Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3598051 A
Publication typeGrant
Publication dateAug 10, 1971
Filing dateJul 25, 1968
Priority dateJul 25, 1968
Publication numberUS 3598051 A, US 3598051A, US-A-3598051, US3598051 A, US3598051A
InventorsAvery William H
Original AssigneeUs Navy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Directional warhead
US 3598051 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

ilited States Patent [72] Inventor William H. Avery Silver Spring, Md. [21 Appl. No. 747,603 [22] Filed July 25, 1968 [4S] Patented Aug. 10, 1971 [73] Assignee The United States of America as represented by the Secretary of the Navy [54] DIRECTXONAL WARHEAD 9 Claims, 6 Drawing Figs.

[52] 0.8. CI 102/23, 102/24 [51] Int. Cl F42d 1/06 [50] Field of Search 102/22- 24, 67, 70.2, 24 l-IC, DIG. 2

[ 56] References Cited UNITED STATES PATENTS 3,076,408 2/1963 Poulter et a1. 102/23 3,136,251 6/1964 Witow l02/70.2 (P) 3,238,019 3/1966 Car1i.... 102/(C.W.F.)

SENSING INDICATOR SWITCHING Primary Examiner- Verlm R. Pendcgrass Attorneys-R. S. Sciascia. J. A. Cooke and John O. Tresansky ABSTRACT: The present invention comprises a spherical explosive device that, by selective multipoint initiation, concentrates its energy in a beam along any of several aiming axes. Aiming is accomplished by electronically selecting the proper group of detonators, thereby eliminating the necessity of physically aiming the charge as is required in all other focused blast devices. Once fired, these initiators cause a nearly cylindrical detonation wave, converging on the focusing axis, which forces the explosion products out along this axis and causes the warhead energy to be concentrated in the direction of a target rather than being omnidirectionally dissipated as in conventional warheads.


SHEET 1 [IF 2 F/G..Z


INVENT OR ATTORNEY Y R E v A H M m L H W PATENTEU AUG I 0 IQYI SHEET 2 OF 2 WILLIAM H. AVERY INVENTOR ATTORNEY DIRECTIONAL WARHEAD BACKGROUND OF THE INVENTION 1. Field ofthe Invention Although development of the present invention has proceeded in response to the problems involved in destroying or disabling airborne vehicles, successful application can readily be made to any number of environments, such as antiinstallation or antipersonnel situations. The most pertinent application arises in combination with a guided missile system as a method for preventing near misses of unfriendly aircraft. The probability of scoring a direct hit on an airborne object traveling at speeds exceeding that of sound is considerably less than one, even with sophisticated antiaircraft missile systems. In order to inflict crippling damage in a near miss situation, it would be desirable for the missile to explode while in proximity to the target and to focus destructive fragments and blast pressures in the direction of the target. Accordingly, a sensing device, preferably contained in the missile itself, capable of determining proximity to the target will indicate to the missile when it is within range of the target and will cause the missile warhead to explode, directing fragments and blast effects toward the target aircraft. Directing the blast not only causes the mass projected into the area of the target to be greatly increased, but also substantially augments the fragment velocity in the direction of the target.

2. Description of the Prior Art Devices which exist for directing the blast of a warhead include the electrically controlled directional warhead accord ing to Witow disclosed in U.S. Pat. No. 3,136,251. Plates disposed internally of the warhead are selectively charged on command from any well-known device capable of sensing proximity to a target. The place oriented toward the target is charged negatively, thereby attracting positively charged gaseous ions produced in the deflagration phase of the explosive process. Free electrons thus produced migrate toward the other plates which are charged positively. This migration tends to set up a shock absorbing layer or cushion around the inner surface of the explosive container which is identified with the positive plates. This cushion absorbs the shockwave occurring during the detonation phase of the explosive process for an instant of time, long enough for the uncushioned area of the container, that is, the area where the negative plate is located. to receive the blast shock an instant sooner and with sufficient severity to fragmentize that area of the container first. Migration of the positively charged gaseous ions in the direction of the negative plate enhances blast flow in that direction.

Zernow et al., in U.S. Pat. No. 3,156,188, discloses a spherical warhead for controlling fragment size by providing an inert perforated barrier encasing the explosive andinterior to the metal warhead casing. On detonation, the resulting shockwave is interrupted by the barrier but continues unhindered through the perforations of the barrier causing preferential fractures in the casing. It can be easily seen that a directed blast could be accomplished by perforating only a select portion of the barrier, However. the warhead itself would have to be physically rotated on intercept of a moving target in order to insure that the blast be directed toward the target.

The present invention proposes the use of a spherical charge initiated at a number of points in a local area on the surface of the charge. By electronic selection of the appropriate initiation points and initiation times. the blast is caused to be concentrated along any desired axis of the sphere. The instant invention provides practical and reliable focusing of blast effects in contrast to the device of Witow and avoids the requirement for mechanical orientation of the warhead. for which intercept time is too short, of scored and grooved fragmentation devices such as the device of Zernow.

SUMMARY Focused blast is the term applied to explosions that, by method ofinitiation, shape of explosive charge, or method of confinement, are directed in a beam or are uniformly distributed in a plane. For practical applications, the explosive charge should have a symmetry that permits producing the blast in any desired direction.

Many arrangements or patterns for the initiating means disposed on the surface of or within the charge may be em ployed, depending on the directionality desired in the blast. Time delays between initiation on different portions ofthe explosive are desirable. Also, for some applications a graded composition of the explosive varying from the surface toward the center of the charge may be useful. Hollow charges and combinations of explosive and other material may also be employed.

The concept is not restricted to spherical charges. With appropriate initiation point selection and detonation timing, shapes such as cylinders, cones, or polyhedrons could be utilized.

Accordingly, it is an object of thisinvention to provide a warhead which is directionally explosive.

It is also an object of this invention to increase the concentration of destructive fragments in the area of a target and to augment the fragment velocity in that direction.

A further object of the invention is to provide a spherical warhead whose blast can be concentrated along any desired axis of the sphere without mechanical movement, through electronic selection and control of initiator points appropriately arranged about the center or axis of the warhead.

Yet another object of the invention is to increase the damage probability of a missile system carrying the invention by increasing the effective range of the warhead.

Another object of the invention is to provide a directionally explosive warhead which is compatible with aircraft intercept kinematics.

Other objects and attendant advantages will become more readily apparent and more easily understood by reference to the following description of the preferred'embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically depicts a top view of a spherical configuration of the present invention as seen along the z-axis, detonation waves being seen converging on the z-axis;

FIG. 2 schematically depicts the device of FIG. 1 as seen along the y-axis and indicating initiation point location and firing sequence;

FIG. 3 depicts the present invention as a sphere of radius a having nine firing axes, the center of the sphere being at the origin of an xyz coordinance system, the z axis ofwhich system is intended to coincide with the axis ofa missile on which said invention is mounted; and

FIGS. 4a, 4b and 4c illustrate the method of axis rotation utilized to determine the location of initiation points for certain ofthe firing axes.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings and particularly to FIGS. 1 and 2, a sphere l of explosive composition, shown from a top and from a side view, has a radius, a, and twelve initiation points 2, The four points 2 lie in the equatorial plane. i.e., the xy plane, and are initiated first, at t=0, and the eight points 2 lying in the two parallel planes, one above and one below the equatorial plane, are to be initiated later at t=t,,. The delay time, t,,, is the time required for the detonation wave from initiation point A, initiated at P0, to reach the line 8-8. Thus:

where D is the detonation velocity of the explosive and I is the angle shown in FIG. 2. The converging detonation waves, so produced. will focus the explosion products along the z axis.

Such a device has only a single focusing axis, By adding more initiation points 2, the beam can be aimed along any desired axis simply by firing the proper combination of detonators. The method of locating these initiation points is hereinafter described. Location of initiation points should not be restricted to the surface of the charge. For certain applications, disposing the detonators within the charge proves advantageous.

A practical focused blast warhead must be capable of firing along any of several possible axes. The proper firing axis is determined by the relative attitudes of the missile and target at intercept. When these attitudes are optimum for producing target destruction. the appropriate group of detonators is triggered electronically. The entire system, being electronically controlled and fired, would have a nearly instantaneous response.

A systematic method of locating the initiation points has been developed. Such initiation will show that the points 2 occur in pairs which are reflections of each other through the center of the sphere 1. These paired points are always fired simultaneously and certain of them are always delayed, which simplifies the switching network 3 and sensing indicator 4 required to choose them.

A sphere of radius a, having nine firing axes, i.e., axes (l 9), is shown in FIG. 3. The center of the sphere I is at the origin of the .ry: coordinate system and the z axis coincides with the missile axis. lfthe z axis were the firing axis, the 12 initiation points would be located at where column matrix notation is used for the coordinates. Now let in the v'::' system be any other firing axis. The initiation points for this axis will have the same coordinates in the .ry'z' system as the initiation points for the z axis in the xy: system. Now the .t'y'z' axis can be formed by rotating the .ry: axis and the most systematic method of performing this rotation is the method of Euler angles found in Goldsteins Classical Mechanics, Mechanics, Addison-Wesley, I956. In this approach, the rotation is decomposed into three separate ones as in FIGS. 40, 4b, and 40.

l. The .tyz system is rotated counterclockwise about the z axis through an angle I resulting in the intermediate 1 system.

2. The 51;; system is then rotated counterclockwise, through an angle Gabout the axis to produce the (1 1 system.

3. Finally, the 5'1 system is rotated counterclockwise about the axis through angle 1 resulting in the .r' system.

Thus in matrix notation and the matrix A is the product of the three separate rotation matrices B. C and D where.

where cos b sin ,0 (l B=(sin cos 0) 1 U U C (0 005a l119 0 sim C050 (A4) and 00s,, D= sin,, 0

Table I given at the end of this description shows the Euler angles GD, 0 and I for the firing axes indicated in FIG. 3. I is zero for all of these, so B reduces to the identity matrix. Thus A=CD or siin. t) cos,, 0

O l (A-5) sin 0 C08,, 0059 S1110 Sing cos,, sing 0080 Now recall that I is known and I is sought; therefore,


but A is an orthogonal matrix; so, its inverse is equal to its transpose; i.e.,

The value ofA for each firing axis found by substituting in the values of GI and 0 that appear in Table l. The resulting trans formation matrices for each of the nine firing axes are tabulated in accompanying Table II.

By using these matrices and the coordinates of the firing points in the primed system given in Eq.(Al the positions of the initiation points in the xyz system can be found from Eq.(A8). These are collected in Table III, Table IV gives the initiation points and their firing order for each firing axis.

By careful examination of the initiation points in Table III, it is seen that they are comprised of 21 pairs of points, and that the pairs are reflections of each other through the origin. Furthermore, Table IV shows that the pairs are always fired simultaneously; the ones on the firing axes; i.c., those numbcred one through nine, being fired either with or without delay and the others; VIL, the ones numbered l0 through I] and the lettered ones, always being delayed.

The application of the present invention is not limited to an antiaircraft capability. The invention could apply to any situation where a directed blast would be advantageous. Such a situation is seen for armor-piercing projectiles, for antipersonnel projectiles, or for mines and depth charges.

Such a localized detonation prevents the waste of energy and particles of an omnidirectional explosion by directing most of the energy of the explosion, as well as the particles of the explosion, toward the target or targets. The present invention conserves explosive energy needed for a particular purpose and gives increased range and destructiveness to a particular charge.

Many modifications of the present invention are possible in light of the above description. It is believed apparent that the present device is not confined to the specific use or uses described herein; nor is the the invention limited to the particular construction described in these embodiments, it being understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

lUlllSd TABLE 1\' Firing Order of Initiation Points Firing axis Initiation time. delay I claim:

1. In an explosive device, the combination of a charge formed of explosive material and having at least one axis of symmetry,

pairs of diametrically oppositely disposed detonation initiation means located on and symmetrically disposed over the surface ofthe charge, and

means for dctonating each detonation initiation means of each pair simultaneously and for delaying the detonation of certain of said pairs in order to produce a directed blast.

2. The explosive device of claim 1 wherein said charge takes the shape ofa sphere.

3. The explosive device of claim 1 wherein said detonation initiation means are disposed within the charge.

4. The explosive device of claim 1 and further comprising sensing means for determining the orientation of a target in relation to the explosive device, and

means for selectively detonating said initiator means so as to produce a directional effect with maximum velocity and fragmentation density in the direction of the target.

5. The method of producing a directed destructive blast utilizing a generally spherical charge of explosive material having pair ofdiametrically oppositely disposed detonation initiation means located on the surface of said charge, said method comprising symmetrically locating said pairs of initiation means over the surface of said charge,

detonating each pair simultaneously, and

delaying the detonation of certain of said pairs in order to produce a directed blast.

6. The method ofclaim 5 and further comprising establishing a plurality of firing axes through the spherical charge,

locating pairs of detonation initiation means along each axis on the surface ofthe charge,

symmetrically disposing pairs of diametrically opposed initiation means on the surface of the charge and noncoincidental with the established firing axes, and

firing at least one pair of detonation initiation means disposed along the firing axes previous to the firing of the remaining initiation means.

Lois NIH ton-i Coordinates Coordinates Points 7. In an explosive device, the combination of a generally spherical charge formed of explosive material and having a plurality offiring axes through the charge,

pairs of diametrically oppositely disposed detonation initiation means located along each axis and on the surface of the charge,

pairs of diametrically oppositely disposed detonation initiation means symmetrically disposed on the surface of the charge and noncoincidental with the several firing axes, and

means for firing at least one pair of detonation initiation means disposed along one of the firing axes previous to the firing of the remaining initiation means MIQ CHI-

8. The explosive device ol claim 7 whcrcm sald detonation initiation means are disposed within the charge.

9. The explosive device of claim 7 and further comprising sensing means for determining the orientation of a target in relation to the explosive device, and

means for selectively detonating said initiator meansso as to produce a directional effect with maximum velocity and fragmentation density in the direction ofthe target.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3076408 *Jun 11, 1958Feb 5, 1963Borg WarnerControlled fracturing of solids by explosives
US3136251 *Jan 18, 1963Jun 9, 1964Witow Morris IElectrically controlled directional warhead
US3212437 *Nov 21, 1963Oct 19, 1965Murray Saling DonaldExplosive sound source for underwater echo ranging techniques
US3238019 *Oct 1, 1963Mar 1, 1966Stanford Research InstMethod of making diamond
US3280743 *May 10, 1963Oct 25, 1966Hubert G ReutherDirectional control of explosive energy
US3326125 *Sep 20, 1965Jun 20, 1967Denis A SilviaSequenced initiation-a technique for explosive wave shaping
US3447463 *May 1, 1967Jun 3, 1969Arthur Alfred LavineDual ignition explosive arrangement
US3472165 *Mar 28, 1963Oct 14, 1969Us Air ForceWarhead
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4655139 *Sep 28, 1984Apr 7, 1987The Boeing CompanySelectable deployment mode fragment warhead
US4658727 *Sep 28, 1984Apr 21, 1987The Boeing CompanySelectable initiation-point fragment warhead
US4662281 *Sep 28, 1984May 5, 1987The Boeing CompanyLow velocity disc pattern fragment warhead
US4815385 *Dec 16, 1987Mar 28, 1989The United States Of America As Represented By The Secretary Of The ArmyBlast focusing method and apparatus
US4823701 *Apr 27, 1987Apr 25, 1989The Boeing CompanyMulti-point warhead initiation system
US6843178Aug 22, 2002Jan 18, 2005Lockheed Martin CorporationElectromagnetic pulse transmitting system and method
US7340025Apr 1, 2005Mar 4, 2008Lockheed Martin CorporationPlasma antenna generator and method of using same
US7434514Dec 7, 2005Oct 14, 2008Giat IndustriesIgnition device for explosive charge or pyrotechnic composition
US8127686Jul 20, 2005Mar 6, 2012Raytheon CompanyKinetic energy rod warhead with aiming mechanism
US8387535 *May 14, 2010Mar 5, 2013The United States Of America As Represented By The Secretary Of The NavyHydroreactive energetic device and method
US20040036419 *Aug 22, 2002Feb 26, 2004Wood James R.Electromagnetic pulse transmitting system and method
US20070084376 *Jul 20, 2005Apr 19, 2007Lloyd Richard MKinetic energy rod warhead with aiming mechanism
EP1672308A1 *Nov 21, 2005Jun 21, 2006Giat IndustriesDispositif d'allumage pour une charge explosive ou une composition pyrotechnique
EP1848954A2 *Nov 14, 2005Oct 31, 2007Raython CompanyKinetic energy rod warhead with aiming mechanism
U.S. Classification102/305
International ClassificationF42C19/00, F42C19/095
Cooperative ClassificationF42C19/095
European ClassificationF42C19/095