Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3607160 A
Publication typeGrant
Publication dateSep 21, 1971
Filing dateOct 2, 1968
Priority dateOct 2, 1968
Publication numberUS 3607160 A, US 3607160A, US-A-3607160, US3607160 A, US3607160A
InventorsMakino Katsuo, Sawato Iwao
Original AssigneeXerox Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ligroin containing pumicing composition
US 3607160 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent inventors Katsuo Makino;

Iwao Sawato, both of Kanagawa-ken, Japan App]. No. 788,974 Filed Oct. 2, 1968 Division of Ser. No. 540,177, Apr. 5, 1966, Patent No.

3,488,896 Patented Sept. 21, 1971 Assignee Xerox Corporation ,k htstm r LIGROIN CONTAINING PUMICING COMPOSITION 1 Claim, No Drawings US. Cl. 51/304, 51/306, 51/309 [50] Field of Search [56] References Cited UNITED STATES PATENTS 1,855,195 4/1932 McClaughry 51/304 2,262,728 11/1941 Swain et al.... 51/298 2,708,157 5/1955 Houser 51/304 2,768,886 10/1956 Twombly... 51/304 2,780,041 2/1957 Larsen 51/306 2,893,857 7/1959 Rinker et a1. 51/298 Primary Examiner-Donald .1. Arnold Attorneys-Frank A. Steinhilper, Stanley Z. Cole and Ronald Zibelli ABSTRACT: A pumicing composition consisting essentially of cerium oxide and zinc stearate particles dispersed in ligroin, a fourth fraction petroleum distillation product.

LIGROIN CONTAINING PUMICING COMPOSITION This application is a division of application, Ser. No. 540,177 filed Apr. 5, 1966, now U.S. Pat. No. 3,488,896, issued Jan. 13, 1970.

This invention relates to a pumicing composition for glass, m il, plastic, semiconductor and insulator surfaces. More particularly, the invention relates to a composition to be used in the pumicing and cleaning of the surface of a body whose surface electrical conductivity must be maintained as low as possible because of the use to which the surface will be applied. In particular, the compositions herein disclosed have operability in the pumicing and cleaning of the surface of a re peatedly used xerographic photosensitive member.

In general, when the surface of a glass, metal, plastic semiconductor or insulator member is contaminated with moisture oil, grease, various gasses, etc., there will occur a modification of the chemical and/or physical properties of such surfaces, generally resulting in a deterioration of the electrical optical, and mechanical properties thereof. It is highly desirable to have a pumicing and cleaning composition which can adequately remove such contaminants thereby substantially restoring the deteriorated surface to its initial physical properties. Though the following description will disclose the application of such a pumicing and cleaning composition to a xerographic photosensitive member, it should be understood that this is merely an exemplary surface and that the composition herein disclosed is equally applicable to the restoration of the physical properties of the various surfaces hereinabove mentioned.

In the art of xerography, as is well known, an electrostatic latent image is produced on the surface of a photoconductive insulating material. This frequently is accomplished by first producing on the photoconductive insulating surface a substantially uniform electrostatic charge, for example by exposure to a corona discharge device, and then exposing to a light image. Upon such exposure, the uniform electrostatic charge is dissipated in the areas which are subjected to this exposure leaving a latent electrostatic image in the areas which have not been so exposed. Visible images are then produced on the photoconductive insulating member surface by the electrostatic attraction of finely divided developer particles to the charge (i.e., nonexposed) areas. When the photoconductive insulating material is to be reused, the developer particle images are transferred to a suitable substrate, for example, a sheet of paper, and then the photoconductive insulating material surface is cleaned to prepare it for the next copying process. Various kinds of photoconductive insulating members have been disclosed, including vitreous selenium, and zinc oxide powder dispersed in a binder material. The former is reused by transferring the finely divided developer powder image to another substrate, while the latter is not reused as the developer particle images are fixed directly on the photoconductive insulating layer. The cleaning composition herein disclosed is suitable for cleaning the surface of a reusable photoconductive insulating material, as represented by the vitreous selenium layer.

For simplicity, the xerographic-recording element comprising the substrate coated with the photoconductive insulating layer will be called the xerographic photosensitive member. Additionally, the cleaning and pumicing composition will be called the pumicing" composition and the cleaning and pumicing of the surface of the xerographic photosensitive member will be called pumicing. It should be noted that a xerographic photosensitive layer employing vitreous selenium as the photoconductive insulating material is considered representative of reusable xerographic photosensitive members and that the pumicing material herein disclosed can be applied equally well to other reusable xerographic photosensitive members.

When a reusable xerographic photosensitive member is repeatedly used, cleaning of the finely divided developer particles (i.e., the electrically charged thermoplastic resin powder) from the surface of the member is generally not complete, so that after an extensive period of use, a thin resinous film forms on the photoconductive insulating surface. This gives rise to surface contamination by itself and along with other substances so as to reduce the desirable physical characteristics of the photosensitive member. In the case of a selenium photosensitive member which employs vitreous selenium in the supercooled state, even a small amount of hydroscopic material sticking to the photosensitive surface will accelerate the crystallization of the selenium with the resultant deterioration of the physical properties. Deterioration is also promoted by the surface being contacted with acid or alkali fumes. it has also been found that the corona discharge which is used to provide the initial electric charge on the surface of the photosensitive member accelerates the crystallization of the selenium surface as does continuous exposure to light. Further use of a contaminated xerographic photosensitive member prevents the production of good quality copies.

Almost all of the deteriorations which produce degeneration of the copy image quality occur at the top surface of the photosensitive member. Therefore, the deteriorated photosensitive member can be restored to its initial physical properties, which are capable of producing good quality copy images, by pumicing the deteriorated layer on the top surface of the photosensitive member so that the contaminating material is effectively removed from the photosensitive member. This may take the form of removing deposits which have built up on the photoconductive insulating surface and/or removing the contaminated portion of the surface layer itself.

Accordingly, it is an object of this invention to provide a pumicing material which is capable of substantially renewing the deteriorated surface of a treated member.

It is an object of this invention to provide a pumicing material which is capable of substantially restoring the initial physical properties of a reusable xerographic photosensitive member.

An additional object of this invention is to provide an improved pumicing material which can be used for removing surface contamination from a photosensitive member thereby substantially restoring the member's initial physical properties.

A further object is to provide a pumicing material suitable for finishing the deteriorated surface of the sensitive member to a mirrorlike finish.

A further object is to provide an improved pumicing material which will not chemically deteriorate the photosensitive member during and after pumicing.

Further objects will become apparent to those skilled in the art as the disclosure is more fully made.

The above and further objects may be accomplished in accordance with the present invention by pumicing the contaminated surface with a composition comprising abrading powder particles and solid lubricant particles dispersed in volatile liquid medium. Suitable abradants include alrundum; silicon carbide and fused alumina, such as the material commercially available under the trademark carborundum from .The Carborundum Co. of Niagara Falls, New York; garnet;

corundum; emery; iron oxide; chrome oxide; lime; alumina powder; silica; calcium carbonate; diatomaceous earths, such as the product available under the trademark Celite from Johns-Manville Co. of New York; and cerium oxide powder. For purposes of this invention, it is preferred that the abradant have a particle size less than about 1.5 microns and that the particles are as uniformly spherical as possible. Such a preferred abradant gives good results in that it pumices the deteriorated surface to a mirrorlike finish. However, since the abrading power of an abradant having a particle size less than 1.5 microns is less than that of a larger size abradant, the abrading power can be increased by dispersing the powder in a volatile, chemically stable liquid.

The liquid dispersion medium should be sufiiciently volatile so as not to leave a residue on the cleaned surface. Additionally, the liquid should be chemically stable so that it will not decompose during extended periods of storage. It is also desirable that the liquid be chemically inactive in that it should not react with the adjuvants added thereto nor with the surface to be treated. To insure the proper restoration of the electrical surface insulating properties of the treated member, the electrical resistivity of the liquid should be greater than ohms-cm. Suitable liquids include ligroin, isopropyl alcohol, trichloroethylene, solvent naphtha, etc., and other organic solvents which are immiscible or substantially immiscible with water.

Further, it has been found that the addition of a solid lubricant to the pumicing composition will also increase the power of the compositions to produce a mirrorlike finish in the pumicing process. lit is preferable to use a solid lubricant which is insoluble in the volatile liquid dispersion medium. Examples of such solid lubricants include metal stearates, such as zinc stearate; graphite, talcum, etc.

When a surface of a xerographic photosensitive member is to be pumiced, it is desirable that the pumicing composition have the following properties or produce the following results: 1) During and after pumicing no deleterious chemical reaction between the components of the pumicing material and the photosensitive member should occur; 2) no residue or stain should be left on the pumiced surface or, if a thin film is formed on the pumiced surface, it should be stable and chemically inactive to the photosensitive member and should have properties similar to the underlying photoconductive material; 3) the pumiced surface should have a mirrorlike finish; and 4) the electrical conductivity of the pumiced photosensitive surface should be maintained at approximately the same order of magnitude as that of the insulator. The pumicing composition heretofore disclosed has been developed to bring about these desirable results in an uncomplicated manner.

With specific reference to a xerographic photosensitive member comprising an insulating photoconductive layer of vitreous selenium, it is preferred to use an abradant having high pumicing ability because of the extreme hardness of the photoconductive material. The abradants heretofore mentioned have been used satisfactorily for pumicing a photoconductive layer to a mirrorlike finish.

While the abrading power of the pumicing material which contains the abrading powder particles dispersed in a liquid is satisfactory, a suitable mirrorlike surface finish will not be obtained if the abrading power of the pumicing material remains constant throughout the pumicing process. Therefore, the abrading power of the composition should be gradually reduced as the pumicing method is carried out. It has been found that dry pumicing more easily produces a mirrorlike finish than wet pumicing (i.e., where the abradant particles are dispersed in a liquid medium), but by employing a volatile liquid as the dispersion medium, which serves to change the pumicing process from a wet treatment to a dry treatment as the liquid volatilizes, the advantages of both the dry and wet treatment are combined into a single process and the most satisfactory results are obtained.

The following examples are given to enable those skilled in the art to more clearly understand and practice the invention. They should not be considered as a limitation upon the scope of the invention, but merely as being illustrative thereof.

EXAMPLES The degree and manner of surface finishing a vitreous selenium photosensitive layer polished with various kinds of pumicing materials is set forth below. All of the following examples are conducted in accordance with this procedure. The only differences in the various examples are the nature of the pumicing composition and the composition of the photoconductive surface to which the pumicing composition is applied.

The abradant particles are dispersed in ligroin as the volatile liquid. As substantiated in Hackhs Chemical Dictionary, ligroin is the fourth fraction petroleum distillation product. Absorbent cotton impregnated with the noted composition is moved to and fro in contact with the selenium photosensitive layer under a constant pressure and at a constant speed for a predetermined period of time. Particle size and shape of the abradant material is observed with an electron microscope. The luster of the finished surface is measured with a Model GM-3 gloss meter manufactured by Murakami Shikisai Gijutsu Kenkyu-jo.

The following examples illustrate the efficacy of a solid lubricant in combination with the abradant particles dispersed in the volatile liquid. 8.75 grams zinc stearate and the noted amount of cerium oxide particles are dispersed in 29 grams of ligroin. The gloss of the fresh selenium surface is once again, 86.7 percent and the gloss of the deteriorated selenium surface is 25 percent. The pumicing and the gloss-measuring are conducted in the same manner as given in Example I.

TABLE 11 Gloss of the Cerium oxide polished surface Example 11 5 grams 68% 12 15 79 13 25 78 14 35 75 15 72 The proportions of the solid lubricant particles, abradant particles and the volatile organic solvent set forth in Table ll may be calculated, the resulting proportions being as follows: The cerium oxide particles range from approximately 12 to about 55 percent parts by weight, the zinc stearate particles range from approximately 20 to about 10 percent parts by weight and ligroin ranges from approximately 68 to 35 percent parts by weight, respectively.

In a xerographic photosensitive member, deterioration of the photoconductive layer reduces the electrostatic charge bearing ability of that layer and makes it impossible to produce good quality copy images. This is thought to be caused by the apparent reduction of the electrical insulating properties in and around the deteriorated portion thereby resulting in a decrease in the lateral electrical resistivity. In such a condition, it is believed that charge carriers can be easily injected into the internal layer of the deteriorated area resulting in a decrease of the ability of the surface to retain an electrostatic charge. A pumicing material should be capable of removing this deficiency thereby substantially restoring the charge bearing ability of the photoconductive layer. One of the values indicating the charge-bearing ability is the surface potential of the photosensitive member after a certain period of time has elapsed after the photosensitive member was charged by a corona discharge device. The improvement of this xerographic characteristic of a selenium photosensitive layer when the deteriorated surface is pumiced with the composition of Example 13 is given below in Example 16. Exampic 16 shows the results of measuring the surface potential of the photosensitive member before and after polishing.

414 volts While the invention has been described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the true scope and spirit of the invention.

It should be understood that the present invention is not dependent upon the exact nature of the xerographic photosensitive member employed. As previously noted, the selenium xerographic photosensitive member is considered to be exemplary of the surfaces which can be pumiced by the composition heretofore set forth. The composition of this invention may be used for other reusable xerographic photosensitive members and for other bodies whose surface may be polished to a mirrorlike finish and/or whose electrical surface resistivity is maintained at a high insulating level.

Further, as will be apparent to those skilled in the art, additional operations may be performed to achieve the herein disclosed results. Or, in certain circumstances, certain operations may be deleted. The compositions herein disclosed may be modified in numerous ways to, once again, achieve the effective pumicing of the treated surface. All such additions, deletions, modifications, etc., are considered to be within the scope of the present invention.

What is claimed is:

1. A pumicing composition consisting essentially of cerium oxide particles and zinc stearate particles dispersed in ligroin, the cerium oxide particles ranging from approximately 12 to about 55 percent parts by weight, the zinc stearate particles ranging from approximately 20 to about 10 percent parts by weight and ligroin ranging from approximately 68 to 35 percent parts by weight, respectively, the cerium oxide particles having a particle size less than about 1.5 microns.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1855195 *Jan 12, 1928Apr 26, 1932Standard Oil CoGrinding compound
US2262728 *Sep 14, 1940Nov 11, 1941American Cyanamid CoBonded abrasive
US2708157 *Mar 16, 1953May 10, 1955Houser Alfred CAbrasive cleanser and method of scouring surfaces
US2768886 *Jun 29, 1954Oct 30, 1956Norton CoSandpaper
US2780041 *Dec 3, 1952Feb 5, 1957Steger Products Mfg CorpBuffing process
US2893857 *May 29, 1953Jul 7, 1959Ethyl CorpAminolead compound and herbicidal composition containing same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4062658 *Sep 3, 1975Dec 13, 1977Xerox CorporationComposition and method for repairing selenium photoreceptors
US6641632 *Nov 18, 2002Nov 4, 2003International Business Machines CorporationPolishing compositions and use thereof
US20040097172 *Jul 15, 2003May 20, 2004International Business Machines CorporationPolishing compositions and use thereof
Classifications
U.S. Classification51/304, 51/306, 51/309
International ClassificationG03G21/00, C09K3/14
Cooperative ClassificationG03G21/00, C09K3/1472
European ClassificationC09K3/14D4, G03G21/00