Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3594945 A
Publication typeGrant
Publication dateJul 27, 1971
Filing dateApr 14, 1969
Priority dateApr 14, 1969
Publication numberUS 3594945 A, US 3594945A, US-A-3594945, US3594945 A, US3594945A
InventorsTurney Howard R
Original AssigneeTurney Howard R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flying toy
US 3594945 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Inventor Howard R. Turney 1180 Holly SL, Anaheim, Calif. 92801 Appl. No. 815,784 Filed Apr. 14, 1969 Patented July 27, 1971 FLYING TOY 6 Claims, 5 Drawing Figs.

08. Cl 46/74 R,

273/100, 273/126 Int. Cl. A63h 27/00 Field of Search 46/74; 273/100, 106, 105.4, 126

References Cited UNlTED STATES PATENTS l 1/1881 Wetherill 273/1062 334,848 1/1886 Damm.... 273/105.4 678,265 7/1901 Low 273/106 708,519 9/1902 Bradshaw 273/106 1,986,937 1/1935 MacGregor 273/106 Primary Examiner- Louis G. Mancene Assistant Examiner-D. L. Weinhold AttorneyHarris, Kiech, Russell and Kern ABSTRACT: A manually projectable flying toy comprising an annulus the cross section of which in any radial plane containing its axis is that of an airfoil having a convex upper surface, the axial thickness of the annulus varying uniformly circum ferentially thereof and being a maximum and a minimum at points 180 apart.

FLYING T011 4 BACKGROUND or INVENTION SUMMARY AND OBJECTS OF INVENTION A primary object of the invention is to provide a flying device of the foregoing nature which can be scaled manually very easily and with no special manipulations. Consequently, the device can be thrown manually with a scaling motion with no necessity for developing any particular skill, thereby making the device suitable for use as a toyby persons of all ages, including even young children, which is an important feature.

Another object of the invention is to provide a scalable flying device which, among other things, sails through the air with a side-to-side motion, which can be caused to return to a point near the thrower in boomeranglike fashion, and the like.

An important object of the invention is to provide a scalable flying-device of the foregoing nature comprising an annulus the cross section of which in any radial plane containing its axis is that of an airfoil having a convex upper surface. With this construction, the device produces self-sustaining lift as it is projected through the air with a scaling motion. I

Another object is to provide a device wherein the axial thickness of the annulus varies uniformly circumferentially thereof and is a maximum and a minimum at points circumferentially spaced apart by 180. In other words, the annulus is axially thicker on one side than it is on the other. This construction causes the device'to sail through the air with the side-to-side motion mentioned, and also provides a boomerang effect. 1

Another object is to provide a scalable flying device comprising an'annulus having a lower surface which is preferably substantially flat and which is provided with circumferentially spaced cavities varying in volume'with the thickness of the annulus. This construction results in at least approximately balancing the weight of the annulus circumferentially. In other words, it results in at least approximately equalizing the weights of the various circumferential portions of the annulus despite their differences in thickness.

Another object is to provide a lightweight device wherein the annulus is made of a low density, foamed material.

The foregoing objects, advantages, features and results of the present invention, together with various other objects, advantages, features and results thereof which will be evident to those skilled in the scalable flying device art in the light of this disclosure, may be achieved with the exemplary embodiment of the invention described in detail hereinafter and illustrated in the accompanying drawing.

DESCRIPTION OF DRAWING FIG. I is a top plan view of a scalable flying toy which cmbodies the invention;

FIG. 2 is a bottom plan view ofthe toy of FIG. 1',

FIG. 3 is an enlarged side or edge elevational view taken as indicated by the arrowed line 3-3 of FIG. 1;

FIG. 4 is an enlarged, fragmentary sectional view taken as indicated by the arrowed line 4-4 of FIG. 1; and

FIG. 5 is a diagrammatic view suggesting the side-to-side motion which the scalable flying toy of the invention undergoes when thrown.

DESCRIPTION OF EXEMPLARY EMBODIMENT O INVENTION 7 Referring to the drawing, the scalable flying toy of the invention is designated generally by the numeral 10 and comprises an annulus 12 the cross section of which in any radial plane containing its axis is that of an airfoil, as best shown in FIG. 4. (Actually, for a reason which will become apparent the annulus 12 has two closely spaced axes l4 and 16, FIG. 1. The cross section of the annulus 12 is that of an airfoil in any radial plane containing and extending outwardly from either of these axes.)

As is typical of any airfoil, the upper surface 18 of the annulus I2 is convex to develop lift in response to relative movement of the surface 18 and the air. The lower surface 20 is shown as nonconvex and is preferably substantially flat.

The axial thickness of the annulus 12 varies uniformly circumferentially thereof between a maximum and a minimum at points 22 and 24, respectively, 180 apart. Preferably, the minimum thickness is between about 60 percent and percent of the maximum thickness. Correspondingly, the inner and outer circumferences of the annulus 12 are slightly eccentric relative to each other to make the width of the annulus vary uniformly circumferentially thereof directly with the uniformly circumferentially varying axial thickness. Thus, as shown in FIG. 3, the maximum width 26 occurs at the point 22 of maximum thickness and the minimum width 28 coincides with the point 24 of minimum thickness. Because of this, the axis 14 of the inner circumference of the annulus 12 is displaced slightly from the axis 16 of the outer circumference in the direction of the point 24 of minimum thickness.

To achieve at least an approximate circumferential weight balance, i.e., to at least approximately offset the circumferential weight variation resulting from the circumferential thickness and width variations, the lower surface 20 is provided therein with circumferentially spaced cavities 30 uniformly varying in volume, circumferentially of the annulus 12, with the thickness and width of the annulus. Thus, as shown in FIG. 3, the largest cavity occurs at the point 22 of maximum thickness and maximum width, while the smallest cavity 30 occurs at the point 24 of minimum thickness and width.

With the foregoing construction, when the device 10 is thrown manually, or otherwise, with a scaling motion, it flies with a side-to-side movement, as suggested by the arrowed broken line 32 in FIG. 5, and, eventually, returns to the general vicinity of the thrower in a boomeranglike manner. I have not been able to determine precisely why the toy 10 flies with the side-to-side motion depicted by the line 32, but this is presumably due to one or more of such factors as the differential lift between the thick and thin airfoil sections of the annulus 12, the spoiling effect of the leading edge of the annulus on the trailing edge thereof, which spoiling effect varies as the device rotates because of the varying thickness and width of the annulus, and the like. Similar factors or combinations of factors may be involved in the tendency of the device to boomerang. In this connection, I have found that the device 10 will not boomerang, or at least will not boomerang satisfactorily, without the circumferential thickness variation hereinbefore discussed.

Although various materials may be used for the annulus 12, a low density material is preferably so that the device 10 will fly with more of a sailing mode of operation. I have found that an excellent material for the annulus 12 is foamed polystyrene formed at a pressure of) p.s.i., which provides a satisfactorily low density.

Although an exemplary embodiment of the invention has been disclosed herein for purposes of illustration it will be understood that various minor changes, modifications, and substitutions may be incorporated in such embodiment.

I claim as my invention:

4. A flying device as set forth in claim 3 wherein said lower surface is provided therein with circumferentially spaced cavities varying in volume with the thickness of said annulus.

5. A flying device according to claim 1 wherein said annulus is made of a foamed material.

6. A flying device as defined in claim 1 wherein the width of said annulus varies uniformly circumferentially thereof with said uniformly circumferentially varying axial thickness.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US248901 *Aug 1, 1881Nov 1, 1881 Parlor-quoit
US334848 *Jun 3, 1885Jan 26, 1886 Flying target
US678265 *Jan 4, 1901Jul 9, 1901Abbot Augustus LowQuoit.
US708519 *Oct 17, 1898Sep 9, 1902Charles T BradshawQuoit.
US1986937 *Sep 10, 1932Jan 8, 1935Bonney Forge And Tool WorksQuoit
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3828466 *Jun 22, 1972Aug 13, 1974Geiger EFlying saucer
US4023805 *May 1, 1974May 17, 1977Harry SherrillTricky disk
US4104822 *Dec 3, 1976Aug 8, 1978Rodgers Henry WendellRotating circular airfoil
US4325556 *Jul 14, 1980Apr 20, 1982Decanto Joseph FPlaying disc
US4456265 *Jan 16, 1979Jun 26, 1984Adler Alan JohnGliding ring
US4560358 *May 10, 1984Dec 24, 1985Adler Alan JohnGliding ring
US4687210 *Sep 20, 1985Aug 18, 1987Michel James CToy bouncing ring
US4820230 *Apr 14, 1988Apr 11, 1989Richards Marvin DTossing ring and saucer
US4850923 *May 6, 1988Jul 25, 1989Etheridge Ronald DFlying toy
US5020808 *Jan 11, 1990Jun 4, 1991Richards Marvin DTossing ring
US5041042 *Dec 19, 1989Aug 20, 1991David SteinFlying bubble toy
US5045011 *Jun 1, 1990Sep 3, 1991Lovik Craig JFlying balloon toy
US5131879 *Aug 22, 1991Jul 21, 1992Myron BouchakianBi-elliptical flying toy
US5232226 *Aug 3, 1992Aug 3, 1993Rapid Mounting And Finishing Co.-Cadaco DivisionApparatus and method for propelling and retrieving a disk
US5366403 *Aug 11, 1993Nov 22, 1994Barney WeissFlying disc
US5655947 *May 21, 1991Aug 12, 1997Applied Elastomerics, Inc.Ultra-soft, ultra-elastic gel airfoils
US5760117 *Dec 29, 1995Jun 2, 1998Applied Elastomerics, Inc.Gelatinous composition and articles
US5962572 *Dec 29, 1995Oct 5, 1999Applied Elastomerics, Inc.Oriented gel and oriented gel articles
US6247989Apr 26, 1999Jun 19, 2001Richard D. NeffSecondary lift flying ring
US6739934May 15, 2003May 25, 2004Alan J. AdlerLong range flying disc sporting toy
US7081032Jan 14, 2004Jul 25, 2006Holgate Inc.Flying disc having contoured features
DE3813491A1 *Apr 22, 1988Nov 2, 1989Schlegel Joerg FriederWurfring
WO1985005283A1 *May 8, 1985Dec 5, 1985Adler Alan JohnGliding ring
WO1993003809A1 *Jul 29, 1992Mar 4, 1993Bouchakian MiroBi-elliptical flying toy
Classifications
U.S. Classification446/48, 473/589
International ClassificationA63H33/18, A63H33/00
Cooperative ClassificationA63H33/18
European ClassificationA63H33/18