Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3594519 A
Publication typeGrant
Publication dateJul 20, 1971
Filing dateJan 9, 1970
Priority dateJan 9, 1970
Publication numberUS 3594519 A, US 3594519A, US-A-3594519, US3594519 A, US3594519A
InventorsSchmidlin Raymond J
Original AssigneeAddressograph Mulltigraph Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Switch assembly feeler
US 3594519 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] inventor Raymond J. Schmidlin Lyndhurst, Ohio [21] App], No. 1,577

[22] Filed Jan. 9, 1970 [45] Patented July 20, 1971 [73] Assignee Addressograph-Mulltigraph Corporation Cleveland, Ohio [54] SWITCH ASSEMBLY FEELER 1 Claim, 1 Drawing Fig.

52 u.s.c| ZOO/61.41 s11 lnt.Cl... H01h3/l6 so FieldofSearch ZOO/61.41

[56] References Cited UNITED STATES PATENT 3,076,069 1/1963 Camillis et a1. ZOO/61.41 3,202,779 8/1965 Call ZOO/61.42 3,213,225 10/1965 Torres ZOO/61.41 FOREIGN PATENTS 602,598 8/1960 Canada 340/61 Primary ExaminerRobert K. Schaefer Assistant ExaminerM. Ginsburg Attorneys-Russell L. Root and Ray S. Pyle ABSTRACT: The present invention provides a feeler device for a switch assembly which has a nonhelical workpiece-engaging end portion and a switch-engaging portion with a helically formed spring portion intermediate the work-engaging portion and the switch-engaging portion.

SWITCH ASSEMBLY FEELER BACKGROUND OF THE INVENTION This invention relates generally to feelers for switch assemblies and more particularly to feelers for engaging moving work, especially paper sheets, on a path of travel and operating a microswitch or the like responsive to movement of the work. For example, the switch finds application in certain copying machines wherein various operations must be actuated at predetermined positions of paper moving therethrough.

One of the principal prior art configurations of such feelers is merely an elongated flexible wire disposed in the path of travel. This type of feeler has many advantages in that it is flexible to resist distortion over a limited range of flexure. However, there are certain disadvantages to this type of prior art feeler. Principal among these disadvantages is the susceptibility of the feeler to become bent or distorted due to aceidental bending beyond a limited range. For example during cleaning of a machine, a switch may be accidentally snagged and bent to such a degree that it is distorted to the bent condition. If such distortion is not recognized the timing of the operation of the machine may be affected. Thus the ability of this type of feeler to be distorted can cause detrimental results.

In order to overcome the propensity of these prior art switches to accidental distortionby bending, there has been proposed the use of a coil spring in place of the straight resilient wire. The use of such a spring does in fact eliminate or at least minimize the detrimental aspect of the straight wire feeler in that the spring can be severely distorted and still return to its original preset position. However, the use of a spring per se has presented additional problems and drawbacks not found in the straight wire-type feeler. One of these problems is that the edge of the paper, as it comes into contact with the coils of a spring may be caught. This impedes the smooth flow of the paper often with very serious jamming.

Another limitation of the spring feeler device is that it is difficult to make minor adjustments to the spring for exact alignment of the spring in the path because of its great inherent resistance to distortion by bending. Such adjustment can be accomplished only by deforming the spring, which deformation detracts from the inherently beneficial spring characteristics and in fact may defeat the purpose of the spring by allowing this area to deform upon accidental contact.

The present invention incorporates the beneficial characteristics of both the straight rod and coil spring feelers and eliminates the detrimental aspects of both.

DESCRIPTION OF THE DRAWING The single FIGURE shows a feeler device for actuating a switch mechanism according to this invention and depicts the feeler and switch device schematically installed on a machine which has a path of travel for a workpiece, and shows a distorted reverse bend in phantom.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawing, a switch assembly designated generally as is shown incorporating feeler arm 12 of this invention. The feeler arm 12 is formed of a resilient wire which has a work-engaging portion 14 at one end thereof and a switch-engaging portion I6 at the other end thereof. The wire is wound with helical spring convolutions 18 intermediate the end portions 14 and 16. The switch-engaging portion 16 is connected to actuator 20 of the switch assembly 10. The switch assembly 10 is shown positioned so that the work-engaging portion 14 of the feeler arm 12 is disposed in the path of travel of an article which is to actuate the switch. In the drawing, the path of travel is designated by the broken line P and article A representing a piece of paper traveling along the strikes the work-engaging portion 14 of the feeler arm. Since the work-engaging portion is free of helical convolutions there is no danger that the article could become caught in such convolutions. The article will push the feeler arm to the left as seen in the FIGURE, actuating the switch for whatever purpose is desired. The article A will pass over the end of the feeler arm as it continues on its path of travel. As can be seen in the drawing, the end of the switch-engaging portion 14 is bent to a loop as shown at 22. This is to provide a smooth surface free of jagged edges over which the article will pass so that the switch will not rip the article nor catch or impede the progress of the article as it passes thereover. Once the article has passed over the feeler arm 12, the arm will return to its upright position due to a return spring connected to actuator 20 contained in the switch assembly 10.

If the article A were to become jammed in the path P and become crumpled or bunched in the area of the feeler I2, the normal practice to remove the crumpled article would be to pull it backwards in the opposite direction of normal path travel. The phantom outline of feeler 12 illustrates how the spring convolutions 18 will yield as the article is removed, and once removed will return to their normal position without permanent distortion.

This construction of the feeler arm combines the advantages of the prior art feeler devices without incorporating their disadvantages. The helical spring convolutions l8 allow the feeler 12 to be bent to a very substantial degree and still return to its original position. The amount of such bending is far greater than can be tolerated by a straight rod (i.e., nonhelical rod) of the same size and material. Thus distortion of the feeler arm due to unintended bending is minimized. Hence, the advantages of the helical spring configuration for a feeler arm are retained.

The'work-engaging portion I4 and the switch-engaging portion 16 are formed of straight (i.e., nonhelical) wire. Thus if it is desiredto adjust the position of the feeler this can be done by intentionally bending either of these straight portions 14 or 16 to provide for minor adjustments of the position of the work-engaging portion 14 of the path of travel. The spring convolutions 18 need not be distorted so they can function as a spring. Also as indicated above, the work-engaging portion I4 does not have a helically coil configuration to catch and impede the progress of the article. Thus the desirable features of a straight wire feeler arm are retained in that minor position adjustments can be made by bending in the nonhelical formed sections and there is no danger of helices catching and impeding the progress of the article.

What we claim is:

1. In a device wherein an article is conveyed along a predetermined path of travel, the combination of a feeler lever having adjustable means and a switch mechanism comprising:

a wire having first and second ends;

said wire having a work-engaging portion adjacent said first end positioned to intersect said path of travel, said workengaging portion having means to prevent article obstruction at the location of engagement of the work-engaging portion with the article, and,

said second end connected to said switch mechanism; said switch mechanism being actuatable by the angular movement of the lever as a unit,

a helically coiled portion intermediate said work-engaging portion and said second end, both said work-engaging portion and a portion adjacent said second end being free of helical convolutions and having accessible separated straight portions being of sufficient size and substantially equal length and cross section, whereby adjustment of position of said feeler lever can be accomplished by bending either or both of the separated straight portions.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3076069 *Apr 4, 1960Jan 29, 1963Rca CorpCombined sensing and switching device
US3202779 *Jun 15, 1962Aug 24, 1965Bell & Howell CoSensing switch
US3213225 *Dec 6, 1961Oct 19, 1965George WintrissFeeler finger for detection equipment
CA602598A *Aug 2, 1960Antonio DigenovaCurb indicator for automobiles
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3718785 *Nov 2, 1971Feb 27, 1973Int Standard Electric CorpMicroswitch with improved flexible loop sensing means for detecting transient objects
US4186287 *Jun 22, 1978Jan 29, 1980General Electric CompanySwitch operating assembly including a self-adjusting arrangement
US7041919 *Jul 20, 2004May 9, 2006Matsushita Electric Industrial Co., Ltd.Switch having resilient operating section
US7658196Apr 25, 2007Feb 9, 2010Ethicon Endo-Surgery, Inc.System and method for determining implanted device orientation
US7775215Mar 7, 2006Aug 17, 2010Ethicon Endo-Surgery, Inc.System and method for determining implanted device positioning and obtaining pressure data
US7775966Mar 7, 2006Aug 17, 2010Ethicon Endo-Surgery, Inc.Non-invasive pressure measurement in a fluid adjustable restrictive device
US7844342Feb 7, 2008Nov 30, 2010Ethicon Endo-Surgery, Inc.Powering implantable restriction systems using light
US7927270Jan 29, 2007Apr 19, 2011Ethicon Endo-Surgery, Inc.External mechanical pressure sensor for gastric band pressure measurements
US8016744Mar 7, 2006Sep 13, 2011Ethicon Endo-Surgery, Inc.External pressure-based gastric band adjustment system and method
US8016745Apr 6, 2006Sep 13, 2011Ethicon Endo-Surgery, Inc.Monitoring of a food intake restriction device
US8034065Feb 26, 2008Oct 11, 2011Ethicon Endo-Surgery, Inc.Controlling pressure in adjustable restriction devices
US8057492Feb 12, 2008Nov 15, 2011Ethicon Endo-Surgery, Inc.Automatically adjusting band system with MEMS pump
US8066629Feb 12, 2007Nov 29, 2011Ethicon Endo-Surgery, Inc.Apparatus for adjustment and sensing of gastric band pressure
US8100870Dec 14, 2007Jan 24, 2012Ethicon Endo-Surgery, Inc.Adjustable height gastric restriction devices and methods
US8114345Feb 8, 2008Feb 14, 2012Ethicon Endo-Surgery, Inc.System and method of sterilizing an implantable medical device
US8142452Dec 27, 2007Mar 27, 2012Ethicon Endo-Surgery, Inc.Controlling pressure in adjustable restriction devices
US8152710Feb 28, 2008Apr 10, 2012Ethicon Endo-Surgery, Inc.Physiological parameter analysis for an implantable restriction device and a data logger
US8187162Mar 6, 2008May 29, 2012Ethicon Endo-Surgery, Inc.Reorientation port
US8187163Dec 10, 2007May 29, 2012Ethicon Endo-Surgery, Inc.Methods for implanting a gastric restriction device
US8192350Jan 28, 2008Jun 5, 2012Ethicon Endo-Surgery, Inc.Methods and devices for measuring impedance in a gastric restriction system
US8221439Feb 7, 2008Jul 17, 2012Ethicon Endo-Surgery, Inc.Powering implantable restriction systems using kinetic motion
US8233995Mar 6, 2008Jul 31, 2012Ethicon Endo-Surgery, Inc.System and method of aligning an implantable antenna
US8337389Jan 28, 2008Dec 25, 2012Ethicon Endo-Surgery, Inc.Methods and devices for diagnosing performance of a gastric restriction system
US8377079Dec 27, 2007Feb 19, 2013Ethicon Endo-Surgery, Inc.Constant force mechanisms for regulating restriction devices
US8591395Jan 28, 2008Nov 26, 2013Ethicon Endo-Surgery, Inc.Gastric restriction device data handling devices and methods
US8591532Feb 12, 2008Nov 26, 2013Ethicon Endo-Sugery, Inc.Automatically adjusting band system
US8870742Feb 28, 2008Oct 28, 2014Ethicon Endo-Surgery, Inc.GUI for an implantable restriction device and a data logger
US20050077161 *Jul 20, 2004Apr 14, 2005Kenji NishimuraSwitch having resilient operating section
U.S. Classification200/61.41
International ClassificationH01H21/00, H01H35/00, H01H21/28
Cooperative ClassificationH01H35/00, H01H21/28
European ClassificationH01H35/00, H01H21/28