Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3599771 A
Publication typeGrant
Publication dateAug 17, 1971
Filing dateAug 25, 1969
Priority dateAug 28, 1968
Also published asDE1774754A1
Publication numberUS 3599771 A, US 3599771A, US-A-3599771, US3599771 A, US3599771A
InventorsAdolf Hinterstocker
Original AssigneeAdolf Hinterstocker
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Coin testing device for comparing coin to be tested with a standard coin
US 3599771 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[United States Patent [72] Inventor Adolf Hinterstocker Hirschbergstrasse 28, Roggersdorf, near Holzkirch'en, Germany [21] Appl. No. 852,531 [22] Filed Aug. 25, 1969 [45] Patented Aug. 17, 1971 [32] Priority Aug. 28, 1968 i 1] Germany [11] ll7747545 [54] COIN TESTING DEVICE FOR COMPARING COIN TO BE TESTED WITH A STANDARD COIN 9 Claims, 5 Drawing Figs.

[52] U.S.Cl 194/100 A, 209/81 A [51 Int. Cl G07f 3/02 [50] Field of Search 194/ l 00, 100.5; 209/81, 81.1

[56] References Cited UNITED STATES PATENTS 3,373,856 3/1968 Kusters et a]. 194/100 FOREIGN PATENTS 455,362 l/-1935 Great Britain 194/100 Primary ExaminerSamue1 F. Coleman Assistant Examiner-David A. Scherbel Altorney-Spencer & Kaye ABSTRACT: The genuineness of a coin is determined by comparison of the test coin with a standard coin which are interposed between a primary coil and first and second secondary coils respectively of a transformer, the primary coil being supplied with an AC signal while the secondary coils are connected in series so that the voltages induced by said primary coil are subtracted, and said series connection being coupled to a circuit arrangement which controls a coin gate which allows the test coin to pass into a channel for accepted coins only if the signal delivered by the series connection of the secondary coils does not exceed a threshold value during a test period in which the test coin is in a test position range between 3,059,749 10/1962 Zinke 194/100 the primary andsaid first secondary coil.

ENERGY sauncs com INPUT SLUT l2 SWITLHIIVG H t DEV/CE 26 1 m m --Tri I i I 1 MELHA/V/[AI I l I SLUB v01 mar 1 I REJECMR nroumran 24 i i [4 T i g i g i I 1 575, Q L IT DEV/CE I6 L/ I0 I I DSIILLAIOR AMPLIFIER I 34 /m T i J &

FULL-WAVE 1 mb m RECTIFIER 36 #1 I ill!) 1 1 i H I 'll--" sc/m/rri TRIGGER 38 I01: l a a man 40 s Ham/us rmcu/r m a l E U 1 1 Q:

Pmvm F AHPUF/ER 42 PATENTED AUBI 1 l97| SHEET 2 BF 2 5 m ENERGY E saunas 28 1 i REJECTED 46' REGULATUR 24 Fig.4.

nsmszz um wsnA ran OSCIUA 70R CIRCUIT Adolf Hinrerstocker ATTORNEYS.

COIN TESTING DEVICE FOR COMPARING COIN TO BE TESTED WITH A STANDARD COIN BACKGROUND OF THE INVENTION It is known to compare a test coin and a standard coin in a bridge circuit comprising a first and a second inductor into which said test coin and said standard coin are inserted. The bridge compares the impedance of the coils which depend on the coins disposed within the respective coils.

SUMMARY OF THE INVENTION It is the main object of the present invention to provide a coin testing device which is able to discriminate between genuine coins and spurious coins or slugs having the same size both if the items to be discriminated are made of different metals or alloys, and if the items to be discriminated are made of the same alloy but having different coin devices coined thereon. The later case applies, e.g., for the distinction of British one shilling coins and German one Deutsche Mark coins. This problem which cannot solved with the known coin testing devices is solved, as well as others, by a coin testing device according an embodiment of the invention comprising a coin chute having a coin input end and leading downwards from said end, a coin sensing device providing an electrical output signal when a coin to be tested (test coin") travelling through said chute is in a predetermined position within said chute, testing means actuated by said electrical output signal and comprising an oscillator and a primary coil coupled to an output of said oscillator and positioned adjacent a first side of said coin chute, said primarycoil having an axis extending at least substantially normal to a main plane of said coin chute, a control circuit controlled by the output of the test means, an electromagnetic relay actuated by said control circuit and having an armature steering the test coin into a channel for accepted coins (go-channel") or a channel for rejected coins (rejectchannel") depending on the result of the test, and an energy source for supplying energy for operation of the oscillator, the test means, the control circuit and the relay.

A coin testing device of the above-defined type is characterized according to the invention by first and second secondary coils, the first secondary coil being positioned essentially coaxial to the primary coil adjacent to the coin chute and on the opposite side thereof with respect to the primary coil, said second secondary coil being positioned essentially coaxially to said primary coil at an end thereof which is opposite to the end adjacent to said first secondary coil, said first and second secondary coils having essentially the same size and number of turns, further by means for supporting a typical specimen of the coins to be accepted (normal coin) between said primary coil and said second secondary coil, means for connecting the circuits of the first and second secondary coils in series so that voltages which are induced by the primary coil in the first and second secondary coils are in subtracting relationship, a threshold and amplifier circuit provided in said control circuit for activating said coin sensing device during a short period of time (test period") during which test period the test coin is within a test range between said primary coil and said first secondary coil, said control circuit actuating said relay only if an output signal provided by said series connection during said test period does not exceed a predetermined threshold value during any time of said test period, and stop or gate means actuated or formed by the armature of said relay, adapted to extend into said coin chute, and steering said test coin into the reject channel when said relay is deenergized while allowing the test coin to travel into said go-channel when said relay is energized.

A mechanical coin-testing device or slug rejector is preferably provided between said input end of said coin chute and the coin testing device according to the invention, said mechanical device being constructed to pass only coins the diameters and thicknesses of which falling into narrow ranges.

The capability of the present coin testing device to reject slugs and specially designed counterfeits is thereby greatly increased.

Further objects, features and advantages of the present invention will become more apparent if the following is taken in view ofthe accompanying drawings of which:

FIG. 1 is a schematic circuit diagram of a coin testing device according to a preferred embodiment of the invention;

FIG. 2 is a schematic front view (front cover and first secondary coil removed, and partly broken away) of the mechanical portion of the embodiment according to FIG. 1;

FIG. 3 is a schematic circuit diagram of the electrical portion of the coin-sensing device;

FIG. 4 is a circuit diagram of an oscillator for a somewhat modified embodiment similar to FIG. 1 and FIG. 5 a circuit diagram of an oscillator for another modification ofFIG. 1.

Referring now to FIGS. 1 to 3, there is illustrated a preferred embodiment of the invention comprising a coin chute 10 into which the coins to be tested (test-coins) are inserted through a coin input slot 12. A mechanical slug rejector 14 is provided behind slot 12. This slug-rejector may be of a known type, e.g., a ledge-type slug rejector which allows to pass only coins the width and diameter of which lying in narrow ranges. The coin chute 10 emerging from the mechanical slugrejector 14 passes between a primary coil 18 and a first secondary coil 20. At least in this area the coin chute consists of an electrically nonconducting material-or is provided with appropriate openings so that the induction field between coils l8 and 20 is not disturbed.

Primary coil 18 is connected to output terminals of an oscillator 22 which delivers an alternating current to coil 18, said AC current having a frequency preferably between about 30 and kc./sec. An electronic voltage regulator 24 supplies regulated electrical energy to oscillator 22. An energy source 28 which may comprise a battery is connected by a switching device 26 to the input of energy source 28. The switching device 26 comprises a normally open contact 29 (FIG. 3) of an electromechanical relay 62 (FIG. 3) which contact is closed under the control of the coin sensing device 16 for a short period of time (test period) when the test coin 30 travelling through coin chute 10 is between coils 18 and 20. The test period is sufficiently short, eg, about a hundredth of a second, so that the position of the test coin 30 which is moving continuously through coin chute 10 does not vary appreciably during the test period.

A second secondary coil 32 is provided coaxial to primary coil 18 on a side thereof which is opposite to first secondary coil 20. Secondary coils 20 and 32 are at least essentially symmetrically disposed in respect to primary coil 18. Means are provided to connect the circuits of secondary coils 20 and 32 in series so that the voltages induced by primary coil 18 in the secondary coils 20 and 32 are in opposite, subtracting relationship. Preferably, coils 20 and 32 are directly connected in a series circuit which is coupled to an input of an amplifier circuit 34 which provides an amplified output signal to a fullwave rectifier circuit 36 which in turn provides a rectified voltage to the input of a Schmitt-trigger circuit 38. Schmitttrigger circuit is activated if and when the output of the fullwave rectifier exceeds a predetermined threshold value. This means that Schmitt-trigger circuit 38 is actuated if the output signal provided by the series circuit 20, 32 exceeds a predetermined value.

The output of Schmitt-trigger circuit 38 is coupled to an input of an inverter amplifier and holding circuit 40. Circuit 40 produces an output signal only if Schmitt-trigger circuit 38 has not been triggered at any time during the entire test period. The output signal of circuit 40 activates a power amplifier 44 controlling an electromagnetical relay 42 the drop out of which being delayed. Relay 44 comprises an armature 46 which forms or controls a chute gate. Chute gate prevents when relay 44 is deenergized passing of the test coin from coin chute 10 into go-chute 10a and directs the test coin into a reject chute 10b while the test coin is allowed to pass into the gochute 10a when relay 44 is energized.

Means 48 are provided for positioning between primary coil 18 and second secondary coil 32 a typical specimen 50 of the coins to be accepted.

A preferred embodiment of coin-sensing device 16 is shown in FIG. 2. The coin-sensing device shown in FIG. 2 comprises a lever 54 having three arms 54a, 54b and 540. Lever 54 is pivotally supported by a pin 52. Arms 54a and 54b are lying at the lower edge of coin chute 10 so that test coin 30 moving through chute 10 from the right to the left side in FIG. 2 is straddled by arms 54a and 54b. Lever S4 is then pivoted in a counterclockwise direction by the weight and impetus of coin 30 into a position shown in dashed lines. The test coin assumes a position 30 between primary coil 18 and first secondary coil 20 when lever 54 is in the actuated position shown in dashed lines (FIG. 2). Only primary coil 18 is schematically shown in FIG. 2, first secondary coil 20 would be above the paper in FIG. 2 and attached into a cover member not shown which is hinged to the base member of the device which is partially shown in FIG 2. A small permanent magnet 56 is fixed to the end of the third arm 540 of lever 54, said permanent magnet 56 lying adjacent a reed-contact switch 60 when lever 54 is in the actuated position.

Reed-contact switch 60 comprises a normally open contact which is closed by the magnetic field produced by permanent magnet 56. The normally open contact of the reed-contact switch 60 is arranged in a series circuit connected between the live and ground terminals of energy source 28 and comprises further a driving coil of electromagnetic relay 62 and a parallel combination 64 of a capacitor and resistor. The capacitor of the parallel combination 64 is charged when reed-contact switch 60 is closed and the charging current energizes relay 62 for a predetermined period of time namely the test period.

Operation of the described embodiment of the present invention is as follows. When the test coin moving through coin chute l arrives at the coin-sensing device 16 and actuates lever 54 switch 28 closes for about a hundredth of a second. Hereby oscillator 22, amplifier 34, Schmitt-trigger circuit 38 and circuit 40 are provided with electrical energy from energy source 28 and activated. Oscillator 22 delivers an alternating current to primary coil 18 during the test period during which switch 28 remains closed. The position of the test coin between coils l8 and 20 does not change appreciably during the test period. A voltage is produced at the input of amplifier 34 and Schmitt-trigger circuit 38 respectively which does not exceed the threshold value during the test period if the test coin 30 is identical with standard coin 50 within given limits which may be varied by adjusting of Schmitt-trigger circuit 38. Power amplifier 42 is switched on by circuit 40 if Schmitttrigger circuit 38 has not been triggered during the test period, and relay 44 is energized and remains energized because of the delayed dropout until the test coin has passed into gochute 100.

However, Schmitt-trigger circuit 38 is triggered if coin 30 is not similar to standard coin 50, and then circuit 40 does not provide an output signal for activating power amplifier. Relay 44 remains deenergized, the test coin is recoiled by armature 46 which forms a stop extending into the path of the test coin, and test coin is directed into the reject chute b as indicated by the dotted arrow in FIG. 2.

According to a further aspect of the present invention, the discrimination capability of the present coin testing device is greatly improved by varying, during the test period, a parameter selected from the group of signal amplitude and signal frequency. ofthe signal which is supplied to primary coil 18 by oscillator 22. This may be accomplished by modified oscillator means 22' and 22" shown in FIGS. 4 and 5 respectively. Oscillator means 22, 22" may be used as oscillator 22 in FIG. 1 or a portion thereof (e.g., in combination with a following buffer stage not shown).

Referring to FIG. 4 there is shown an oscillator 21 comprising a known transistor oscillator circuit having a frequencydetermining parallel resonant or tank circuit 70. A series circuit comprising an additional capacitor 72 and a transistor switch 74 is connected across tank circuit 70. An input electrode (base electrode) of transistor 74 is coupled to an astable multivibrator circuit 76. Both the oscillator section and the multivibrator section of oscillator 22' are provided with energy from energy source 28 for operation during the test period and multivibrator 76 delivers to transistor 74 a square wave signal by which capacitor 72 is connected in parallel to tank circuit 70 and disconnected from tank circuit once or a number of times during the test period. The frequency of the output signal of oscillator 22' is switched thereby between two values once or a number of times during the test period.

The oscillator portion of oscillator 22 comprises a transistor 82 the emitter of which being coupled to ground by an emitter impedance 80 which is, according to a further feature of the invention, a temperature dependent resistor which is heated by the emitter current of transistor 82 so that the resistance, the degenerative effect of emitter impedance and thus the signal amplitude are varied during the test period. The output signal of oscillator 22' may be derived from output terminal 78.

Oscillator 22" shown in FIG. 5 produces an output signal the frequency of which varies continuously during the test period. Oscillator 22" which may be of known construction and is shown schematically in block form comprises a frequency determining tank circuit 70. A series circuit comprising a coupling capacitor 81 and a varactor diode 83 is connected across tank circuit 70. The junction of capacitor 81 and diode 83 is coupled through an isolation impedance 84 to a capacitor 86. Capacitor 86 is charged through a resistor 88 upon closing of relay contact 28 whereby the bias of the diode 83 and the frequency of the oscillator signal are varied. Tank circuit 70' may be part ofa beat-frequency oscillator circuit. Resistor 90 connected in parallel to capacitor 86 provides for discharging of capacitor 86 after opening of contact 28 at the end ofthe test period.

The circuits mentioned above and shown in block form or schematically are preferably transistorized circuits which may be of known construction.

As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

lclaim:

1. A coin-testing device comprising a coin chute, a coinsensing device producing an electrical output signal when a coin to be tested travelling through said chute is in a predetermined position within said chute; testing means actuated by said electrical output signal and comprising an oscillator and a primary coil which is coupled to an output of said oscillator and positioned adjacent a first side of said coin chute, said primary coil having an axis extending substantially normal to a plane comprising said coin chute; a control circuit responsive to the output signal of said testing means; a relay actuated by said control circuit and having an armature steering the test coin into a chute for accepted coins or a chute for rejected coins depending on the result of the test, and an energy source for providing energy for operation of the oscillator; the testing means and the control circuit characterized by first and second secondary coils, the first secondary coil being positioned essentially coaxial to the primary coil adjacent to the coin chute and on the opposite side thereof with respect to the primary coil, said secondary coil being positioned essentially coaxially to said primary coil at an end thereof which is opposite to the end adjacent to said first secondary coil, said first and second secondary coils having essentially the same size and number of turns; further by means for supporting atypical specimen of the coins to be accepted between said primary coil and said second secondary coil, means for connecting the circuits of the first and second secondary coils in series to form a series circuit so that voltages which are induced by the primary coil in the first and second secondary coils are in subtracting relationship; a threshold and amplifier circuit provided in said control circuit for activating said coin-sensing device during a short period of time (test period) during which the test coin is within a test range between said primary coil and said first secondary coil; said amplifier circuit actuating said relay if the signal produced by said series circuit and coupled to said threshold circuit does not exceed a predetermined value at any point of time during the test period; and stop or gate means actuated or formed by an armature of said relay, which means extending into said coin chute and directing the tested coin into the reject channel when said relay is deenergized while said means allow the test coin to pass into the channel for accepted coins when the relay is energized.

2. The device defined in claim 1 characterized in that said coin sensing device comprises switching means for connecting said energy source to said oscillator and control circuits during the test period.

3. The device defined in claim 2 characterized in that said switching means comprises a pivotally supported lever having three arms, two of which being positioned in vicinity of said coin chute so that a coin moving through said chute is straddled by said arms and pivots said lever; that a magnet body is attached to the third arm, and that a reed-contact switch is provided at a position adjacent which the magnet body is positioned in the pivoted state of said lever, said reed-contact switch being actuated by a magnetic field provided by said magnet body.

4. The device defined in claim 1 characterized by means for changing at least one parameter including signal amplitude and signal frequency, of the signal supplied by said oscillator to said primary coil during the test period. t

5. The device defined in claim 4 wherein said means is adapted to switch the oscillator frequency between two values during the test period.

6. The device defined in claim 4 wherein said means is adapted to vary the oscillator frequency continuously during the test period.

7. The device defined in claim 4 wherein said means varies the signal amplitude. v

8. The device defined in claim 1 characterized by a mechanical slug rejector provided in the path of the test coin between the input end and the area between the primary and first secondary coils, said rejector being adapted only to pass coins the diameter and thickness of which lying in narrow ranges.

' 9. A coin testing device comprising at least one inductor, means for positioning a coin to be tested in the vicinity of said inductor, means for supplying an AC signal to said inductor, means responsive to the effects of said coin on a signal derived from said inductor, means for guiding the coin into one of several channels according to the effects of the coin on said signal, and means for varying a parameter including frequency and amplitude of the signal supplied to said inductor during the period of time during which said means responsive to the effects of the coin on said signal is primed to actuate said guiding means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3059749 *Dec 16, 1959Oct 23, 1962Paradynamics IncCoin testing apparatus
US3373856 *May 23, 1966Mar 19, 1968Canadian Patents DevMethod and apparatus for coin selection
GB455362A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3741363 *Jun 15, 1971Jun 26, 1973A HinterstockerElectronic coin testing apparatus
US3870137 *Oct 12, 1973Mar 11, 1975Little Inc AMethod and apparatus for coin selection utilizing inductive sensors
US3901368 *Mar 11, 1974Aug 26, 1975Lance T KlingerCoin acceptor/rejector
US3916922 *Jun 14, 1974Nov 4, 1975Prumm Georg JElectronic coin tester
US3933232 *Jun 17, 1974Jan 20, 1976Tiltman Langley Ltd.Coin validator
US4042491 *Oct 6, 1975Aug 16, 1977U.S. Billiards, Inc.Color recognition system
US4128158 *Jul 22, 1976Dec 5, 1978Coin Cop Co.Precision coin analyzer for numismatic application
US4140220 *Apr 18, 1977Feb 20, 1979U.S. Billiards, Inc.Color recognition system
US4254857 *Sep 15, 1978Mar 10, 1981H. R. Electronics CompanyDetection device
US4335604 *Sep 3, 1980Jun 22, 1982Cointest OyMethod and apparatus for the identification of coins or equivalent
US4398626 *Aug 21, 1981Aug 16, 1983Mars, Inc.Low frequency phase shift coin examination method and apparatus
US4441602 *Dec 2, 1981Apr 10, 1984Joseph OstroskiElectronic coin verification mechanism
US4448297 *Jun 18, 1981May 15, 1984Mendelsohn Lewis IFerromagnetic coin validator and method
US4460003 *Aug 21, 1981Jul 17, 1984Mars, Inc.Coin presence sensing apparatus
US4471864 *Jan 12, 1982Sep 18, 1984Duane MarshallSlug rejector
US4574936 *May 10, 1983Mar 11, 1986Lance KlingerCoin accepter/rejector including symmetrical dual feedback oscillator
US4601380 *Feb 11, 1982Jul 22, 1986Mars IncorporatedApparatus for checking the validity of coins
US4870360 *May 6, 1985Sep 26, 1989University College Cardiff Consulatants LimitedApparatus for identifying an electrically conducting material
US4884672 *Aug 12, 1988Dec 5, 1989Parker Engineering & Manufacturing Co.Coin analyzer system and apparatus
US4936435 *Oct 11, 1988Jun 26, 1990Unidynamics CorporationCoin validating apparatus and method
US5056644 *Aug 7, 1989Oct 15, 1991Parker Donald OCoin analyzer system and apparatus
US5216234 *Mar 29, 1990Jun 1, 1993Jani Supplies Enterprises, Inc.Tokens having minted identification codes
US5226520 *May 2, 1991Jul 13, 1993Parker Donald OCoin detector system
US5293980 *Mar 5, 1992Mar 15, 1994Parker Donald OCoin analyzer sensor configuration and system
US5433310 *Jan 4, 1994Jul 18, 1995Coin Mechanisms, Inc.Coin discriminator with offset null coils
US5439089 *Sep 1, 1993Aug 8, 1995Parker; Donald O.Coin analyzer sensor configuration and system
US5568855 *Oct 2, 1995Oct 29, 1996Coin Mechanisms, Inc.Coin detector and identifier apparatus and method
US5579887 *Jun 15, 1995Dec 3, 1996Coin Acceptors, Inc.Coin detection apparatus
US5799767 *Apr 7, 1997Sep 1, 1998Coinstar, Inc.Cleaning apparatus and method for a coin counter and voucher dispenser
US5823315 *Apr 29, 1996Oct 20, 1998Coin Mechanisms, Inc.Coin detector and identifier apparatus and method
US5988348 *Jun 27, 1997Nov 23, 1999Coinstar, Inc.Coin discrimination apparatus and method
US6047807 *Sep 5, 1997Apr 11, 2000Coinstar, Inc.Restricted access coin counter
US6047808 *Jun 25, 1997Apr 11, 2000Coinstar, Inc.Coin sensing apparatus and method
US6056104 *Jun 25, 1997May 2, 2000Coinstar, Inc.Coin sensing apparatus and method
US6168001Jun 27, 1997Jan 2, 2001Coinstar, Inc.Positive drive coin discrimination apparatus and method
US6196371Jun 26, 1998Mar 6, 2001Coinstar, Inc.Coin discrimination apparatus and method
US6227343Mar 30, 1999May 8, 2001Millenium Enterprises Ltd.Dual coil coin identifier
US6267662Apr 12, 2000Jul 31, 2001Mars IncorporatedMeasuring a stack of coins in a coin handling device
US6484863Apr 12, 2000Nov 26, 2002Coinstar Inc.Coin counter/sorter and coupon/voucher dispensing machine and method
US6494776Nov 29, 1999Dec 17, 2002Coinstar, Inc.Coin counter/sorter and coupon/voucher dispensing machine and method
US6498864 *Oct 5, 1999Dec 24, 2002Morton F. RosemanApparatus for authenticating products and authorizing processes using the magnetic properties of a marker
US6602125May 4, 2001Aug 5, 2003Coinstar, Inc.Automatic coin input tray for a self-service coin-counting machine
US6736251Aug 1, 2002May 18, 2004Coinstar, Inc.Coin counter and voucher dispensing machine and method
US6758316May 7, 2003Jul 6, 2004Coinstar, Inc.Coin counter and voucher dispensing machine and method
US6766892Jan 2, 2003Jul 27, 2004Coinstar, Inc.Coin discrimination apparatus and method
US6854581Apr 9, 2002Feb 15, 2005Coinstar, Inc.Coin counter and voucher dispensing machine and method
US6976570Dec 10, 2003Dec 20, 2005Coinstar, Inc.Coin counter and voucher dispensing machine and method
US7028827Aug 12, 1996Apr 18, 2006Coinstar, Inc.Coin counter/sorter and coupon/voucher dispensing machine and method
US7131580Sep 13, 2005Nov 7, 2006Coinstar, Inc.Coin counter and voucher dispensing machine and method
US7152727Oct 5, 2001Dec 26, 2006Coinstar, Inc.Method and apparatus for coin or object sensing using adaptive operating point control
US7213697Apr 16, 2004May 8, 2007Coinstar, Inc.Coin discrimination apparatus and method
US7303119Sep 21, 2006Dec 4, 2007Coinstar, Inc.Coin counter and voucher dispensing machine and method
US7464802Feb 1, 2006Dec 16, 2008Coinstar, Inc.Method and apparatus for conditioning coins prior to discrimination
US7490709Sep 22, 2003Feb 17, 2009Scan Coin Industries AbCoin discriminating device and method, and a coin handling machine including such a device and method
US7520374Apr 12, 2007Apr 21, 2009Coinstar, Inc.Coin discrimination apparatus and method
US7527193Oct 24, 2007May 5, 2009Coinstar, Inc.Coin counter and voucher dispensing machine and method
US7537099Nov 5, 2002May 26, 2009Scan Coin Industries AbCoin discriminator where frequencies of eddy currents are measured
US7584833Oct 8, 2004Sep 8, 2009Scancoin Industries AbCoin discriminators
US7653599Feb 14, 2003Jan 26, 2010Coinstar, Inc.Methods and systems for exchanging and/or transferring various forms of value
US7865432Feb 14, 2003Jan 4, 2011Coinstar, Inc.Methods and systems for exchanging and/or transferring various forms of value
US7874478Mar 26, 2009Jan 25, 2011Coinstar, Inc.Coin counter and voucher dispensing machine and method
US7971699Jan 20, 2006Jul 5, 2011Coinstar, Inc.Coin counter/sorter and coupon/voucher dispensing machine and method
US8024272Apr 12, 2010Sep 20, 2011Coinstar, Inc.Methods and systems for exchanging/transferring gift cards
US8033375Feb 14, 2003Oct 11, 2011Coinstar, Inc.Methods and systems for exchanging and/or transferring various forms of value
US8103586Dec 28, 2009Jan 24, 2012Coinstar, Inc.Methods and systems for exchanging and/or transferring various forms of value
US8229851Aug 19, 2011Jul 24, 2012Coinstar, Inc.Methods and systems for exchanging/transferring gift cards
US8332313Jul 22, 2008Dec 11, 2012Coinstar, Inc.Methods and systems for exchanging and/or transferring various forms of value
US8874467Nov 23, 2011Oct 28, 2014Outerwall IncMobile commerce platforms and associated systems and methods for converting consumer coins, cash, and/or other forms of value for use with same
US8967361Feb 27, 2013Mar 3, 2015Outerwall Inc.Coin counting and sorting machines
USRE29090 *Jun 2, 1975Dec 28, 1976Mars, Inc.Coin selector utilizing a coin impeller
EP0058094A1 *Feb 11, 1982Aug 18, 1982Mars IncorporatedImprovements in and relating to apparatus for checking the validity of coins
EP0304535A2 *Feb 11, 1982Mar 1, 1989Mars IncorporatedImprovements in and relating to apparatus for checking the validity of coins
WO1982002786A1 *Feb 11, 1982Aug 19, 1982Dean RobertImprovements in and relating to apparatus for checking the validity of coins
WO1984000073A1 *Jun 14, 1983Jan 5, 1984Raymond NicholsonCoin detecting apparatus
WO1990001753A1 *Aug 11, 1989Feb 22, 1990Coin Mechanisms IncCoin analyzer system and apparatus
WO1995019018A1 *Nov 1, 1994Jul 13, 1995Coin Mechanisms IncCoin discriminator with offset null coils
WO1997013224A1 *Sep 12, 1996Apr 10, 1997Coin Mechanisms IncCoin detector and identifier apparatus and method
WO2000060550A1 *Mar 29, 2000Oct 12, 2000Kiss BillDual coil coin identifier
Classifications
U.S. Classification194/318
International ClassificationG07D5/08
Cooperative ClassificationG07D5/00
European ClassificationG07D5/00