Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3608083 A
Publication typeGrant
Publication dateSep 21, 1971
Filing dateJun 5, 1968
Priority dateJun 5, 1968
Publication numberUS 3608083 A, US 3608083A, US-A-3608083, US3608083 A, US3608083A
InventorsBunnell Raymond Howard, Cannalonga Marco Alfred
Original AssigneeHoffmann La Roche
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vitamin e powder
US 3608083 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Raymond Howard Bunnell Branchville;

Marco Alfred Cannalonga, Fort Lee, both of NJ.

June 5, 1968 Sept. 21, 197 l Hoffmann La Roche Inc.

Nutley, NJ.

Inventors Appl. No. Filed Patented Assignee VITAMIN E POWDER 4 Claims, No Drawings [56] References Cited UNITED STATES PATENTS 3,024,167 3/1962 Damaskus 260/1 17 3,028,308 4/1962 Zambito et al.. 260/1 17 3,124,510 3/1964 Rosenberg 424/360 3,137,630 6/1964 Hecker et a1. 260/117 3,138,532 6/1964 Aiello et a1. 424/284 3,291,611 12/1966 Krajewski 260/1 17 Primary ExaminerStanley J. Friedman Assistant Examiner-Norman A. Drezin Anurrieys-Samuel L. Welt, Jon S. Saxe. Bernard S. Leon and Gerald S. Rosen ABSTRACT: High potency vitamin E powders, suitable for use in tablets and capsules are produced by spray drying an emulsion of a vitamin E active compound and a gelatin hydrolysate having very low Bloom.

VITAMIN E POWDER SUMMARY OF THE INVENTION This invention relates to vitamin E powders with good tabletting characteristics suitable for incorporation into multivitamin tablets and capsules and high potency vitamin E tablets. The powders are composed of a vitamin E active compound, preferably dl-a-tocopheryl acetate, and a gelatin hydrolysate having a molecular weight of from about 9,000 to about 1 l,000 and a Bloom.

BACKGROUND OF THE INVENTION Vitamin E comprises a group of natural substances known as tocopherols. They are fat-soluble, closely related chemical compounds found in vegetable oils such as wheat germ oil, rice oil, soybean oil and the like. a-Tocopherol has the greatest biological activity while its isomers, beta, gamma, delta, epsilon, zeta and eta tocopherols have vitamin B activity to a lesser extent. The tocopherols and their esters such as tocopheryl acetate, tocopheryl palmitate, tocopheryl succinate and the like are normally water-insoluble and oily, waxy or low melting, which properties make them unsuitable for certain pharmaceutical applications, particularly, those in which a powder is required, e.g., vitamin tablets and capsules.

DETAILED DESCRIPTION OF THE INVENTION According to this invention, a powder containing from about 40 percent to about 60 percent by weight of vitamin E is provided. This powder contains besides the vitamin E component, a gelatin hydrolysate of very low Bloom. The amount of hydrolyzed gelatin in the powder generally varies from about 60 percent to about 40 percent by weight. The gelatin hydrolysate suitable for use in this invention has no Bloom or jelly strength, since it does not gel under the conditions of the conventional gelatin test. It also has a molecular weight of from about 9,000 to about 1 1,000. The jelly strength of gelatin or gelatin hydrolysate is determined with a 6% percent solution. The solution is cooled down until gelation occurs and then the strength of the gel is measured in grams. This strength is called the Bloom or jelly strength. Thus, the hydrolyzed gelatins useful in this invention have 0 Bloom since no gelation occurs. When the concentration of the test solution is doubled to about 12% percent then gelation takes place forming a gel with a jelly strength of about 20 to 30 grams. A gelatin hydrolysate which is representative of those suitable for use in this invention is marketed under the name Byco soluble protein Type E by D. Young and Company of America Ltd., New York, N.Y. While this Byco soluble protein Type E is representative of the hydrolyzed gelatins useful in this invention, the invention is not limited to this particular gelatin hydrolysate since other hydrolyzed gelatins with a very low Bloom and a molecular weight of about 9,000 to about 1 1,000 are also suitable. The very low Bloom hydrolyzed gelatins are suitable for use in this invention since they are relatively stable to heat and can be kept warm for as long as 8 hours without any off-odor developing. This relative heat stability is important since it permits the use of this material in granulation and tabletting procedures without odor problems. This is in contrast to other hydrolyzed gelatins which develop unpleasant off-odors when used in granulation and tabletting operations. Furthermore, the low Bloom hydrolyzed gelatins have good tabletting characteristics and compositions containing these gelatins are readily granulated and/or compressed.

The hydrolyzed gelatins are made by a controlled hydrolysis of edible gelatin which results in materials with the required Bloom and molecular weight.

The vitamin E active compounds suitable for use in this invention are any of the tocopherols, however, in order to insure the desired amount of vitamin E activity in the powder on a weight basis, it is preferred to use tocopheryl esters. Suitable esters are the acetate, palmitate, succinate and the like. The preferred ester used according to this invention is dl-atocopheryl acetate. Sufficient tocopheryl acetate is utilized to insure that the spray-dried powder contains from about 40 percent to about 60 percent by weight of vitamin E, i.e., the amount of vitamin B activity present in the powder is that which would be present if the vitamin E activity is present as pure vitamin E.

The vitamin-E-containing powders of this invention can contain a fiow agent to improve flow, increase bulk density and remove electrostatic charges. The amount of flow agent present is generally from about 1 percent to about Bpercent by weight. The flow agent is added to the powders prior to their use in tabletting and encapsulating procedures. Suitable flow agents are, for example, bulky silicic acid products such as Syloid 65, silicic acid-Mallinckrodt Special Bulky, Santocel FRC, XP-50 (Huber), Zeothix 90, and Cabosil M7.

The vitamin E powders of this invention are formed by emulsifying the vitamin E compound and the gelatin hydrolysate and then spray drying the emulsion. The conditions of the spray drying are not critical just so long as the temperatures utilized are not so hot that the vitamin E or gelatin hydrolysate is decomposed. Thus, inlet temperatures of about 350 F. to about 400 F. and outlet temperatures of about 190 F. to about 220 F. are suitable.

Since gelatin hydrolysate solutions readily support microbiological growth, it is preferred to add preservatives to protect the emulsion during preparation and holding prior to spray drying. The preservatives are added to the water used to prepare the gelatin solution so that a level of about 0.4 percent to about 0.6 percent, preferably about 0.5 percent, of, for example, sodium benzoate and about 0. 15 percent to about 0.25 percent, preferably about 0.2 percent, of, for example, sorbic acid, result in a final 45 percent by weight hydrolyzed gelatin solution. This provides a level of about 0.20 percent0.24 percent, preferably about 0.22 percent, of, for example, sodium benzoate and about 0.08 percent to about 0.10 percent, preferably about 0.09percent, of, for example, sorbic acid in the final emulsion and about 0.4 percent to about 0.6 percent, preferably about 0.5 percent, of, for example, sodium benzoate and about 0.15 percent to about 0.25 percent, preferably about 0.2 percent, of, for example, sorbic acid in the spray-dried powder.

The moisture content of the spray-dried material is about 1 percent to about 6 percent, usually about 3 percent. The powders produced according to this invention are cold water soluble materials and pick up some atmospheric moisture, however, they have very little tendency to cake, for example, the product does not cake until stored at 79 percent humidity for from 9 to 16 days, and the cake thus formed is easily broken.

The powders accordingto this invention are white, have a particle size range of from about 20 to 40 microns, of which at least about percent pass through a 20-mesh screen. The bulk density of the powders is from about 15 to about 22 lb./cu. ft. As used herein, ZO-mesh refers to a screen with 20 meshes per linear inch.

The following examples illustrate the preparation of the powders of this invention.

Example 1 5 grams of sodium benzoate and 2 grams of sorbic acid are dissolved in 550 grams of distilled water and heated to 60-70 C. 450 grams of gelatin hydrolysate (Byco soluble protein Type E) are added and dissolved with constant agitation. 550 grams dl,a-tocopheryl acetate are emulsified in the hydrolyzed gelatin solution with a Homo-rod Mixer. The emulsion is diluted with water, about 650 grams, to about 45 percent solids to give a proper spray viscosity. The material is spray dried in a laboratory model Bowen Spray Dryer using a rotating disc at an inlet temperature of about 375 F. and an outlet temperature of about 210 F. The resulting white powder is then blended with a flow agent, e.g., Cabosil M7 (finely divided silica). The product, prior to the addition of the flow agent, contains 50 percent by weight of vitamin E, 3 percent water, 0.5 percent sodium benzoate and 0.2 sorbic acid with the remainder being hydrolyzed gelatin.

Example 2 A ZOO-gallon jacketed Pfaudler kettle is charged with 50 gallons of distilled water, 1.75 kg. of sodium benzoate and 0.70 kg. of sorbic acid hand heated to 65to 70 C. 153 kg. of gelatin hydrolysate (Byco soluble protein Type E) are slowly added with constant agitation. 30 kg. of warm (35-40 C.) dl-a-tocopheryl acetate are slowly added to 50 kg. of the hydrolyzed gelatin solution at 5060 C. and with stirring, using a Homo-rod Mixer, until the emulsification is complete. Sufficient distilled water is then added to provide a proper spraying viscosity, e.g., about 45 percent solids.

The emulsion is then spray dried using either a 7/z-foot Nichols Spray Dryer or a Bowen 7%-foot Spray Dryer with an inlet temperature of about 300 F. and an outlet temperature of about 200 F. The resulting product is white, has particles of from about 20 to about 30 microns, a bulk density of about 18.5 lb./cu. ft. and a moisture content of about 1 percent.

The product is blended with about 3 percent by weight Ma]- linckrodt bulky silicic acid, prior to use in a tabletting operation.

Example 3 The powder formed in example 1 is used as an ingredient in a multivitamin tablet in the f ollowing formulation:

Parts by Weight Dry vitamin A acetate, 500,000

Dry vitamin D,li50,000 units/g.

Tablet Weight (mg.) 275 The riboflavin, pyridoxin, niacinamide, ascorbic acid, vitamin E, Amijel and tricalcium phosphate were passed through a Fitzpatrick mill equipped with a No. 1 screen, then granulated with water. The granules were dried overnight at 1 15 F. and then passed through a Fitzpatrick mill, equipped with a No. 1-B screen operating at medium speed, with knives forward.

The granulation was then admixed with the remaining ingredients listed in the preceding formulation. Thereafter, the mixture was compressed into tablets using a 15/32 inches flat faced beveled-edge punch and the tablets, weighing between 240 and 360 mg., were sealed and sugar coated by sealing with shellac, subcoating with syrup and dusting powder, coloring and smoothing with syrup, and waxing and polishing.

What is claimed is:

l. A powder comprising from about 40 percent to about 60 percent by weight of a vitamin E active compound and from about 60 percent to about 40 percent by weight of a gelatin hydrolysate, said hydrolysate having a 0 Bloom and a molecular weight of from about 9,000 to about 1 1,000.

2. The powder of claim 1 wherein the amount of the vitamin E active compound present is 50 percent by weight.

3. The powder of claim 1 wherein the vitamin E active compound is dl-a-tocopheryl acetate.

4. The powder of claim 1 containing from about 0.5 to about 0.9 percent of an antimicrobial preservative.

P0405) UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTIGN Patent No. 5 5m 83 Dated September 21, 1971 Inventor (s) Bunne and 0 5311131 8 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 4, line 36 of Claim 0.9 percent of an antimicrobial" should be 6.9 percent by weight of an antimicrobial Signed and sealed this 25th day of April 1972.

(SEAL) Attest:

EDWARD MJ LETCEIER, Jri. ROBERT GOTTSCI'EAML Attestl'ng Officer Commissioner of Patents

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3875282 *Apr 30, 1973Apr 1, 1975Stauffer Chemical CoProduction of high bulk density spray dried hydrous sodium silicate
US3914430 *Jun 26, 1974Oct 21, 1975Hoffmann La RocheFree-flowing, high density, agglomerated vitamin E powder compositions
US3947596 *Jun 26, 1974Mar 30, 1976Hoffmann-La Roche Inc.Free-flowing, high density, agglomerated vitamin A powder compositions
US3959472 *Jun 26, 1974May 25, 1976Hoffmann-La Roche Inc.Free-flowing, high density, agglomerated riboflavin powders
US3962384 *Jun 26, 1974Jun 8, 1976Hoffmann-La Roche Inc.Spray-drying technique for preparing agglomerated powders
US4262017 *May 11, 1979Apr 14, 1981Basf AktiengesellschaftPreparation of a vitamin E dry powder
US4389419 *Nov 10, 1980Jun 21, 1983Damon CorporationVitamin encapsulation
US4603143 *Sep 7, 1984Jul 29, 1986Basf CorporationFree-flowing, high density, fat soluble vitamin powders with improved stability
US4711894 *Jan 16, 1986Dec 8, 1987Henkel CorporationStabilized tocopherol in dry, particulate, free-flowing form
US5120761 *Apr 1, 1991Jun 9, 1992Finnan Jeffrey LMethod of making a free-flowing spray dried edible powder comprising an oil
US6020003 *Feb 23, 1998Feb 1, 2000Basf CorporationMethod of making spray-dried powders with high edible-oil loadings based on non-hydrolyzed gelatin
US6130343 *Aug 29, 1996Oct 10, 2000Henkel CorporationMethod of producing a tocopherol product
US6303167Nov 9, 1998Oct 16, 2001Archer-Daniels-Midland CompanyMethod of producing vitamin powders
US6914073Jan 14, 2002Jul 5, 2005Bristol Myers Squibb CompanyVitamin formulation for cardiovascular health
US7282225Sep 27, 2006Oct 16, 2007Occular Technologies, Inc.Composition and methods for improving retinal health
US7560123 *Aug 12, 2004Jul 14, 2009Everett Laboratories, Inc.Compositions and methods for nutrition supplementation
US8101587Apr 10, 2009Jan 24, 2012Everett Laboratories, Inc.Kits for nutrition supplementation
US8168611Sep 29, 2011May 1, 2012Chemo S.A. FranceCompositions, kits and methods for nutrition supplementation
US8183227Nov 9, 2011May 22, 2012Chemo S. A. FranceCompositions, kits and methods for nutrition supplementation
US8197855Oct 30, 2007Jun 12, 2012Everett Laboratories, Inc.Compositions and methods for nutrition supplementation
US8545896Apr 30, 2012Oct 1, 2013Chemo S. A. FranceCompositions, kits and methods for nutrition supplementation
US8609629Jan 23, 2012Dec 17, 2013Evertt Laboratories, Inc.Kits and methods for nutrition supplementation
US8617617Dec 22, 2006Dec 31, 2013Everett Laboratories, Inc.Methods and kits for co-administration of nutritional supplements
US20020001622 *Aug 22, 2001Jan 3, 2002Morris Charles A.Method of producing vitamin powders
US20020172721 *Jan 14, 2002Nov 21, 2002Atef BoulosVitamin formulation for cardiovascular health
US20060034912 *Aug 12, 2004Feb 16, 2006Giordano John ACompositions and methods for nutrition supplementation
US20080050454 *Oct 30, 2007Feb 28, 2008Giordano John ACompositions and methods for nutrition supplementation
US20080152725 *Dec 22, 2006Jun 26, 2008Everett Laboratories, Inc.Methods and kits for co-administration of nutritional supplements
US20080248132 *Jun 20, 2008Oct 9, 2008Giordano John ACompositions and methods for nutrition supplementation
US20080254142 *Jun 20, 2008Oct 16, 2008Giordano John ACompositions and methods for nutrition supplementation
US20100260836 *Apr 10, 2009Oct 14, 2010Giordano John AKits and methods for nutrition supplementation
US20110038940 *Feb 6, 2009Feb 17, 2011Innov'iaPulverulent composition and a process for preparing the same
US20150282508 *Oct 30, 2013Oct 8, 2015Rousselot B.V.Emulsifier
DE102008021634A1May 4, 2008Nov 5, 2009Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Verfahren zur Herstellung von Gelatinepulver und damit hergestelltes Gelatinepulver
EP0044261A1 *Jul 7, 1981Jan 20, 1982Gaetan VendittiProcess for the preparation of cold liquid gelatin solution and gelatin solution obtained by such process
EP0062225A2 *Mar 23, 1982Oct 13, 1982Basf Wyandotte CorporationSpray-dried vitamin E powder
EP0062225A3 *Mar 23, 1982Jul 20, 1983Basf Wyandotte CorporationSpray-dried vitamin e powder
WO1996041817A1 *Jun 6, 1996Dec 27, 1996Pentapharm AgCollagen peptide fraction and its uses
WO2014043025A1 *Sep 9, 2013Mar 20, 2014Jaymac Pharmaceuticals, LlcMultiple folate formulation and use thereof
Classifications
U.S. Classification514/458, 514/774
International ClassificationA61K47/42
Cooperative ClassificationA61K47/42
European ClassificationA61K47/42