Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3599244 A
Publication typeGrant
Publication dateAug 17, 1971
Filing dateNov 20, 1969
Priority dateNov 20, 1969
Publication numberUS 3599244 A, US 3599244A, US-A-3599244, US3599244 A, US3599244A
InventorsDonald E Wortman
Original AssigneeDonald E Wortman
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Dynamic action valveless artificial heart utilizing dual fluid oscillator
US 3599244 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Donald E. Wortmol 609 Mm'lel'SL, Rockville, Md. 20852 I783 Nov. 20. I969 All. I7. I97] [72] lmientor l 21 Appl. No. [22] Filed {45} Patented I54] DYNAMKI ACTION VALVELESS ARTIFICIAL IIEAI'I UTILIZING DUAL FLUID OSCILLATOR 3Clnhl. I Dre-h Fig.

[52] 0.8.0.... 3/1,!28/1 R,- l28/DIG. 10. 3/016. 2,417/350, |37/8l.5 [5t] A6" 1/24 [501 FieldolSeueh ..3/l,DlG.2; H8. 214, DIG. 3,D[G. l0; l37l8l.5;417/350 (56] ReIereneesClted UNITED STATES PATENTS 3.l48,624 9/l964 Baldwin 3/DIG. 2 3,208,448 9/!965 Woodward l28/l 3,481,784 l/l970 Rafferty et al. 128/! X OTHER REFERENCES l. An Ideal Heart Pump With Hydrodynamic Characteristics Analogous To The Mammalian Heart" by G. A. Saxton et al., Trans. Amer. Soc. Artif. lnt. Organs, Vol. VI, I960, pp. 288- 291.

2. Progress In The Design Of A Centrifugal Cardiac Assist Pump With Trans-cutaneous Energy Transmission By Magnetic Coupling" by F. Dorman et al., Trans. Amer. Soc. Artit'. lnt. Organs, Vol. XV, I969.

Primary Examiner-Richard A. Gaudet Assistant Examiner-Ronald L. Frinks Auorneys-Harry M. Saragovitz, Edward J. Kelly, Herbert Berl and J. D. Edgerton ABSTRACT: An artificial heart intended for supplementing or temporarily replacing the natural heart for circulating blood through the body. The heart relies on the dynamic flow properties of the-blood for its operation, utilizing a unique dual fluid oscillator with a common diaphragm for providing the pulsing action to a pair of pumps that have pressurevolume flow relationships that simulate the natural heart.

PATENTEU AUG! 7 an FQOM BODY EWM DYNAMIC ACTION VALVELESS ARTIFICIAL HEART UTILIZING DUAL FLUID OSCILLATOR RIGHTS OF GOVERNMENT The invention described herein may be manufactured, used, and licensed by or for the United States Government for governmental purposes without the payment to me of any royalty thereon.

BACKGROUND OF THE INVENTION The present invention relates generally to an artificial heart and more particularly to an electromechanical system that incorporates the principles of fluidics to provide a device for use as a temporary replacement for or as an aid to the heart in circulating blood throughout the body.

Devices heretofore developed and intended for use as artificial hearts have fallen far short of their expectations, one reason being their inherent complexity. Earlier embodiments of artificial hearts while attempting to simulate as closely as possible the action of' the human heart, were dependent for their operation upon a multitude of moving parts such as valves, flexible chambers, and displacement-type pumps, plus sophisticated synchronous control systems and sensors for either speeding up or slowing down the pumping action or heartbeat." Such devices have been found to require relatively large power supplies and to occupy large volumes in addition to being prohibitively expensive, thus detracting from their usefulness as an aid to the natural heart. Additionally, such devices have not been suited for prolonged service: valves tend to wear out, leak, lose their efficiency and promote blood clots; pumps and collapsible chambers tend to exert large compressive forces upon the blood to the point where the blood would become damaged; and many other moving parts wear out or become inefficient.

It is therefore an object of the present invention to provide an artificial'heart that is capable of temporarily replacing or aiding the natural heart by completely or partially taking over the operation of pumping blood through the circulatory system. I

It is another object of the present invention to provide an artificial heart that is inherently pressure sensitive and thus does not require any external regulating mechanism for long term use.

It is an additional object of the present invention to provide tlon.

SUMMARY OF THE INVENTION Briefly, in accordance with this invention, an artificial heart is provided for use as either a supplement to for the natural heart to be implanted in the chest of the user or as an external temporary replacement during surgery or the like. The device of the present invention is characterized by two interdependent fluid oscillators and two free-running fluid pumps. The oscillators are separated by a-common flexible diaphragm which allows alternate pulsing to the two pumps. The pumps an: run continuously at a preselected speed and have pressurevolume flow responses which simulate the natural heart. The present invention provides great improvement over prior art in that is simulates the action of the natural heart and yet has no valves to clog the blood and no collapsible chambers to squeeze or. crush theblood thus minimizing deterioration-and wear of the device itself while allowing more efficient and dependable operation.

BRIEF DESCRIPTION OF THE DRAWING v The specific nature of the invention as well as other objects, aspects, uses, and advantages thereof will clearly appear from the following description and from the accompanying drawing, in which:

The drawing is a schematic partial cross section illustration of an artificial heart in accordance with the present invention.

DESCRlPTlON OF THE PREFERRED EMBODlMENT A brief review of the natural heart's pumping action will facilitate understanding of the efficiency with which the present invention simulates the actions ofthe natural heart.

The heart is a muscular organ divided into four chambers. The upper chamber on each side of the heart is called an auricle and below each auricle is another chamber called the ventricle. Deoxygenated blood from the body enters the right auricle of the heart through two large veins. The blood-filled right auricle then contracts, sending the blood into the right ventricle through the tricuspid valve. The right ventricle then contracts, which simultaneously closes the tricuspid valve and opens the semilunar valve leading to the lungs via the pulmonary artery. From the lungs, oxygen-enriched blood flows into the left auricle through the pulmonary vein. The filled left auricle contracts, forcing blood through the mitral valve into the left ventricle which in turn will contract and force the blood through another semilunar valve into the aorta which is the main artery to the body.

It is evident that an artificial heart built to the above specifications to operate over an extended period of time would encounter many mechanical difficulties due to inevitable deteriorations ofits numerous valves, chambers and contraction apparatus. The present invention, while efficiently aiding the final result of the natural heart, does not attempt to duplicate its actions. Rather it employs well-known fluidic principles in a unique dual fluid oscillator that provides alternate pulsing to a pair of fluid pumps that respond to pressure input variations as would the natural heart.

The drawing illustrates the artificial heart of the present invention, showing a cross-sectional view ofa preferred embodiment of the dual fluidic oscillator and a schematic representation of the pumps and associated hardware. The dual fluidic oscillator is comprised of two back-to-back RCR (resistancecupacitancc-resistance) fluid oscillators shown at It) and I2 and internally separated by a flexible diaphragm [8 which is made of a'suitable nonporous materialsuch as silicone rubber. The two oscillators l0 and i2 provide a pulsed flow of blood to two fluid pumps 14 and 16 by way of the conduits 44 and 46, respectively. The input to oscillators l0 and I2 is received from conduits 20 and 22, respectively, and proceeds to travel the RCR flow paths in each oscillator as defined by resistance conduits 28 and 30, capacitance tanks 32 and 34 and resistance conduits 40 and 42, before exiting to pumps 14 and 16 by way of conduits 44 and 46, respectively. The oscillators l0 and i2 alternately oscillate at a frequency that varies directly as the flow of blood through the body varies, When the body is at rest, there exists a low blood flow and the frequency of oscillation will automatically lower. When the body is at work and more blood flows in the system, the oscillation will increase in frequency to pump more blood. ln-other words, the operation of thcsystcm is based on the dynamic properties of blood flow. The back-to-hack fluid oscillators l0 and 12 each operate much like a'standard RCR fluid oscillator but for the addition of the flexible diaphragm 18 which separates capacitance chambers 32 and 34 and allows the device a certain compliance with" blood plCSSUJC variations and provides the pulsing action of the artificial heart.

Pumps 14 and if have the characteristics that their outputs are directlyrclated to their input pressure and inversely related to the pressure head against which they-are pumping. The pumps thus respond to pressure variations at their inlets 44 and 46 and outlets 24 and 26 in a fashion analogous to the natural heart. One embodiment of a pump posses sing such characteristics that could be utilized in the present invention is known in the art as a centrifugal pump. Centrifugal pumps have been shown to pump blood ina highly etficient and nondestructive manner. as evidenced by the F. Dorman et al. paper in Vol. XV of The Transactions of the American Society of Artificial Internal Organs 1969, entitled "Progress in the Design of a Centrifugal Cardiac Assist Pump with Trans-cutaneous Energy Transmission by Magnetic Coupling." Pumps 14 and [6 are powered by a motor 48 which drives shafts 52 and 54, and a power supply 56. Much effort has been directed towards perfecting implantable motors and power supplies for the uses described herein, whereas external equivalents are also well known in the art. The entire heart .can be constructed of a material that is noncorrosive, has nonoccluding surfaces, and ,does not damage theblood in any way. a

In operation, consider the deoxygenated blood to be entering the artificial heart from the body through conduit 22 to fill a nearly empty capacitance tank 34 through resistance conduit 30. The near-emptiness of capacitance tank 34 implies that capacitance tank 32 of oscillator I is nearly full and diaphragm 18 is in position 50. As tank 34 becomes filled with blood, diaphragm 18 moves from position 50 towards position 51. The increased pressure on diaphragm 18 from the blood in tank 34 will force the oxygen-rich blood in nearly full tank 32 to exit through resistance conduit 40 which acts as a control jet for blood subsequently entering conduit 20 from the lungs. The control jet issuing from conduit will impinge upon the blood entering interaction region 60 and divert it to conduit 44 which leads to pump [4 which pumps the oxygen-rich blood out conduit 24 to the body. This action continues until tank 32 is nearly empty and diaphragm 18 is fully in position 51, which would imply a nearly full supply of deoxygenated blood in tank 34. Once the diaphragm is in position 51, no force is exerted on the blood remaining in tank 32 and thus the control jet will cease to issue from conduit 40. Part of the blood entering along conduit 20 will then reattach to resistance conduit Zll'and begin to fill tank 32 once more. As tank 32 fills with blood, diaphragm 18 will move towards position 50 and exert pressure on the blood in nearly filled tank 34 forcing the blood to exit through resistance conduit 42 which now acts as a control jet to impinge upon the main stream of blood entering conduit 22 from the body. The main stream entering conduit 22 is thus deflected and attaches to conduit 46 which leads to pump 16, which pumps the deoxygenatcd blood out conduit 26 to the lungs. Once the blood has been nearly emptied from tank 34 and diaphragm I8 is in position 50. the control jet from conduit 42 will slow to a trickle and eventually cease. Part of the blood subsequently entering conduit 22 will reattach along conduit 30 and the above cycle will repeat itself. I The foregoing description encompasses one cycle in the operation of the artificial heart; i.e. one pulse has issued from each oscillator to each pump. The duration of a single cycle is controlled in part by the dimensions of the resistance conduits and the capacitance tanks which can be varied for each patient: needs by the positioning of the partitions 36 and 38$ During the alternate pulsing of oscillators IO-and l2. pumps 14 and 16 are running continuously and at the same speed.- The pumps will pump only that blood thatis present at their inlets. Thus if the blood pressure increases or decreases and forces the frequency of oscillation to do likewise, the pumps would automatically adjust to the change in pulsatile flow.

From the'foregoing it is apparent that l have provided a greatly improved artificial heart capable of assisting the natural heart by complete implantation within the body or for use as an external temporary aid to circulation. The device heretofore described is simple and uncomplicated, relying on the dynamic flow properties of the blood for its operation. No valves or collapsible chambers are used, which makes the device less susceptible to wear and tear while insuring further that the blood remains undamaged. The entire apparatus can be constructed with a material that is noncorrosive and easily adaptable to the use intended.

I wish to be understood that I do not desire to be limited to the exact details of construction shown and described, for obvious modifications will occur to a person skilled in the art. For example, the positions of the pumps and oscillators could be interchanged if greater compliance with the circulating system could be attained.

lclairn as my invention:

1. An artificial heart to act as a circulatory aid for the natural heart either internally or externally of the body comprising a. first and second pulsing means for producing first and second pulsed flows of blood, respectively, each of said pulsing means comprising an input conduit for receiving a mainstream of blood, 2. a capacitance chamber to store said mainstream of blood until a certain volume is attained, 3. a control conduit for transmitting the blood from said capacitance chamber to deflect said mainstream of blood upon the application of forcing means. said forcing means comprising a flexible diaphragm located between and physically separating said capacitance chambers whereby blood is ejected from one of said capacitance chambers by a force on the diaphragm applied by the blood that is filling the other of the said capacitance chambers, said filling and ejecting being a continuous alternating action whose repetition frequencyfis dependent upon the rate of flow of blood through the system, and

an output conduit for receiving said mainstream of blood after its deflection by the blood issuing from said control conduit;

b. first and second pumping means for receiving and pumping said first and second pulsed flows of blood to the remainder of the circulatory system, the output volume flow of said first and second pumping means being directly proportional to the input pressure of the said first and second pulsed flows of blood and inversely proportional to the pressure against which they are pumping; and

c. power means to drive said first and second pumping means at a continuous and nonvarying speed.

2. The artificial heart of claim I wherein said first and second pumping means each are comprised of a centrifugal pump. I

3. The invention according to claim 1 wherein said first and second pumping means are located at the inlets of said first and second pulsing means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3148624 *Jun 21, 1961Sep 15, 1964Alan W BaldwinHydraulic pump
US3208448 *Feb 2, 1962Sep 28, 1965Kenneth E WoodwardArtificial heart pump circulation system
US3487784 *Oct 26, 1967Jan 6, 1970Edson Howard RaffertyPumps capable of use as heart pumps
Non-Patent Citations
1 *1. An Ideal Heart Pump With Hydrodynamic Characteristics Analogous To The Mammalian Heart by G. A. Saxton et al., Trans. Amer. Soc. Artif. Int. Organs, Vol. VI, 1960, pp. 288 291.
2 *2. Progress In The Design Of A Centrifugal Cardiac Assist Pump With Trans-cutaneous Energy Transmission By Magnetic Coupling by F. Dorman et al., Trans. Amer. Soc. Artif. Int. Organs, Vol. XV, 1969.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3771174 *Apr 28, 1972Nov 13, 1973D WortmanArtificial heart utilizing blood pulsing fluid oscillators
US4105016 *Nov 18, 1976Aug 8, 1978Donovan Jr Francis MHeart pump
US4369530 *May 19, 1981Jan 25, 1983Foxcroft AssociatesHydraulically actuated cardiac prosthesis and method of actuation
US4376312 *May 19, 1981Mar 15, 1983Foxcroft AssociatesHydraulically actuated cardiac prosthesis
US4381567 *Sep 15, 1981May 3, 1983Foxcroft AssociatesHydraulically actuated total cardiac prosthesis with reversible pump and three-way ventricular valving
US4389737 *Sep 15, 1981Jun 28, 1983Foxcroft AssociatesHydraulically actuated cardiac prosthesis with three-way ventricular valving
US4397049 *Sep 15, 1981Aug 9, 1983Foxcroft AssociatesHydraulically actuated cardiac prosthesis with three-way ventricular valving
US6527698Oct 12, 2000Mar 4, 2003Abiomed, Inc.Active left-right flow control in a two chamber cardiac prosthesis
US6540658Oct 12, 2000Apr 1, 2003Abiomed, Inc.Left-right flow control algorithm in a two chamber cardiac prosthesis
US7988655 *Aug 2, 2011Pulsecath B.V.Catheter pump, catheter and fittings therefore and methods of using a catheter pump
US8790399May 27, 2010Jul 29, 2014Newheart Medical Devices, LlcTotal artificial heart system for auto-regulating flow and pressure balance
US8870951May 9, 2012Oct 28, 2014Newheart Medical Devices LlcTotal artificial heart system for auto-regulating flow and pressure
US20070083077 *Oct 6, 2005Apr 12, 2007Alpha Dev, Llc.Total artificial heart system for auto-regulating flow and pressure balance
US20080192178 *Apr 15, 2008Aug 14, 2008Ilan Ben-DavidDevice, system and method for color display
US20090149695 *Jan 9, 2009Jun 11, 2009Pulsecath B.V.Catheter pump, catheter and fittings therefore and methods of using a catheter pump
US20110098807 *Apr 28, 2011Frazier Oscar HTotal Artificial Heart System For Auto-Regulating Flow And Pressure Balance
EP1942965A2 *Oct 6, 2006Jul 16, 2008Alpha Dev., Llc.Total artificial heart system for auto-regulating flow and pressure balance
WO2007044601A2Oct 6, 2006Apr 19, 2007Alpha Dev, LlcTotal artificial heart system for auto-regulating flow and pressure balance
WO2007044601A3 *Oct 6, 2006Jan 24, 2008Alpha Dev LlcTotal artificial heart system for auto-regulating flow and pressure balance
U.S. Classification623/3.13, 128/DIG.100, 600/16, 623/3.16, 417/350, 137/842
International ClassificationA61M1/10
Cooperative ClassificationA61M2001/1005, Y10S128/10, A61M1/1086, A61M1/1037
European ClassificationA61M1/10R