Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3599306 A
Publication typeGrant
Publication dateAug 17, 1971
Filing dateJun 13, 1969
Priority dateJun 13, 1969
Publication numberUS 3599306 A, US 3599306A, US-A-3599306, US3599306 A, US3599306A
InventorsDonald A Brafford
Original AssigneeBeloit Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Roll composition
US 3599306 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

D United States Patent 1 3,599,306

72 Inventor Donald A. Bnllord 1,903,038 3/1933 Fujii 29/132 x BdoigWis. 2.241,104 5/1941 Van DerGrinten.. 29/1211! X [21] Appl. No. 832,918 2,685,548 8/1954 Drozdowski.... 29/130 X [22] Filed June 13, 1969 3,147,698 9/1964 Ross 29/132 UX Continugijon-iu-pan ofSer. 3,217,387 1 1/1965 Strindlund 29/121 R No. 784,606,0ec. 18, 1968. 3,262,840 7/1966 Hervey 29/132 X 2 T 3323 M FOREIGN PATENTS 1 3 I n 892,984 4/1962 Great Britain 29/132 Primary Examiner- Alfred R. Guest Attorneys-Dirk J. Veneman, John S. Munday and Gerald A.

Mathews [54] ROLL COMPOSITION 5 Claims, 2 Drawing Hp.

[52] US. Cl 29/132 [51] Int. B2lb 31/08 [501 Field Search 29/132 ABSTRACT: A [011 for use in a nip defining relationship with another r011, including an inner core, an elastomeric layer [56] References Cited around the inner core and an outer shell wrapping oore consistmg of a nonwoven mat bonded with a thermosettmg resm. UNITED STATES PATENTS Preferred mats for the present invention are acrylic nonwoven 1,236,317 8/1917 Kempshall 29/132 X mats, and preferred resins are those of the epoxy resin family.

I Z2 A\\\\\\\k\\ PATENTEUAUG 1 7 l9?! 305 FIG. 2

DONALD A. BRAFFORD mvmroa BY g/A/ W5 "'8 ATTORNEY ROLL [ZOMPOSITION This application is a continuation-in-part of my copending application, Ser. No. 784,606, filed Dec. 18, 1968.

BACKGROUND OF THE DISCLOSURE in a number of industries, the high speed transfer of continuous webs of material is accomplished with the use of rolls which either support the web itself or support endless belts which carry the websv In some instances, the particular characteristics of the rolls are important if the precise conditions necessary for the handling of the material are to be met.

Of particular importance are those rolls which are used in nip-defining relationship with other rolls, such as where a web might be passed between two rolls for pressing, surface conditioning, embossing, dewatering, and the like. A corollary condition to the nip-defining relationship is that condition where one or more of the rolls contain a plurality of grooves in the surface to pennit therelease of fluids expelled by the nip pre sure from the web.

Prior art rolls have been manufactured from iron for a great number of years, and recently, it has been possible to provide steel rolls. Also, rubber-covered rolls, granite rolls and other composition rolls have been employed in various parts of the paper making industry and other industries.

However, metal rolls are expensive to manufacture and are not resistant to corrosion in any degree. Stainless steel and other metals which resist corrosion are particularly difficult and expensive to groove, thereby raising the cost of the roll to a point which becomes prohibitive.

Rubber-covered rolls or other synthetic materials of that type are relatively easy to manufacture but are not capable of sustained high speed nip pressures and are therefore limited to applications at low speed and/or low nip pressure. Rubber rolls normally are effected by a self-aggravating condition where a high spot load will cause. a buildup of heat due to energy loss from hysteresis, which causes that portion to expand, which in turn causes more heat due to energy loss from hysteresis, etc. Roll failure is common under these circum stances.

Particular areas where rolls become important are'in the forming zones of relatively new forming devices for paper machines and in the press area in a number of industries such as paper, textiles, nonwoven fabrics, and the like. in a press section, two or more rolls are placed in operative relationship with each other to define a nip between which a material such as a web is passed. Efficient conditions for operation require sustained high speeds and nip pressures such as up to 6,000 feet per minute of web travel with nip pressures in excess of 600 pounds per linear inch of roll. At the same time, a resiliency is needed which enables the roll to deform and reform rapidly, such as when a piece of broke" or other extraneous material is carried by the web through the nip. These deformations and reformations require low hysteresis or the self-aggravating condition mentioned above occurs. High ther- THE llJV ENTlON it has now been discovered that rolls may be prepared which are capable of operation at high speed and at high nip pressure without substantial expense in the manufacture thereof. These rolls have a high degree of resiliency, are able to deform and reform without buildup of heat, are totally resistant to chemical attack, are easy to machine for proper surfacing of the rolls and are readily grooved for use in instances where grooved rolls are required. Basically, the invention comprises the use of a roll including an inner core, an elastomeric or rubbery layer around the core and an outer shell wrapping the elastomeric layer consisting of a nonwoven mat bonded with a thermosetting resin. The outer surface may be machined to achieve the proper smoothness and grooving of the rolls, a preferred embodiment, is a relatively simple tooling operation and may be accomplished with a high degree of accuracy.

The rolls of the present invention may be manufactured from any fiber substance that may be formed into anonwoven mat. it is preferred, however, that the mat itself has a tensile strength of at least five pounds per inch. Typical examples of materials which may be formed into suitable fibrous mats are nylon fibers, paper or paperboard of sufficient strength, acrylic fibers, polyester fibers, cellulose acetate and other acetate fibers, asbestos fibers, cotton and sisal fibers, polyamide fibers, rayon fibers, polyolefin fibers, and the like. Particularly suitable rolls have been prepared from acrylic nonwoven mats.

The thermosetting resins employed to bond the nonwoven mat are broadly defined as condensation polymers or copolymers formed through the reaction of the functional groups of the organic compound, with the possible elimination of water or similar byproducts. A wide variety of thermosetting' resins may be employed. An example of these are phenolic resins which are the reaction product of phenols with aldehydes, such as phenol and formaldehyde.

Urea and melamine resins are also suitable and are formed from the reaction between the hydrogen of the amine groups of urea or melamine and the hydroxyl ofthe hydrated formaldehyde.

Two other closely related classes of thermosetting resins which may be employed are alkyds and polyesters, otherwise known as modified and unmodified polyester resins. Polyester resins are prepared by reacting a polybasic acid such as adipic acid, sebacic acid, etc, with a polyfunctional component such as glycol, glycerol, and the like. Modified or alkyd resins are formed by the reaction ofa fatty glyceride or fatty acid such as linoleic acid with the unmodified resin.

The most preferred class of thermosetting resins are the epoxy resins. Epoxy resins are formed from a basic epoxide which contains epoxy groups which are then cured with either diamines or diabasic anhydrides. Epoxides are prepared in a number of ways, such by the reaction of phenol and acetone to produce Bisphenol-A, which in turn is reacted with ephichlorohydrin to yield the epoxy intermediate. Diamine or diabasic anhydride then reacts with the intermediate to produce the final resin.

Another preferred class of thermosetting resins are the acrylic resins. Acrylic resins are acrylate or methacrylate ester polymers, although they may include acrylonitrile and chloroacrylate polymers. These polymers are polymerized along or with other comonomers to give the acrylate resin.

In my copending application having Ser. No. 784,606, filed Dec. [8, 1968, certain rolls are disclosed using the nonwoven mat and thermosetting resin of the present invention, the disclosure of which is incorporated herein by reference. This invention relates to an improvement thereon, said improvement consisting of the addition of the elastomcric middle layer as described in detail herein.

As has been stated above, the nonwoven mat is wrapped around the roll core after being saturated with the resin in a conventional manner. Polymerization of the resin to bond a nonwoven mat results in the formation of the roll. Simple machining of the surface and conventional grooving may then be done to yield a grooved roll.

Typical groove dimensions for use in a wide variety of applications are as follows. The grooves are preferably from approximately 0.005 inches to about 0.080 inches wide. A preferred range of groove width ranges from 0.015 to 0.025

inches. The depth of the groove may range from as little as 0.025 inches to as great as 0.400 inches or greater. Preferably, the groove depth will range from 0.050 to 0.150 inches. The number of grooves per inch of axial length of the roll will vary, depending upon the particular application and the other dimensions of the groove. Normally, it is preferred to have from two to 32 grooves per inch of longitudinal length, while a more preferred range is from six to 12 grooves per inch of axial length.

For a more complete understanding of the operation of the rolls of the present invention, and for a better understanding of the necessity for resistance to corrosion and high nip pres sures and speeds, reference is hereby made to the drawings in which:

FIG. 1 represents a perspective view of a roll according to the present invention; and

FIG. 2 is an enlarged section view of a section in a typical roll.

As shown in FIG. I, the roll of the present invention is most simply shown by the inner core which may be manufactured from iron, steel, or other suitable materials. Around the inner core 10 is wrapped an elastomeric middle layer l2. Depending upon the particular use for which the roll is intended, a wide variety of elastomeric materials may be employed as the middle layer of the present invention. For example, the layer may be natural rubber or any of the synthetic rubbers such as polybutadiene, S. B. R., neoprene, butyl rubber, nitrile rubber, polysulfide rubber, and other materials such as some forms of polyethylene-polypropylene, polyurethane and the like. All that is required is that the material be resilient to some degree to provide the cushion effect or resiliency as set forth herein. Pores or grooves in the elastomeric layer should be provided to permit compression of the layer, since rubber cannot be compressed when totally confined.

Surrounding the middle elastorneric layer 12 is an outer shell 14 which consists of a nonwoven mat bonded with a thermosetting resin. The resin may be machined in a conventional manner to provide any surface which is desired. Grooves may be installed in the outer shell by a simple tooling process.

In FIG. 2, an enlarged section view of the roll having a plurality of grooves is shown. The inner core 10 has a middle elastomeric layer 12 surrounding the core 10. An outer shell 14 comprising a nonwoven mat bonded with a thermosetting resin is then provided. On the surface 16 of the outer shell 14 are a plurality of grooves 17 which may range in the dimensions as set forth herein previously. The grooves 17 may have a depth of from 0.025 inches to 0.40 inches or greater. The width 20 of the groove 17 are preferably from approximately 0.005 inches to about 0.080 inches wide, with a preferred range of groove width ranges from 0.015 to 0.025 inches. The width 22 of the land surface area 16 will vary considerably, depending upon the width of the grooves and the number of grooves per inch. Generally, from 2 to about 32 grooves per inch of longitudinal length are sufficient, while it is more preferred to include from about 6 to about 12 grooves per inch of axial length. Thus if the grooves were about 0.02 inches in width and there were 10 grooves per inch, the width 212'. of the land area it) would be about 0.8 inches. Also shown in FIG. 2 are voids or pores 24 which permit the elastomeric layer 112 to compress when the roll is under load.

Having thus described the invention, what I claim is:

1. In a roll for use in a nip-defining relationship with another roll, said roll having an inner core and an outer shell comprising a nonwoven mat bonded with a thermosetting resin, the improvement comprising:

an elastorneric middle layer around said core and being wrapped by said outer shell.

The roll of claim 1 wherein said elastomeric layer contains a plurality of pores.

3. The roll of claim 2 wherein said shell has a plurality of grooves on the exterior surface thereof.

4. The roll of claim I wherein said nonwoven mat is a nonwoven mat derived from acrylic fibers, polyester fibers and mixtures thereof. 7 I

5. The roll of claim 1 wherein said thermosetting resin is an epoxy-type resin.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1236317 *Apr 15, 1914Aug 7, 1917Eleazer KempshallComposite material for covering drawing-rolls.
US1903038 *Sep 29, 1930Mar 28, 1933Eijiro YamamotoFelt rubber roller
US2241104 *Apr 22, 1939May 6, 1941Naamlooze Vennootschap ChemiscProcess and apparatus for the treatment of photographic coatings
US2685548 *Dec 26, 1951Aug 3, 1954Ford Motor CoGlass rolling apparatus
US3147698 *Nov 18, 1960Sep 8, 1964Grace W R & CoCompressible material for use in printing
US3217387 *Oct 15, 1963Nov 16, 1965Johan Strindlund UlfRoll
US3262840 *Sep 20, 1963Jul 26, 1966Little Inc AMethod and apparatus for removing liquids from fibrous articles using a porous polyamide body
GB892984A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4353296 *Mar 23, 1981Oct 12, 1982Beloit CorporationUse of anisotropic rubber for venta-nip rolls
US5038469 *Aug 21, 1990Aug 13, 1991Masuda Seisakusho Co., Ltd.Method of making a porous roll assembly
US5342277 *Nov 9, 1992Aug 30, 1994J. M. Voith GmbhRoll with separate shell and roll core
US5343807 *Mar 8, 1993Sep 6, 1994Man Roland Druckmaschinen AgSheet-guiding impression-cylinder casing profile
US5398604 *May 5, 1994Mar 21, 1995Heidelberger Druckmaschinen AgRemovable nip sleeve
US5507226 *Dec 2, 1994Apr 16, 1996Heidelberger Druckmaschinen AgRemovable nip sleeve
US5553806 *May 19, 1994Sep 10, 1996Beloit Technologies, Inc.Support or pressure roll for a paper roll winder
US5575436 *May 19, 1994Nov 19, 1996Beloit Technologies, Inc.Compliant covered roll or drum
US5704561 *Aug 28, 1995Jan 6, 1998Deutz AgWear-resistant hard-surfacing for the rolls of high-pressure roll presses for size reduction of granular material
US5840129 *Aug 6, 1996Nov 24, 1998Ontrak Systems, Inc.Hesitation free roller
US5862560 *Aug 29, 1996Jan 26, 1999Ontrak Systems, Inc.Roller with treading and system including the same
US6003185 *Aug 1, 1996Dec 21, 1999Ontrak Systems, Inc.Hesitation free roller
US6006663 *Feb 17, 1998Dec 28, 1999Heidelberger Druckmaschinen AktiengesellschaftPrinting press and method having a printing unit cylinder protected against corrosion
US6007465 *Oct 30, 1998Dec 28, 1999Toray Industries, Inc.Yarn guide roller
US6059889 *Jan 7, 1999May 9, 2000Ontrak Systems, Inc.Method for processing a substrate using a system having a roller with treading
US6196958 *May 18, 1999Mar 6, 2001Tokai Rubber Industries, Ltd.Toner supply roll including cylindrical polyurethane sponge structure having helical protrusions on its outer surface
US6206994Jul 28, 1999Mar 27, 2001Advanced Materials CorporationMethod and apparatus for covering a metal roll core with a polymeric material preferable a high performance thermoplastic material
US6247403 *Jun 16, 1999Jun 19, 2001Jeffrey A. RandazzoShock absorber cushion for flexographic printing plate and method of use
US6311615 *Jul 14, 1998Nov 6, 2001Heidelberger Druckmaschinen AgComposite nip roll and nip ring
US6435244Nov 28, 2000Aug 20, 2002Advanced Materials CorporationApparatus for covering a metal roll core with a polymeric material, preferably a high performance thermoplastic material
US6514369Nov 28, 2000Feb 4, 2003Advanced Materials CorporationMethod for and devices used in covering a roll core with a resin infused fiber reinforced adhesive under layer and a polymeric top layer, the method including the use of an improved mold tape
US6572516 *Feb 8, 2002Jun 3, 2003Eastman Kodak CompanyDevice to reduce electrostatic pattern transfer in coating processes
US6666138Jun 18, 2001Dec 23, 2003Jeffrey A. RandazzoShock absorber cushion and method of use
US6776744Jul 28, 1999Aug 17, 2004Advanced Materials CorporationMethod for and devices used in covering a roll core with a resin infused fiber reinforced adhesive under layer and a polymeric top layer, the method including the use of an improved mold tape
US6793754Nov 28, 2000Sep 21, 2004Advanced Materials CorporationCovered roll having an under-layer formed of resin infused densely packed fibers that provides increased strength and adhesion properties
US7703761 *Sep 7, 2007Apr 27, 2010Tokai Rubber Industries, Ltd.Sheet feed roller and method of manufacturing the same
US20040162202 *Feb 6, 2004Aug 19, 2004Shieh Yang T.Method for and devices used in covering a roll core with a resin infused fiber reinforced adhesive under layer and a polymeric top layer, the method including the use of an improved mold tape
US20050015986 *Dec 15, 2003Jan 27, 2005Stebnicki James C.Method of making a return roller
US20080061495 *Sep 7, 2007Mar 13, 2008Tokai Rubber Industries, Ltd.Sheet feed roller and method of manufacturing the same
US20080271626 *May 2, 2008Nov 6, 2008Man Roland Druckmaschinen AgPrinting press cylinder
USRE37657 *Sep 2, 1998Apr 16, 2002Beloit Technologies, Inc.Support or pressure roll for a paper roll winder
DE3612207A1 *Apr 11, 1986Nov 6, 1986Valmet OyPapermachine roll with profile-controllable shell
DE10350767A1 *Oct 30, 2003Jul 7, 2005Voith Paper Patent GmbhProcess and assembly to water-jet trim the moving parallel edges of a wet web of paper or carton as it passes over a suction roller
DE102007021158A1 *May 5, 2007Nov 6, 2008Manroland AgDruckmaschinenzylinder
EP0059837A1 *Feb 2, 1982Sep 15, 1982Krupp Stahl AGScraping or squeezing rollers for removing liquids from textile webs
EP0105391A2 *Sep 16, 1983Apr 18, 1984Kabushiki Kaisha Masuda SeisakushoRolls for treating textile material
EP0196356A1 *Jul 9, 1985Oct 8, 1986Anton LückenottoStretcher roller for sheet-like materials
EP0655561A1 *Oct 13, 1994May 31, 1995Sgl Technik GmbhFiber reinforced plastic roll with rhombic-shaped grooved surface
EP1422341A2 *Jul 25, 2000May 26, 2004Advanced Materials CorporationCovered roll e.g. for calendering and method of forming the same
EP1496152A1 *Jun 9, 2004Jan 12, 2005Voith Paper Patent GmbHPress roller or a roller sleeve
WO2000076769A1 *Jun 13, 2000Dec 21, 2000Randazzo Jeffrey ADisplacement cushion for flexographic printing plate
WO2010046537A1 *Oct 21, 2009Apr 29, 2010Metso Paper, Inc.A roll for a fibre-web machine dryer section and a method of manufacturing a fibre-web machine dryer section roll
U.S. Classification492/30, 492/52
International ClassificationD21F3/08, F16C13/00, D06B23/02, B29D99/00
Cooperative ClassificationF16C13/00, B29L2031/324, D21F3/086, B29D99/0035, D06B23/021
European ClassificationB29D99/00E2, D21F3/08C, F16C13/00, D06B23/02C