a part thereof;
c. infrared-detecting means internal of said vessel and mounted on the surface of said window;
d. high-pressure fluid within said vessel; and
e. a valve-controlled fluid conduit communicating between the interior and exterior of said vessel, said conduit being directed at and close to said infrared-detecting means. 9. An infrared detector in accordance with claim 8 including means to define a fluid passage around at least a portion of the outer surface of said vessel and connecting means to connect said conduit means with said fluid passage.
10. A method of rapidly cooling a small refrigeration load comprising the steps of a. exposing a load to be refrigerated to a volume of highpressure fluid contained within a high-pressure vessel; and
b. discharging said fluid from said volume from a point adjaeent said load in said volume at a sufficiently rapid rate to effect isentropic expansion of said fluid, whereby said load is cooled through direct contact with the insentropically expanded fluid.
11. A method in accordance with claim 10 in which the discharged fluid is circulated around at least a portion of the external wall of said high-pressure vessel.
12. A method in accordance with claim H0 wherein said load is an infrared detector affixed to a window forming a part of the wall of said vessel.

Claims (12)

1. A rapid cooldown refrigeration device comprising in combination a. a high-pressure vessel adapted to contain fluid under high pressure and formed of a material having low thermal conductivity at cryogenic temperatures; b. high-pressure fluid within said vessel, c. a load to be refrigerated having at least a portion of its surface within said vessel directly exposed to said highpressure fluid; and d. a valve-controlled fluid conduit extending within said vessel and positioned to be directed at and close to said load, said fluid conduct providing communication between the interior and exterior of said vessel, whereby when high-pressure fluid is rapidly discharged from said vessel said fluid undergoes rapiD cooling and refrigerate said load.
2. A refrigeration device in accordance with claim 1 wherein said vessel is spherical in shape.
3. A refrigeration device in accordance with claim 1 wherein said vessel is spherical with an integral elongated neck.
4. A refrigeration device in accordance with claim 1 wherein said load is an infrared detector mounted on a window forming a portion of the wall of said vessel.
5. A refrigeration device in accordance with claim 1 wherein said vessel is formed of a glass fiber-reinforced synthetic resin.
6. A refrigeration device in accordance with claim 1 including means to define a fluid passage around at least a portion of the outer surface of said vessel and connecting means to connect said conduit means with said fluid passage.
7. A refrigeration device in accordance with claim 6 wherein said connecting means has fluid flow control means associated therewith.
8. An infrared detector adapted for very rapid cooldown, comprising in combination a. a high-pressure vessel adapted to contain fluid under high pressure and formed of a material having low thermal conductivity at cryogenic temperatures; b. a window transparent to infrared radiation sealed into the wall of said vessel and forming a part thereof; c. infrared-detecting means internal of said vessel and mounted on the surface of said window; d. high-pressure fluid within said vessel; and e. a valve-controlled fluid conduit communicating between the interior and exterior of said vessel, said conduit being directed at and close to said infrared-detecting means.
9. An infrared detector in accordance with claim 8 including means to define a fluid passage around at least a portion of the outer surface of said vessel and connecting means to connect said conduit means with said fluid passage.
10. A method of rapidly cooling a small refrigeration load comprising the steps of a. exposing a load to be refrigerated to a volume of high-pressure fluid contained within a high-pressure vessel; and b. discharging said fluid from said volume from a point adjacent said load in said volume at a sufficiently rapid rate to effect isentropic expansion of said fluid, whereby said load is cooled through direct contact with the insentropically expanded fluid.
11. A method in accordance with claim 10 in which the discharged fluid is circulated around at least a portion of the external wall of said high-pressure vessel.
12. A method in accordance with claim 10 wherein said load is an infrared detector affixed to a window forming a part of the wall of said vessel.
US813959A 1969-04-07 1969-04-07 Process and apparatus for rapidly cooling a small thermal load Expired - Lifetime US3593537A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81395969A 1969-04-07 1969-04-07

Publications (1)

Publication Number Publication Date
US3593537A true US3593537A (en) 1971-07-20

Family

ID=25213854

Family Applications (1)

Application Number Title Priority Date Filing Date
US813959A Expired - Lifetime US3593537A (en) 1969-04-07 1969-04-07 Process and apparatus for rapidly cooling a small thermal load

Country Status (1)

Country Link
US (1) US3593537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952543A (en) * 1974-12-13 1976-04-27 Hughes Aircraft Company Quick cooling cryostat with valve utilizing Simon cooling and Joule Thompson expansion
FR2571128A1 (en) * 1984-10-02 1986-04-04 Telecommunications Sa CRYOSTATIC DEVICE FOR PHOTODETECTORS
US4663944A (en) * 1985-07-12 1987-05-12 Cornell Research Foundation, Inc. Cryogenic sample stage for an ion microscope
EP0246304A1 (en) * 1985-11-12 1987-11-25 Hypres, Inc. Open cycle cooling of electrical circuits

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US646459A (en) * 1899-12-18 1900-04-03 James F Place Portable vessel or bottle for holding and shipping liquid air or other liquid gases.
US662217A (en) * 1899-03-29 1900-11-20 John F Brady Means for conserving liquid gases.
US1835699A (en) * 1927-10-10 1931-12-08 Commercial Solvents Corp Apparatus and process for preserving liquid carbon dioxide
US3025680A (en) * 1960-06-10 1962-03-20 Itt Cooling system
US3203477A (en) * 1962-11-21 1965-08-31 Itt Cryogenic cooling devices
US3369370A (en) * 1965-12-03 1968-02-20 Hughes Aircraft Co Method of detector cooling and device therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US662217A (en) * 1899-03-29 1900-11-20 John F Brady Means for conserving liquid gases.
US646459A (en) * 1899-12-18 1900-04-03 James F Place Portable vessel or bottle for holding and shipping liquid air or other liquid gases.
US1835699A (en) * 1927-10-10 1931-12-08 Commercial Solvents Corp Apparatus and process for preserving liquid carbon dioxide
US3025680A (en) * 1960-06-10 1962-03-20 Itt Cooling system
US3203477A (en) * 1962-11-21 1965-08-31 Itt Cryogenic cooling devices
US3369370A (en) * 1965-12-03 1968-02-20 Hughes Aircraft Co Method of detector cooling and device therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952543A (en) * 1974-12-13 1976-04-27 Hughes Aircraft Company Quick cooling cryostat with valve utilizing Simon cooling and Joule Thompson expansion
FR2571128A1 (en) * 1984-10-02 1986-04-04 Telecommunications Sa CRYOSTATIC DEVICE FOR PHOTODETECTORS
EP0177416A1 (en) * 1984-10-02 1986-04-09 SAT Société Anonyme de Télécommunications Cryostatic apparatus for radiation detectors
US4716742A (en) * 1984-10-02 1988-01-05 Sat (Societe Anonyme De Telecommunications) Cryogenic system for radiation detectors
US4663944A (en) * 1985-07-12 1987-05-12 Cornell Research Foundation, Inc. Cryogenic sample stage for an ion microscope
EP0246304A1 (en) * 1985-11-12 1987-11-25 Hypres, Inc. Open cycle cooling of electrical circuits
EP0246304A4 (en) * 1985-11-12 1990-12-05 Hypres, Inc. Open cycle cooling of electrical circuits

Similar Documents

Publication Publication Date Title
US4218892A (en) Low cost cryostat
US3253423A (en) Cryogenic cooling arrangement for space vehicles
US3699696A (en) Cryogenic storage and expulsion means
US3593537A (en) Process and apparatus for rapidly cooling a small thermal load
US5193348A (en) Device for cooling a squid measuring instrument
US5150579A (en) Two stage cooler for cooling an object
US3457730A (en) Throttling valve employing the joule-thomson effect
US3640091A (en) Valve arrangement to provide temperature level control at cryogenic temperature ranges
JPS6294769A (en) Two-step thermal coupling
EP0305863B1 (en) Temperature testing device provided with sample-receiving chamber from which a specimen is easily detachable and in which temperature is controllable
US3415078A (en) Infrared detector cooler
US4831846A (en) Low temperature cryoprobe
US5365746A (en) Cryogenic cooling system for airborne use
Stephens Advanced design of Joule-Thomson coolers for infra-red detectors
US5142875A (en) Cooled pumping system
US3152475A (en) High pressure gas moisture indicator
US3952543A (en) Quick cooling cryostat with valve utilizing Simon cooling and Joule Thompson expansion
US3990265A (en) Joule-Thomson liquifier utilizing the Leidenfrost principle
GB1433727A (en) Method for reducing fluid losses from a cryostat
US3353371A (en) Dual tube regenerative cryostat
FR2294439A1 (en) Testing inaccessible thermal barrier in liquified gas tank - thermographic camera measures thermal differences in pressure gradient
JP3720701B2 (en) Jules Thomson cooling device
US3068658A (en) Venting vapor apparatus
Satoh et al. Cooling by compression of 3He in the mixing chamber of the Leiden alternative dilution refrigerator
US4041968A (en) Quick cooling cryostat valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST NATIONAL BANK OF BOSTON, AS AGENT

Free format text: CONDITIONAL ASSIGNMENT;ASSIGNOR:HELIX TECHNOLOGY CORPORATION;REEL/FRAME:003885/0445

Effective date: 19810219

AS Assignment

Owner name: HELIX TECHNOLOGY CORPORATION, A CORP OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FIRST NATIONAL BANK OF BOSTON THE, AS AGENT;REEL/FRAME:004225/0814

Effective date: 19831009