Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3607159 A
Publication typeGrant
Publication dateSep 21, 1971
Filing dateMay 12, 1967
Priority dateMay 12, 1967
Also published asDE1769339A1, DE1769339B2
Publication numberUS 3607159 A, US 3607159A, US-A-3607159, US3607159 A, US3607159A
InventorsGeorge L Haywood
Original AssigneeNorton Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Saturated, resilient, flexible and porous abrasive laminate
US 3607159 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [56] References Cited UNITED STATES PATENTS [72] Inventor George L. Haywood Latham, N.Y.

988858 9999 finnnl/ llllll 555555 mmfl m m NIT-a m a e m a m mv b r fomfl ma uoauih HHCGKC 702668 566666 999999 llllll l/l/l/ 2 2564 33955 39377 080267 852557 223333 y m H l m 9 l vnu Z JM .H ml m fl 9 u y fiummmn 6M&NT 0. de N Ce d D. i PMmm AFPA 11]] 253 2247 Primary Examiner-Donald 1. Arnold Attorney-Hugh E. Smith in w Cm mbe ta s & SO u D. m om Di mm, .1 r mcu S d ne d h kg... n mu C m m c e mM m .m m Hey sfl m a m 8 m3 Tdd Cw A a s Rmh c w m B m ASP 5 9 2 l l 5 D N A E .Lv B. I XE m w 0 F m 1.1 TM NA. E S LE F m 9V 2 m Eflm m RAW i a H Rr. H E m T m A S R ml AO S SPSU H H U U backing and distributed within said resilient structure with the asive density ranging inversely to the distance from the flexible backing. A

abr

protective abrasion-resistant layer is interposed between the abrasive grain and the surfaces of the resilient structure. U

[50] Field of 51/295,

PATENTED SEPZI IHYI f; 60 2- saw 1 or 2 ATTORNEY SATURATED, RESILIENT, FLEXIBLEANQ PQILQUS ABRASIVE LAMINATE BACKGROUND OF THE INVENTION 1. eld of the Invention This invention deals with a coated abrasive material wherein a flexible backing is provided to support a plurality of abrasive grains adhesively bonded thereto. It further relates to the fine abrasive end of such field wherein finish of the workpiece abraded constitutes one of the important criteria for the performance of the abrasive material. The terms buffing" and polishing, while generally synonymous in common usage have definite and different meanings in the abrasive art. Buffing means the rearrangement of material on the surface of a workpiece, usually by friction, to produce a high finish. In contrast, polishing means the removal of material from a surface to correct minor surface imperfections. It is well accepted in the art that as the requirement for high finish goes up the ability to remove stock comes down. Therefore, the art has consistently used one type of relatively aggressive abrasive material for polishing and the desired stock removal and a different type of nonabrasive or only slightly abrasive material for buffing to a high finish.

2. Description of the Prior Art Abrasive products made on resilient backings of various types have been proposed for many years. Most of these seem to have been the outgrowth of the use of sponge material for cleaning purposes and generally have fallen into three categories: (l) a foam or sponge having a coating of abrasive particles on the exterior thereof; (2) a sheet of coated abrasive laminated to a sponge or foam backing; and (3) abrasive grain incorporated in the foamable material prior to foaming with the resultant in situ production of a foam containing abrasive grain substantially uniformly distributed throughout. These products have never gained good commercial acceptance except for some minor successes as kitchen scouring aids. Industrially, the best performing product for polishing purposes has not been a sponge or foam-backed material but rather one in which a layer of cork particles provided the resilient support required to obtain a reasonably good finish while the abrasive grain coated on the surface thereof gave a reasonable amount of stock removal. None of these prior art products have given satisfactory combined finish levels and stock removal rates to satisfy the needs of industry. A laminate of foam and flexible reinforcing backing is disclosed and claimed in my prior application Ser. No. 632,978 filed Apr. 24, I967 and now abandoned. While a dramatic improvement over the prior art, this structure suffered internal weaknesses, probably due to abrading action of the included abrasive. The present invention constitutes a solution to such problem and an improvement over my prior product. Accordingly, it is the object of this invention to provide a coated abrasive material which gives superior finish and superior stock removal at one and the same time. It is a further object of the invention to provide a resilient foamcontaining material of this type which is capable of withstanding the rigorous operating conditions which have heretofore kept foam-backed abrasive products in the kitchen and out of industrial plant use to any extent.

SUMMARY In general, the present invention provides a coated abrasive product wherein a controlled density porous and resilient structure is reinforced by lamination to a flexible backing of cloth, paper, film or the like and wherein such structure contains abrasive grain preferably in a graded density ranging from the highest density at the surface to the absence of substantially any abrasive grain adjacent the flexible backing resilient structure interface. It further provides for the internal reinforcement of the resilient structure by a reinforcing adhesive which coats the surfaces of the interstices of the structure as well as its surface and yet leaves the voids within the structure substantially free of adhesive and, in addition, acts to prevent cutting and weakening of such structure by the sharp edges of the abrasive grain. This product, which is described in detail below, possesses a unique combination of strength and resilience, stock removal and buffing capability, which permits it to outcut conventional abrasive products of like abrasive grain size and at the same time to produce much higher finishes than can be produced with such conventional abrasives. Preferably the resilient structure is formed of a reconstituted particulate foam material as is more fully described below.

DRAWINGS FIG. 1 is a cross-sectional view of the material of the present invention.

FIG. 2 is an enlarged, schematic representation of a portion of the cross section of the material of FIG. 1.

FIG. 3 is a graphic illustration of the improvement in both finish level and stock removal achieved by the material of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENTS More specifically, and referring now to the drawings, FIG. I illustrates the general appearance of the improved abrasive material of the present invention. The material 10 comprises a flexible reinforcing and supporting member 11 which may be paper, cloth, film, fiber or any of the backing materials conventionally used for coated abrasive manufacture. Superposed on and sharing an interface with said backing 11 to which it is adhered by a layer of adhesive 12 is a resilient structure 13 having a controlled density, compressibility and pore size as is more fully described below. Disposed on and preferably within the surface of structure 13 is a plurality of abrasive grains 14 grading from a dense concentration at the outer surface 15 of the resilient structure progressively to substantially grain-free concentration adjacent the adhesive layer 12 between member 11 and structure 13. Unseen in he scale of the drawing of FIG. I, but shown clearly in the enlarged schematic view of FIG. 2, is an abrasion-resistant coating 18 covering the surfaces of the structure 13 formed by its outer surface 15 and internal surfaces or interstice walls 17. Coating I8 is essentially a continuous coating in that it coats all exposed and available surfaces of structure 13 with a thin layer but is discontinuous in the sense that it does not bridge across the pore or interstice openings to form an essentially continuous film at the top surface 15 of structure 13. Anchored to the abrasion-resistant coating 18 and through it to the structure 13 is a plurality of abrasive grains 14. These are bonded to coating 18 by a separately applied grit-bonding adhesive 16.

The resilient structure 13 may be formed of any solvent-rcsistant, durable organic foam or foamlike material having a density of from 10 to 30 pounds per cubic foot, a 25 percent compression deflection value as measure by ASTM 1961 1 147-61 (Test For Compressibility And Recovery of Gaskets) in the 10 to 50 pounds per square inch range, a porosity of from 55 percent to percent and an average pore or interstice opening diameter at the surface of from 0.006 inch to 0.020 inch. Such a pore size amounts to a count of from about 80 to 150 openings per linear inch. In the preferred embodiment the density ranges from 14 to 16 pounds per cubic foot and the pore size is the equivalent of plus or minus 10 openings per linear inch. Where foam is employed, it is preferably of the open cell or reticulated type. While the thickness of the resilient structure may vary substantially dependent upon the use of the resultant abrasive product, it is preferably one-fourth inch or less in thickness with the optimum being about one-sixteenth inch thickness. Such resilient structure is preferably formed of a solvent-resistant foamor foam-type product. While byfselection of the foam-forming constituents and control of the foaming conditions it may be possible to produce a virgin open structure, skinless foam having the required density, porosity, pore size arid compressibility, it is preferred to form such resilient structure from a reconstituted particulate foam wherein the original foam is broken down mechanically into a plurality of crumbs or small sections of foam, mixed with an adhesive binder and moulded under pressure to produce the desired properties. Such reconstituted foam may be formed as sheets or moulded in the form of a block or cylindrical log. In the case of sheets it is merely cut into requisite widths for use in this invention, while in the case of blocks it is fletched or cut into sheets from such block. Preferably it is formed into a log and then the log is peeled in the same manner as veneer is peeled from a log of wood. The resultant sheet appears to possess better hand and tear resistance than sheets formed by the other methods indicated above. While a variety of solventresistant foam materials may be used, the preferred material is polyurethane, either polyester or polyether type. Such foams are readily available commercially and have been found to be the best in the present application.

As indicated above, the flexible backing member may be any of the conventional, readily available flexible backings known to the coated abrasive art. While conventional abrasive cloth backings are preferred due to the ease with which they may be joined in the fabrication of belts, etc., it is possible to use many types of filamentary or fibrous materials such as papers, vulcanized fibers, films, foils, thin metal backings and the like as the end application use may dictate.

The resilient structure is bonded to the backing member in any suitable fashion. Obviously, the adhesive used must bond to both the resilient structure and to the backing used but this is a mere matter of skill in the art and presents no particular problem. However, the adhesive must be solvent-resistant in order to prevent delamination when the product is used in wet" grinding operations. Further, although it is possible to use the adhesive used to bind the reconstituted foam particles together (when the resilient structure is formed of such reconstituted foam) and to reactivate its adhesiveness by heat or solvent, it is preferred to utilize a separate laminating adhesive to insure firm anchorage. While any suitable adhesive including hot-melt, pressure or heat-activated types, etc., may be used, the preferred adhesives are rubber or neoprene based as illustrated in US. Pats. Nos. 2,6l0,9l and 2,918,442, and self cross-linking acrylics such as Rhoplex E-32 produced by Rohm and Haas Company. The laminating adhesive is preferably applied as a film on the backing and/or on one side of the resilient structure and the two components brought into intimate contact by passing them between rolls or the like. Adhesion of the foam to the backing must be sufficient to withstand the shock, shear stress and abrasion encountered during use and should generally be in excess of 4.0 pounds per inch as measured by ASTM (i964 D-1876, T-Peel Test, or at least in excess of the value at which the foam eohesively fails when the foam-to-baeking adhesion is measured by such tCSt.

Since the primary usage of this material is in a combined polishing and buffing-type operation, the abrasive grain is preferably on the fine side ranging from grit 220 down to grit 400 or finer. The type of abrasive grain does not appear critical and any of the abrasive materials such as silicon carbide,

aluminum oxide, garnet, flint, diamond, emery and the like or mixtures thereof conventionally used in the coated abrasive art may be used in the present product as desired.

The abrasion-resistant coating which is applied to the surfaces of the resilient structure must protect the surfaces of the resilient structure against cutting by the abrasive grain, must have sufficient tensile strength to impart improved cohesiveness to such structure and yet must not rigidify such structure to the point where the structure ceases to possess the resilience and compressibility necessary to its function as a yieldable support for the abrasive grain. Any of the various elastomeric film-forming materials known to the art may be used provided the above criteria are met. ln addition, other materials such as epoxy resins which form flexible, nonbrittle films may be used as desired. A preferred film former is of the so-called Byck" resin type which is formed of a blend of drying oil-modified phenolics which produce a soft flexible film.

The film former is applied to the surface of the resilient structure and then is forced into and through the pores of the structure by any of a number of methods known to the art, i.e., vacuum impregnation, air pressure or mechanical. Preferably the material is forced through the resilient structure by nip rolling. The degree of penetration is controlled by adjusting viscosity and by the pressure applied during coating. Penetration should be sufficient to substantially uniformly coat all exposed surfaces of the resilient structure including both the interior and exterior walls of the pores or interstices of such structure but care should be taken not to flood the structure to the extent that the pores or interstices are filled or clogged by the film-forming material. The film former may be applied prior to or after lamination of the resilient structure to the flexible baking member. The resultant product has the abrasion-resistant film extending in essentially continuous manner throughout and as a result is strengthened internally both against externally applies tearing forces and against tearing as a result of the sharp-edged abrasive grain which is subsequently applied on and in the surfaces of the structure.

The abrasion resistance of the resilient structure is measured by a crockmeter consisting of a weighted arm carrying at its tip a United States one penny coin. The weighted arm is reciprocated over a stroke of 4 /zinches at a rate of 1 10 strokes per minute in a direction parallel to the 8 inch length of a 2 inch X8 inch Xl/l6 inch test specimen of foam or other resilient material being tested. The plane of the coin is at right angles to the direction of movement of the arm and the rim of the coin is tangent to the surface of the test specimen. The downward force on the coin is one-half pound. The endpoint of each test is the number of strokes required to first remove discrete particles or crumbs of material from the test specimen. Comparison between the untreated foam and the identical material treated with the abrasion-resistant coating described above gives the following results:

The final component of the present material is the adhesive used to bind the abrasive grain to the resilient structure. In contrast to conventional coated abrasives where an extremely hard, rigid binder is desired, the grit binder for use on this polishing and buffing material must be at least semiflexible when cured and dried to its final stage. The adhesive should not be highly cohesive in the sense that it forms a film over the pores of the resilient structure. These pores must be left substantially open in the finished product. Whereas, the laminating adhesive must be solvent resistant, it is possible for some uses to utilize a nonwaterproof adhesive as the grit binder or maker coat. Sixty-two millipoise glue has been found to be satisfactory for such products. Generally, however, the grit binder is solvent resistant and the use of drying oil-modified phenolic or epoxy resins is preferred. The adhesive grit binder is not applied in a separate layer as with conventional coated abrasives but is used to form a slurry with the abrasive grain and the mixture of grain and adhesive is applied by nip-roll coating to the surface of the resilient structure. As the laminate passes through the nip rolls, an excess of the slurry is applied and the pressure is controlled so as to force the abrasive into the resilient structure only to the extent of less than 75 percent of the thickness of such structure. Preferably the penetration will lie between 10 percent and 50 percent of the distance between the surface of the resilient structure and the flexible backing resilient structure interface. Due to the controlled porosity and pore size, a filtering action takes place and the density of the abrasive varies from heavy at the exterior-progressively lighter to essentially none at said interface. Thi" gradation permits retention of the resilient nature of the structure and retains a yieldable support for the abrasive grain. Visually the surface of the resilient structure will appear completely covered. However, most of the pore openings remain and the finished coated structure retains at least 60 percent of its initial porosity. Porosity is determined by comparing the apparent volume of a specimen, i.e., its weight in air divided by its measured geometric volume, with its actual volume, i.e., that volume actually occupied by the solid parts of the structure. A porosity of 80 percent therefore means that 80 percent of the volume of the specimen is void and only percent is solid material.

The resiliency of the finished product is at least 8 percent and preferably 9 percent or more as measured by ASTM D-l564-R, Resilience (Ball Rebound) Test. The deposited EXAMPLE I A standard, waterproof coated abrasive backing material, 6 inches wide, was coated on the square side with a 0.0l7-inch thick wet coating of a neoprene base solvent cement (3M EC-l300 adhesive). A l/16-inch thick layer of reconstituted polyurethane particle foam, 6 inches wide having a density of l5lb./ft. a porosity of 80 percent, a percent compressiondeflection value of 14 p.s.i. and an average cell opening diameter of 0.008 inch, was brought into contact with the wet adhesive coating and the combination passed through a conventional textile hot-can line, with a minimum dwell time on the 200 F. heated cans of 2 /2 minutes.

The foam-to-backing laminate was then treated by niproll coating, using two 4-inch diameter, 60 durometer rubber rolls, spaced 4 inches on centers, a throughput speed of 14 f.p.m. and employing a 40 percent total solids saturating solution. This abrasion-resistant coating material was a mixture of a nonheat-reactive, oil-modified phenolic plasticizing resin, a 100 percent phenolic heat-reactive, oil-soluble resin and associated solvents, for example:

Bakelite Resin BKS-8997 (nonheatreactive phenolic) 350 g.

Bakelite Resin CKR-1634 (heat-reactive phenolic) 237 g. High Flash Naphtha 390 g. Cellosolve 12 g.

The saturated foam-to-backing laminate was then dried in an oven at 150 F. for 1 hour.

The treated foam-to-backing laminate was then nip-roll coated with an adhesive-abrasive grain slurry, using the same equipment and operating conditions described above. The slurry consisted of 3 parts by weight of abrasive grain and 2 parts by weight of a mixture of a nonheat-reactive, oilmodified phenolic plasticizing resin, a 100 percent phenolic heat-reactive oil-soluble resin and associated solvents as follows-3 parts by weight of silicon carbide 400-grit abrasive grain dispersed in 2 parts by weight of a mixture consisting of:

Bakelite Resin BKS-8997 350 g. Bakelite Resin CKR-l634 237 g. High Flash Naphtha 119 g. Cellosolve 12 g.

The slurry-coated laminate was cured in an oven at 220 F. for 2 hours after curing was found to have an abrasive grain content of about 7 pounds of grain per sandpaper ream.

The cured laminate was then cut to Zia-inch width and 60- The above results are illustrated graphically in FIG. 3 of the drawings.

EXAMPLE ll A standard, waterproof-coated abrasive backing material, 6 inches wide, was coated on the square side with a 0.030-inch thick wet coat of a selfcross-linking acrylic emulsion adhesive Rhoplex 5-32 (Rohm and Haas)l97.5 parts, 0.! percent Oxalic Acid, Aqu.5 parts and Methocel 65-HG-4000 8 percent Aqu.--52.5 parts. A l/l6-inch thick layer of reconstituted polyurethane particle foam,'6 inches wide having a density of l5lb./ft., a porosity of percent, a 25 percent compression-deflection value of 14 p.s.i. and an average cell opening diameter of 0.008 inch was laminated to the adhesivecoated backings dried at room temperature and then cured for 5 minutes at 280 F.

The foam-to-backing laminate was then treated by nip-roll coating, using two 4-inch diameter, 60 durometer rubber rolls, spaced 4 inches on centers, a throughput speed of 14 f.p.m. and employing a 40 percent total solids saturating solution. This abrasion-resistant coating material was a mixture of a nonheat-reactive, oil-modified phenolic plasticizing resin, a percent phenolic heat-reactive, oil-soluble resin and associated solvents, for example:

Bakelite Resin BKS-8997 (nonheat-reactive phenolic) 350 g. Bakelite Resin CKR-l634 (heat-reactive phenolic) 237 g. High Flash Naphtha 390 g. Cellosolve l2 g.

The saturated foam-to-backing laminate was then dried in an oven at F. for 1 hour.

The treated foam-to-backing laminate was then nip-roll coated with an adhesive-abrasive grain slurry, using the same equipment and operating conditions described above. The slurry consisted of 3 parts by weight of abrasive grain and 2 parts by weight of a mixture of a nonheat-reactive, oilmodified phenolic plasticizing resin, a 100 percent phenolic heat-reactive oil-soluble resin and associated solvents as follows-3 parts by weight of silicon carbide 400-grit abrasive grain dispersed in 2 parts by weight of a mixture consisting of:

Bakellte Resin BIG-8997 350 g.

Bakelite Resin CKR-loiid 237 g.

High Flash Naphtha H9 g.

Cellosolve t2 gv The slurrycoatedlatnlnate was cured in an oven at 220 F. for 2 hours and afierguring was found to'have an abrasive grain content of about 7 lbs. of grain per sandpaper ream.

The cured laminate was then cut to 2 it-inch width and 60- inch length and the ends adhesively joined to form an endless belt. The belt was evaluated on a flatinshing unit as to its ability to cut and polish aluminum and the results achieved are Table Cohtinued wbulated below; 160 min. ISO/inch width 170.0 8.0 200 min. l80/inch inch width 190.0 8.0 5 240 min. 2l0/inch width 191.5 8.0

32:2; EXAMPLE w Time Pressure (Grams) inches) A standard, waterproof-coated abrasive backing material, 6 inches wide, was coated on the square side with a 0.017 inch 40 min, 60mm, width 790 0.0 1 thick wet coating of a neoprene base solvent cement (3M so min. 90/inch width 92.5 8.3 EC-l 300adhesive). A onesixteenth inch thick layer of recon- :zg 32-; stituted polyurethane particle foam, 6 inches wide having a 200 [80inch MM 123:5 density of lb./ft.'-, a porosity of 80 percent, a 25 percent 240 min zlo i h width 103,0 compression-deflection value of 14 p.s.i. and an average cell 15 opening diameter of 0.008 inch, was brought into contact with the wet adhesive coating and the combination passed through EXAMPLE a conventional textile hot-can line, with a minimum dwell time on the 200 F. heated cans of2 /2 minutes.

A standard, waterproof-coated abrasive backing material, 6 The foam-tobacking laminate was tmatcd y P inches wide, was coated on the square side with a 0.017-inch coating, using two 40 inch diameter, 60 durometer rubber thick wet coating of a neoprene base solvent cement (3M r0115, Spaced 4 inches Centers 3 throughput speed of EC-l300 adhesive). A one-sixteenth inch thick layer of -P- and employing P total Solids saturating reconstituted polyurethane ti le f m, 6 i h id haytion. This abrasion-resistant coating material was a mixture of ing a density of 15 lb,/ft.'-*, a oro ity of 80 e t, a 25 a nonheat-reactive, oil-modified phenolic plasticizing resin, a cent compression-deflection val f 14 3. d an average 100 percent phenolic heat-reactive, oil-soluble resin and ascell opening diameter of 0.008 inch, was brought into contact Sociatcd Solvents, for example: with the wet adhesive coating and the combination passed through a conventional textile hot-can line, with a minimum Bflkclikc Resin 8145-8997 dwell time on the 200 F. heated cans of 2 is minutes. gi l fgff is 'iggj 350 The foam-to-backing laminate was then treated by nip-roll s ij 'z r i g g coating, using two 4-inch diameter, 60 durometer rubber rolls, High Flash Naphtha 390 g. spaced 4 inches on centers, a throughput speed of 14 f.p.m. ccllosolw 2 and employing a 40 percent total solids saturating solution, l The abrasion-resistant coating material consisted of a mixture The saturated foam'm'backmg laminate was dried of an epoxy resin-tall oil ester varnish, a manganese oven at 1500 for 1 hournaphthenate drier and mineral Spirits as s0]vcm The treated foam-to backmg laminate was then nip-roll coated with an adhesive-abrasive grain slurry, using the same or (1mm, Dummy) I50 pamby Wig, equipment and operating conditions described above. The Drier VD-l846 1.5 parts by weight 40 slurry consisted of 3 parts by weight of abrasive grain and 2 SOVBMO] 0s (Mobil) 39 p y weight parts by weight of a mixture of an epoxy resin-tall oil ester varnish, a manganese napthenate drier and associated sol- The saturated foam-to-backrng laminate was then dried for vbnt 3 parts by weight of silicon carbide abrasive grain, 400 onc'haif hour at 2000 grit, dispersed in 2 parts by weight of a mixture comprising The treated foamto-backrng lam nate was then nip-roll 150 parts by weight Epi Tex 101, 39 Pans by weight Sbvasol coated with an adhesive-abraslve gram slurry, using the same 05 and 15 parts by weight Drier The slurrycoatcd equipment and operating conditions described above. The laminawwas the cured i an Oven as f ll slurry consisted of 3 parts by weight of abrasive grain and 2 20 minutes at 130 parts by weight of a mixture of a nonheat-l'eactive, oil- 3 hours at 220 modified phenolic plasticizing resin, a 100 percent phenolic 30 minutes at 275 heat-reactive oil-soluble resin and associated solvents as fol- 30 minutes at 300 WW-3 Parts y might of Silicon Carbide 400gm abrasive and after curing was found to have an abrasive grain content grain dispersed in 2 parts by weight of a mixture consisting of: f about 7 pounds f grain per Sandpaper ream The cured laminate was then cut to 2% inches width and 60 f" Resin f- 350 sinch length and the ends adhesively joined to form an endless mg f g zg zz ifi' belt. The belt was evaluated on a flat-finishing unit as to its ccuosoivc 2 ability to cut and polish aluminum and the results achieved are tabulated below:

The slurry-coated laminate was cured in an oven at 220 F. for 2 hours and after curing was found to have an abrasive lmcml Finish grain content of about 7 lbs. of grain per sandpaper ream. Total Cut (Micro The cured laminate was then cut to 2 /z-inch width and 60- Time Pr r (Grams) inches) inch length and the ends adhesivcly joined to form an endless belt. The belt was evaluated on a flatfinishing unit as to its 40 min. 60/il'lCh wiitrh 116.5 9.0 ability to cut and polish aluminum and the results achieved are g? zg j 'ct r 13:2 tabulated below: 160ml": rso ihch width 197:0 as

200 min. lllO/inch width 203.5 i010 240 min. 2l0/inch width 1385 10.7

lntervul Finish '70 Total Cut (Micro EXAMPLE hm Pmsuw (Gums) inches) The following items were assembled in sandwich fashion in the order given: a standard waterproof coated abrasive :8 882:2: 2;; i313 backing material, 6 inches wide, square side up; a 6 inch wide 120 min. l20/inch width 149.5 8.5 strip of low-density polyethylene film, 6 mils thick; and a 6 inch wide, one-sixteenth irEh thick layer of reconstituted polyurethane particle foam, having a density of i lb./ft., a porosity of 80 percent, a 25 percent compression deflection value of i4 p.s.i. and an average cell opening diameter of 0.006 inch. This combination was passed at the rate of 5 feet per minute between two aluminum plates, heated to approximately 350 F. and separated by a three-sixteenth inch spacing and then immediately through a set of steel rolls, heated to approximately 360 F., with a gap setting of 35 mils and geared together so that they both turned at the same speed.

The foam-tobacking laminate was then treated by nip-roll coating, using two 4 inch diameter, 60 durometer rubber rolls, spaced 4 inches on centers, a throughput speed of 14 f.p.m. and employing a 40 percent total solids saturating solution. This abrasion-resistant coating material was a mixture of a nonheat-reactive, oil-modified phenolic plasticizing resin, a 100 percent phenolic heat-reactive, oil-soluble resin and associated solvents, for example:

Bakelike Resin BIG-8997 (nonheat-reactive phenolic) 350 g. Bakelike Resin CKRl634 (heat-reactive phenolic) 237 g. High Flash Naphtha 390 g. Cellosolve l2 g.

Bakelite Resin BKS-8997 350 g. Bakelite Resin CKR-l634 237 5. High Flash Naphthu H) g. Celloxolve 12 g.

The slurry-coated laminate was cured in an oven at 220 F. for 2 hours and after curing was found to having an abrasive grain content of about 7 pounds of grain per sandpaper ream.

The cured laminate was then cut to 2% inch width and 60 inch length and the ends adhesively joined to form an endless belt. The belt was evaluated on a flat-finishing unit as to its ability to cut and polish aluminum and the results achieved are tabulated below:

Interval Finish Total Cut (Micro Ti e Pre ees! lash s) 40 min. oil/inch width 53.0 8.5 80 min. 90/inch width 84.5 7.7

120 min. llinch width 98.5 7.5

I60 min. l50/inch width I090 7.5

200 min. l80linch width lll.0 8.8

240 min. 210/inch width 92.5 i3.3

280 min. 240/inch width 56.5 25.0

This method of lamination to form the backing structure to proved to be satisfactory. Cut and finish results obtained were comparable to those obtained with the other examples above.

EXAMPLE VI A standard, waterproof-coated abrasive backing material, 6 inches wide, was coated on the square side with a 0.017 inch thick wet coating of a neoprene base solvent cement (3M BIC-I300 adhesive). A one-sixteenth inch thick layer of reconstituted polyurethane p aFti cle foam, 6 inches wide having a density of i5 lb.,/ft., a porosity of percent, a 25 percent compression-deflection value of 14 psi. and an average cell opening diameter of 0.008 inch, was brought into contact with the wet adhesive coating and the combination passed through a conventional textile hot-can line, with a minimum dwell time on the 200 F. heated cans of2 k minutes.

. The foam-to-backing laminate was then treated by nip-roll coating, using two 3% diameter steel rolls, operating under constant pressure of approximately 50 pounds per inch width, a throughout speed of 4 f.p.m. and a saturant emulsion comprising a mixture of an epoxy resin, a polyamide and water- Epon Resin 828 g. Versamide 100 g. Water 300 g.

prepared as follows: mix upon Resin 828 and Versamide, then with rapid stirring, slowly add water until an emulsion is formed, The treated foam-to-backing laminate was then cured at 220 F. for 2 hours.

The treated foam-to-backing laminate was then nip-roll coated with an adhesive-abrasive grain slurry, using the same equipment and operating conditions described above. The slurry consisted of 3 parts by weight of abrasive grain and 2 parts by weight of a mixture of a nonheat-reactive, oilmodified phenolic plasticizing resin, a 100 percent phenolic heat-reactive oil-soluble resin and associated solvents as fol lows-3 parts by weight of silicon carbide 400 grit abrasive grain dispersed in 2 parts by weight of a mixture consisting of:

Bakelite Resin BKS-8997 350 g. Bakelite Resin CKR-l634 237 g. High Flash Naphtha l 19 g. Cellosolve 12 g.

The slurry-coated laminate was cured in an oven at 220 F. for 2 hours and after curing was found to having an abrasive grain content of about 7 pounds of grain per sandpaper ream.

The cured laminate was then cut to 2Vzinch width and 60 inch length and the ends adhesively joined to form an endless belt. The belt was evaluated on a flat-finishing unit as to its ability to cut and polish aluminum and the results achieved are tabulated below:

A standard, waterproof-coated abrasive backing material, six inches wide, was coated on the square side with a 0.0l7 inch thick wet coating of a neoprene base solvent cement (3M EC-1300 adhesive). A one-sixteenth inch thick layer of reconstituted polyurethane particle foam, 6 inches wide having a density of 15 lb.,/ft.'-, a porosity of 80 percent, a 25 percent compression-deflection value of 14 psi. and an average cell opening diameter of 0.008 inch, was brought into contact with the wet adhesive coating and the combination passed through a conventional textile hot-can line, with a minimum dwell time on the 200 F. heated cans of 2% minutes.

The foam-to-backing laminate was then treated by roll coating, employing as the abrasion-resistant coating a l0 percent total solids, poly'vinylidene chloride emulsion, (DARAN 210 emulsion, reduced in total solids to 10 percent by the addition of water). A dry weight addition to the foam-to-backing laminate of about 6 pounds per sandpaper ream of polyvinylidene chloride solids after curing the saturated laminate at 220 F. for 2 hours resulted.

The treated foam-to-backing laminate was then nip-roll coated with an adhesive-abrasive grain slurry, using the same equipment and operating conditions described above. The slurry consisted of 3 parts by weight of abrasive grain and 2 parts by weight of a mixture of a nonheat-reactive, oilmodified phenolic plasticizing resin, a l percent phenolic heat-reactive oil-soluble resin and associated solvents as follows3 parts by weight of silicon carbide 400 grit abrasive grain dispersed in 2 parts by weight of a mixture consisting of:

Bakelite Resin BKS8997 350 g. Bakelite Resin CKR-l634 237 g. High Flash Naphtha l I) g. Cellosolve 12 g.

Interval Finish Total Cut (Micro Time Pressure (Grams) inchcs) 40 min. 60/inch width 42.5 ll

80 min. JO/inch width 51.5 l5

I20 min. l20/inch width 63.0 9

l60 min. l50/inch width 80.0 7 200 min. 180/inch width l5.() 9 240 min. 2l0/inch width 80.0 7

The produce of example I was tested in belt form against a conventional cork belt-coated abrasive product of the same grit size made in accordance with U.S. Pat. No. 2,542,058 (heretofore generally recognized as the best commercially available abrasive polishing material). The belts were run on a coated abrasive belt flat-polishing machine (using a 20 durometer contact wheel and set for 2 inch X 60 inch belts) under identical conditions and on identical workpieces. The workpieces in each instance were 2 inch X 8 inches plates of one-sixteenth inch thick 02024 aluminum. Belt speed was 4,000 surface feet per minute. Substantially better finish, i.e., 8 to l2 micro inches, vs. l7-40 micro inches for the cork belt was obtained as well as greatly increased cut (556.7 grams vs. 124 grams).

A grit binder (in the normal sense of an adhesive) is not required where the primary use of the material is buffing, In such instances, using the same slurry type application as for the grain adhesive, a mixture of an oil, oil-in-water or grease lubricating aid and extremely fine abrasive such as the commercially available spray-type buffing compounds is applied on and in the resilient structure. A preferred type of this material is the TPl79 or TP69 compound referred to as Liquid Tripoli" and produced by Formax Manufacturing Company of Detroit, Mich. Quantitative data on strictly buffing results cannot be obtained exactly since the evaluation of a buff finish is largely aesthetic, However, results of this product used solely for buffing having been evaluated by skilled operators and the results have been considered outstanding.

The theory of cushioning the abrasive grain to give a better finish is, of course, not new. The reason why the material of the present invention works so much better than previously available material is not thoroughly understood. At this time it is theorized that the densit porosity range specified in comblnatlon with the compressl 1 lty ma es the most difference in result. It is essential that a composite be used in order to achieve the desired result. The incorporation of the abrasionresistant coating has been found to produce in the neighborhood of 27 percent more stock removal in the same period of time while giving up to 36% better surface finish than the same resilient laminate structure without the abrasion-resistant coat. These products will conform much more readily to surface irregularities than will presently available products and, of course, produce the better finish and improved cut shown by the tables above. The product does not streak the workpiece and has a useful life far in excess of conventional materials. Life of the abrasion-resistant treated material is several times that of the untreated material.

While the abrasive is preferably distributed through the porous structure as described above in connection with the preferred embodiment, it is within the scope of the present invention to coat the abrasive separately from the adhesive, as by dropping it in a gravity coating technique, whereby the abrasive grain is concentrated substantially entirely upon the exterior surface of the porous structure. In such instance the abrasive density is clearly at a maximum at the surface of the porous structure and such construction is contemplated by the terminology ranging from a minimum...to a maximum..." in the appended claims.

Obviously, many variations and alterations may be made, as indicated, without departing from the spirit and scope of the invention disclosed herein so that only such limitations should be imposed as are presented in the following claims.

lclaim:

1. An abrasive product comprising:

a. a flexible backing;

b. a resilient, controlled density, porous structure adhered to and superposed on said backing, said structure sharing an interface with one surface of said backing and having a plurality of internal and external surfaces, said structures having a resiliency identified as a 25 percent compression deflection value in the 10 to 50 pounds per square inch range, a density of from 10 to 30 pounds per cubic foot, and a porosity of from 55 percent to percent;

c. an abrasionresistant, elastomeric, film forming, resin coating substantially completely covering said internal and external surfaces; and

d. abrasive grain distributed on said porous structure over said abrasion-resistant coating, with the abrasive density ranging from minimum at said interface to maximum at the opposite face of said porous structure.

2. An abrasive product as in claim 1 wherein the abrasive grain is adhesively secured to the surfaces of said porous structure.

3. An abrasive product as in claim 1 wherein the porous structure is formed of a foamed material.

4. An abrasive product as in claim 1 wherein the porous structure is formed of reconstituted, particulate form.

5. An abrasive product as in claim 1 wherein the adhesion of the porous structure to the flexible backing is higher than the value at which the porous structure cohesively fails.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2780533 *Mar 7, 1950Feb 5, 1957Rexall Drug CompanyAbrasive article and method of making
US2958593 *Jan 11, 1960Nov 1, 1960Minnesota Mining & MfgLow density open non-woven fibrous abrasive article
US3020139 *Apr 18, 1960Feb 6, 1962Norton CoAbrasive product
US3252775 *Apr 10, 1962May 24, 1966Tocci-Guilbert BerneFoamed polyurethane abrasive wheels
US3256075 *Oct 20, 1961Jun 14, 1966Minnesota Mining & MfgAbrasive sponge
US3377411 *Mar 2, 1964Apr 9, 1968Osborn Mfg CoMethod of manufacturing grinding wheels and the like
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3906684 *May 20, 1971Sep 23, 1975Norton CoAbrasive articles and their method of manufacture
US3918220 *Feb 28, 1974Nov 11, 1975Ryton Mach Tools Coventry LtdMethod of grinding a surface of a workpiece and a tool for carrying out the method
US4138228 *Feb 2, 1977Feb 6, 1979Ralf HoehnAbrasive of a microporous polymer matrix with inorganic particles thereon
US4263755 *Oct 12, 1979Apr 28, 1981Jack GlobusAbrasive product
US4629473 *Jun 26, 1985Dec 16, 1986Norton CompanyResilient abrasive polishing product
US4865668 *May 16, 1985Sep 12, 1989Corning IncorporatedLaminated transparent polarizing glasses and method of making
US4949511 *Apr 3, 1989Aug 21, 1990Toshiba Tungaloy Co., Ltd.Super abrasive grinding tool element and grinding tool
US5109638 *Mar 13, 1989May 5, 1992Microsurface Finishing Products, Inc.Abrasive sheet material with non-slip backing
US5370718 *Apr 14, 1993Dec 6, 1994Hitachi Maxell, Ltd.Abrasive tape
US5389119 *Sep 15, 1993Feb 14, 1995Kgs Diamind Holding B.V.Abrasive member comprising a nonwoven fabric and a method for making same
US6007590 *May 3, 1996Dec 28, 19993M Innovative Properties CompanyMethod of making a foraminous abrasive article
US6349443Aug 9, 2000Feb 26, 2002Playtex Products, Inc.Bottle/nipple cleaning device
US6613113Dec 28, 2001Sep 2, 20033M Innovative Properties CompanyAbrasive product and method of making the same
US6641627May 22, 2001Nov 4, 20033M Innovative Properties CompanyAbrasive articles
US6645263May 22, 2001Nov 11, 20033M Innovative Properties CompanyCellular abrasive article
US6656018 *Apr 10, 2000Dec 2, 2003Freudenberg Nonwovens Limited PartnershipPolishing pads useful in chemical mechanical polishing of substrates in the presence of a slurry containing abrasive particles
US6864631Oct 15, 2002Mar 8, 2005Imaging Systems TechnologyGas discharge display device
US6890244 *Sep 18, 2003May 10, 2005Freudenberg Nonwovens Limited PartnershipPolishing pads useful in chemical mechanical polishing of substrates in the presence of a slurry containing abrasive particles
US7311591Jul 23, 2003Dec 25, 20073M Innovative Properties CompanyAbrasive materials
US7357704Jun 15, 2006Apr 15, 2008Innopad, Inc.Polishing pad
US7534163Feb 28, 2008May 19, 2009Innopad, Inc.Polishing pad
US20040072507 *Sep 18, 2003Apr 15, 2004Freudenberg Nonwovens Limited PartnershipPolishing pads useful in chemical mechanical polishing of substrates in the presence of a slurry containing abrasive particles
EP0706859A1Sep 29, 1995Apr 17, 1996Minnesota Mining And Manufacturing CompanyAbrasive materials
WO2002094507A1 *Mar 6, 2002Nov 28, 20023M Innovative Properties CoCellular abrasive article
Classifications
U.S. Classification51/295, 51/297, 51/298, 51/296, 51/299
International ClassificationB24D3/32, C08J5/14, B24D11/00
Cooperative ClassificationB24D3/32
European ClassificationB24D3/32