Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3614101 A
Publication typeGrant
Publication dateOct 19, 1971
Filing dateJan 13, 1969
Priority dateJan 13, 1969
Publication numberUS 3614101 A, US 3614101A, US-A-3614101, US3614101 A, US3614101A
InventorsHunter Charles G
Original AssigneeHunter Charles G
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Golf club, shaft, and head
US 3614101 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventor [2]] Appl. No. [22] Filed [45] Patented [54] GOLF CLUB, SHAFT, AND HEAD 9 Claims, 5 Drawing Figs.

[52] U.S. C1 273/80.2, 273/80 B, 273/80 C [51] Int. Cl A63b 53/02, A63b 53/ 12 [50] Field of Search 273/77, 80, 80.2-80.9, 81, 81.5

[56] References Cited UNITED STATES PATENTS 1,515,390 11/1924 Hubbard 273/80.2 2,018,723 10/1935 Hutchison 273/80.2 1,543,636 6/1925 Williamson.... 273/80.7 1,573,708 2/1926 l-loerle 273/80.8 X 1,670,530 5/1928 Cowdery 273/80.3 1,670,531 5/1928 Cowdery 273/80 2,066,962 1/1937 Cross 273/80 2,100,307 11/1937 McMinn 273/80.9

Primary Examiner-Richard C. Pinkham Assistant Examiner-Richard J. Apley Attorney-Angus & Mon

ABSTRACT: A golf club shaft having an axis, an inner wall and an outer wall, both axial, circular in cross section, a major portion of it adjacent to the club head tapering so as to narrow toward the head end of the shaft, the wall thickness thereby in creasing. The shaft has throughout its entire length a substantially constant cross section area in planes normal to the longitudinal axis thereby providing uniform linear distribution of the shaft weight throughout its length. The shaft may be expanded beyond an extension of the taper to form a handle, to which a lightweight wrapping may be applied as a grip. A club head includes a body, a striking face on the body with an upper margin, and a hose] with a bore to receive the shaft extending below an extension of the upper margin.

GOLF CLUB, SHAFT, AND HEAD This invention relates to golf clubs.

Golf clubs are used in a classical sport which has acquired tradition and traditional preferences and attitudes over the years. Golf clubs with drastically altered envelope configurations may as well remain uninvented, because the risk of rejection by customers, I tions is very high. However, there remains a substantial opportunity to improve golf clubs, still remaining within a physical envelope which is very similar to conventional clubs. Such improved clubs require a completely new approach to the dynamics of the golf club in order to achieve their improved performances.

The term conventional is frequently used in the specification and claims hereof to describe the envelope characteristics of the golf club of this invention. This adjective is intended to torque on the shaft at the time of impact. The term is used to exclude such nonconventional clubs as croquet mallets. It also excludes extremely heavy clubs, contemplating a club whose weight lies roughly within the limits of commonly accepted gross weights.

The general opinion in the golf industry has long been that a golf club shaft should be springily flexible in order to deliver optimum power to the ball. However, this approach leads to considerable degradation of results, because springiness itself uses power which would better be applied to the ball. F urthermore, in order for a shaft to be springy, it must be relatively light, light and this leads to two ma'or problems. One problem is that of torque and bending of the tubular shaft. When these deflections occur, the face of the club will deflect from its true angle relative to the shaft and to the handle during its acceleration, and also will further deflect at the moment of impact. Both of these deflections fundamentally affect the accuracy of the blow delivered to the ball, and it is nearly impossible for anyone who is not a professional golfer accurately and regularly to compensate for them.

The other problem with light springy shafts resides in the necessary shear strength at the joint of the head and the shaft. The peak shear load at this point is quite great, so that considerable strength needs to be provided here, generally by a connector known as a hosel, which is a tubular extension of the club head with a bore into which an end of the shaft is inserted. A heavy hosel requires an unfavorable weight distribution, and places substantial mass at a region substantially spaced from the point of impact with the ball. The resulting eccentric load causes still further deflection of the face at the moment of impact.

It is submitted that a correct theoretical dynamic model for a golf club is one wherein the head is supported by a weightless rigid shaft, with the mass of the head substantially evenly distributed over the head, and with a hosel of minimum length and mass. Prior to this invention, such a club was not attainable, because a shaft having the requisite strength in shear and torque at the head end could not be made within the established limits of total club weight. This invention provides a shaft of requisite shear and torsional strength, and which, especially when provided with lightweight means for a handle and grip, is substantially lighter then conventional shaft assemblies. It enables the hosel of the head to be lightened, and its eccentric weight reduced. This saved weight may then either be distributed over the club head further to improve the balance and power, or may be eliminated whereby to provide improved results for persons who do not possess the physical strength to manage the greater weight.

This invention comprehends both such a shaft, and a club incorporating it.

A shaft according to the invention comprises an elongated tubular member having an axis and an inner and outer wall. Major portions of both walls are tapered adjacent to the head end, and they narrow as they approach the head end. The wall thickness increases toward the head end. The lateral crosssectional area remains substantially constant throughout the and by professional and sporting organizamajor proportion of the length of the shaft. As a result, a heavier walled tube is provided at the head end to resist torsion and shear forces. The handle end, where such wall thickness is not required, has a thinner wall and a larger outer may be formed of a simple wrapping, conventional grip. Weight saved by these expedients may be distributed over the head where it contributes to the power of the blow. Furthermore, the handle may be formed as a conical portion of the shaft, thereby providing the benefit of a tapered grip.

A golf club head useful in this invention has a body with a striking face having an upper margin, and a hosel extending from the body. The hosel has a bore to receive the head end of the shaft, and this bore, and therefore the head end of the inserted shaft, extend to a region below an extension of the upper margin.

The above and other features of this invention will be fully understood from the following detailed description and the accompanying drawings in which:

FIG. 1 is a side view partly in cutaway cross section showing the presently preferred embodiment of the invention;

FlG. 2 is a cross section taken at line 2-2 of FIG. 1;

FIG. 3 is a cross section similar to that of FIG. 2, showing another embodiment of the invention;

FIG. 4 is an axial cross section taken at line 44 of FIG. 3; and

FIG. 5 is a side elevation of a golf club head according to the prior art, and is another illustration of a conventional type of golf club.

A golf club 10, which is the presently preferred embodiment of the invention, is shown in FIG. 1. It comprises a shaft 11 and a head 12. The head includes a body 13 having a striking face 14, the striking face having an upper margin 15. An extension 16 of the upper margin, comprising an imaginary line, extends to the right in FIG. 1, and is a straight line.

As is customary in golf club heads, a hosel 17 is formed integral with the body and extends upwardly at the angle to which it is desired to have the shaft extend relative to the striking face. The hosel has a bore 18 therein, which bore extends below the extension of the upper margin, the term below referring to the direction toward the foot 19 of the club head.

A shaft 11 according to the invention has an axis 21, an outer wall 22, and an inner wall 23. The shaft has a handle end 24 and a head end 25. That portion of the shaft adjacent to the head end has properties specific to-this invention, as will be more fully set forth below, said properties comprising the fact that the inner and outer wall are both tapered and their tapers narrow as they extend toward the head end. The term taper is not limited to a straight line taper. However, the taper preferably is substantially uniform and straight line. The wall thickness of this portion of the shaft increases toward the said head end. Preferably, but not necessarily, the entire length of the shaft, except for a handle to be described, will similarly be tapered. However, the presently preferred processes used to form this shaft have certain economic criteria which make is convenient to fonn some portions spaced from the head end with a uniform cross section and wall diameter.

A handle portion 26 is formed adjacent to the handle end. The handle portion may be used bare, but usually it is desirable to apply some covering thereto, because the club often becomes wet or slippery. Preferably, the handle portion is substantially conical. This creates a wedging action with the user's hands.

With standard clubs, it is necessary to put a relatively thick and heavy grip onto a relatively thinner shaft. However, by using an expanded shaft as shown, it is possible to use only a thin wrapping 28 as a grip, which may be ribbonlike in nature and quiet light. This alone can save as much as one ounce of weight, which weight at this location could have significant deleterious effects on the golfers results, and does do so on standard clubs. By utilizing a lighter grip such as a lightweight fabric wrapping, it is possible to take this saved weight and apply it to the shaft near the hosel to provide greater strength at that place without greater total club weight.

Because of the construction of this shaft, it is possible to use lightweight materials such as aluminum alloys and thereby provide a lightweight shaft with optimum strength where needed. By increasing the shaft strength adjacent to the hosel, but still utilizing thinner walls and lighter weight materials in the remainder of the tubular shaft, it is possible to remain within accepted total club weight standards by moving certain of the weight otherwise expected to be found in the club to the head itself. This is done by taking the weight eliminated from shafts and grips, and adding it to the club head, and also by shortening the hosel length and restructuring the head, as can be appreciated by a comparison of FIGS. 5 and 1. Alternatively, the weight saved may be simply be eliminated. A player who does not have the strength or stamina to swing the larger club weight will find his performance improved with a lighter club of this design.

FIG. 5 shows a conventional club head 29 with a hosel 30, which hosel is substantially longer than the hosel of the present invention, and whose bore 31 stands generally above the upper margin 32 of striking face 33. It will be seen that this hosel configuration, which is required by the various parameters of prior art conventional club heads, adds considerable eccentric weight relative to the striking face, and requires a lessening of the weight of the striking portion of the head if the total club weight is to remain within accepted limitations. The redistribution of the weight (or reduced weight) in FIG. 1 is attained principally because of the adequacy of the strength of the joint between the hosel and the club shaft (because of the thicker cross section at that point), the placing of the joint closer to the striking face, and the reduction of the eccentric mass of the hosel. This enables an optimum club to be developed wherein strength characteristics are provided to the shaft with a lightweight handle, lightweight shaft, and club head with optimum distribution of mass in the striking face area which may have more mass than usual, if preferred.

Still another improvement on the shaft is possible by utilizing the construction shown in FIGS. 3 and 4 wherein inner wall 35 and outer wall 36 are provided which are basically circular in cross section just as are walls 22 and 23 in FIG. 1 However, in this embodiment, the inner wall is modified by grooves 37 which are deepest at the head end and which may either extend for the full length of the shaft or instead and preferably may taper off to zero depth farther up the shaft. This creates longitudinally extending fins 38 which, for identical weight, will provide additional resistance to shear and torsion deflection. They are preferably formed during an extrusion operation and of self material, as opposed to attached rodlike elements.

The shaft of this invention is best produced by drawing down a tube having initially larger inner and outer diameters.

A useful technique is to begin with l-inch or larger tubing and draw it to a nominal thirteen-sixteenths inch in order to trim up the wall thickness and to give some initial work hardening to the material. Thereafter, the tube may be sequentially forced through a series of external forging dies with axial restraint on the tube. This causes a reduction in outer diameter, a lateral movement of the metal to create a thickening of the wall, and a reduction in inner diameter. There is permitted only negligible elongation, which is usually in the order of about one inch in an initially 44-inch-long tube, which is the reason for the thickening of the wall. The results of this forging operation will be appreciated from an examination of FIG. 1 wherein it will be seen that substantially uniform linear distribution of the weight is likely, and that the cross-sectional area will remain substantially uniform from station to station. Of course, manufacturing tolerances will cause some small variations in this result, but it will ordinarily not be particularly great.

There are substantial advantages in the shaft, and in a golf club including the shaft, made according to the foregoing process. For one thing, it is possible by this means to achieve a ratio of wall thickness between that of the handle end to that of the head end on the order of l: 2 A, the wall thickness at the head end being at least '250 percent that of the wall thickness adjacent to the handle end. Similarly, it will be noted from the table below that the diameter of the outer wall at the handle end will be at least 225 percent that of the diameter of the outer wall at the head end. Such a ratio has not heretofore been attained and has severely limited the strength-weight ratio of shafts for golf clubs. By manufacturing the shaft with a forging process which substantially prevents axial growth while reducing the outer diameter, lateral metal movement with its favorable arrangement of grain structure and work hardening is secured, together with a localized thickening of the wall were cross-sectional area is most needed. The result is an optimized shaft, and optimized club-shaft assembly.

In FIG. 1, the one embodiment, related to the appended table of dimensions, has been shown. Station' 0 is the handle end. The stations are in inches from that end, and the head end is station 44, the shaft thereby being 44 inches long. All other dimensions are also in inches. The club shown is a driv ing iron.

The illustrated shaft may conveniently be made with only two forging dies, and will produce shafts suitable for a wide range of iron" and wood club equivalents. A piece of reduced tubing as specified at about thirteen-sixteenths inch outer diameter is reduced to form the handle portion 26, the remainder being reduced to the diameter of straight portion 41, this remainder being long enough to make the rest of the shaft. Then, starting at the proper dimension, tapered portion 40 is formed in another die. This other die may be longer or shorter as desired to make up the difference in length between the sum of the tapered portion and the handle portion, and the desired total length of the shaft.

If tooling cost is no object, then the full length of portions 40 and 41 will be tapered. The use of a straight portion does, however, provide significant economies.

Handle portion 26 extends from about stations 0 to l l, with a taper of around 0.030 inches/inch after a short initial tubular length about 2 inches long. The straight portion extends from about stations 1 l to 19, with no taper. Tapered portion 40 extends from about stations 19 to 44 with a taper on the order of about 0.009 to 0.010 inches/inch. The tapers referred to herein are those of the outer wall. The table shows measure ments of an actual shaft, and as to be expected in swaging operations, there are minor variations from point to point. The cross-sectional areas given are calculated from the actual measurements utilizing the following formula:

d d 43(22) (2. The dimensions are in inches and square inches as appropriate. A is the cross-sectional area; d is the outer diameter of the shaft; and t is its wall thickness. I

It will be noted that the club shaft is derived from an initially uniform tube by swaging the outer diameter to a tapered shape and limiting the axial growth of the material. The club is assembled by placing the shaft in the bore in the hosel and cementing it there with any suitable bonding material such as Loctite or any other suitable cement. This, too, enables one to avoid the undesirable weight of wrappings which are customarily used for such purposes.

The resulting club has a lightweight shaft which may advantageously be made out of lightweight alloys such as those of aluminum, magnesium, or titanium (however, other metals, including ferrous alloys, could also be used), which has substantial resistance to bending and torsion near the head end where such effects are important, which has the major portion of the weight in the club head instead of in the club handle, and which has a suitable integral handle with a lightweight grip. Because the handle and its wrapping are so light, the gross weight of the club may be made the same as that of a conventional club, but the weight saved in the handle may be placed in the head or the lower end of the shaft where it is more effective in driving the ball and resisting shear and torsion. The aluminum alloy known as 7178 can be used for the shaft which is the subject of this invention. The head may be of stainless steel. The result is an approach to the ideal club having a mass with its center of percussion in line with the striking face, with a lightweight, very rigid handle for swinging the club head. It has been found that clubs utilizing the shaft set forth in the table, have given performances comparable to conventional woods of approximately the same total weight, but with greater accuracy and less effort on the part of the user. Such redistribution or reduction of weight has not heretofore been possible due to shapes required to provide torsional and shear strength at the hosel, much of which is due to the greater weight of the hosel itself. This invention thereby constitutes a stride toward the ultimate objective of a theoretically optimal golf club. It is useful for the entire member of the family of clubs from those commonly known as woods and irons to the putter itself and has shown significant improvements and performance at all levels. It is evident that the dimensions may be changed, the major feature of the shaft residing in the tapered construction along a substantial axial length adjacent to the head end thereof, the term substantial in this regard meaning greater than 50 percent of the length of the shaft.

TABLE Outer Wall Cross Section Diameter(2r) Thicknessu) Area(A) Station (ins.) (ins.) (square ins.)

8 0.645 0.0335 0.643 9 0.616 0.035 0.0639 l0 0.587 0.037 0.0639 l I 0.568 0.039 0.0648 l2 0.562 0.039 0.0641 13 0,562 0,039 0.064] l4 0.562 0.039 0.0641 l5 0.562 0.039 0.0641 l6 0.562 0.039 0.0641 l7 0.562 0.039 0.0641 18 0.562 0.039 0.0641 l9 0.562 0.039 0.064! 20 0.554 0.039 0.0631 2| 0.548 0.040 0.0638 22 0.532 0.041 0.0632 23 0.520 0.042 0.0631 24 0.510 0.043 0.0631 25 0.498 0.044 0.0627 26 0.487 0045 0.0625 27 0.476 0.047 0.0633 28 0.466 0.048 0.0630 29 0.454 0.051 0.0645 30 0.444 0.053 0.065] 3| 0.433 0.053 0.0633 32 0.423 0.055 0.0636 33 0.423 0.057 0.0655 34 0.403 0.059 0.0638 35 0.329 0.061 0.0634 36 0.382 0.063 0.0631 37 0.377 0.064 0.0629 33 0.377 0.065 0.0637 39 0.375 0.065 0.0633 40 0.368 0.068 0.0641 41 0.360 0,069 0.063] 42 0.352 0.07] 0.0627

Table Continued What is claimed is:

l. A conventional ,golf club comprising: a golf club shaft formed as a continuous, homogenous metal tube having a longitudinal axis, a circularly sectioned inner wall and a circularly sectioned concentric outer wall extending axially from a head end to a handle end of said shaft, both of said walls, throughout a tapered head end portion extending from the head end to a substantial axial distance therefrom, and

throughout a tapered handle end portion extendin from a point ad acent to the handle end to a substantial axla distance therefrom, being continuously tapered, smooth and uninterrupted, and increasing in diameter, the wall thickness of the shaft thereby increasing in both of said head end portion and of said handle end portion as the-shaft extends toward the head end, the shaft having throughout its entire length a substantially constant cross section area in planes normal to the longitudinal axis, thereby providing uniform linear distribution of the shaft weight throughout its length, the wall thickness at the head end being at least 250 percent that of the wall thickness adjacent to the handle end; a golf club head comprising a body, a striking face on said body having an upper margin which in elevation is sensibly straight in elevation view, and a hose] having a tapered bore with an axis extending transverse to an imaginary extension of the said upper margin, the top of the bore standing above said extension, and the bottom of the bore being closed and terminating above the bottom of the club head and below said extension, the walls of the bore and of the outer wall of the shaft adjacent to the head end being identically tapered, and the head end of the shaft being tightly fitted into and retained in said bore, a ribbonlike, flexible, thin, and lightweight wrapping wound around and upon the handle end portion, the diameter of the outer wall of the handle end portion being at least 225 percent that of the diameter of the outer wall at the head end.

2. A golf club according to claim 1 in which the inner wall of the shaft is modified to include axially extending splines adjacent to the head end of the shaft.

3. A golf club according to claim 1 in which an adhesive is disposed between the wall of the bore and the outer wall of the shaft to bond them together.

4. A golf club according to claim 3 in which the wall of the bore and that part of the outer wall of the shaft which is contiguous thereto are imperforate.

5. A golf club according to claim 1 in which an untapered portion is contiguous to, continuous with, and interconnecting, the handle end portion and the head end portion.

6. A golf club according to claim 5 in which an adhesive is disposed between the wall of the bore and the outer wall of the shaft to bond them together.

7. A golf club according to claim 6 in which the wall of the bore and that part of the outer wall of the shaft which is contiguous thereto are imperforate.

8. A golf club according to claim 1 in which the shaft is made of an aluminum alloy.

9. A golf club according to claim 8 in which the club head is made entirely of metal.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,614,101 Dated October 19, 1971 Inventofls) Charles Hunter It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Col. 4, lines 46-49 The formula'should read d I d A h( +9 Col. 4, line 53 after and" change "t is its wall thickn'ess." to

--r is th radius of the inside circle, i.e.

r ="d-2t Col. 6, line 17 after "and" change -"increasing" to (Claim 1) "respectively increasing and decreasing- Signed and sealed this 18th day of June 1974.

(SEAL) Attest:

Attesting Officer Commissioner of Patents M PO-105O (IO-69)

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1515390 *Dec 27, 1923Nov 11, 1924Hubbard Edward LGolf club
US1543636 *Jun 9, 1924Jun 23, 1925Hugh WilliamsonGolf club
US1573708 *Jul 2, 1925Feb 16, 1926Union Hardware CompanyManufacture of golf-club shafts
US1670530 *Feb 10, 1927May 22, 1928American Fork & Hoe CoShaft for golf clubs and the like
US1670531 *Aug 17, 1927May 22, 1928American Fork & Hoe CoGolf shaft
US2018723 *Jan 28, 1931Oct 29, 1935Alexander CunninghamGolf club
US2066962 *Apr 16, 1934Jan 5, 1937Lloyd CrossShaft for golf clubs or the like
US2100307 *Feb 20, 1936Nov 23, 1937Mcminn Wiley WHollow metal shaft and manufacture of same
US2231847 *May 31, 1938Feb 11, 1941Spalding A G & Bros IncGolf club
US2934345 *Apr 23, 1957Apr 26, 1960Columbia Products CoGolf stick and shaft
US3083969 *Mar 27, 1961Apr 2, 1963Axaline Golf CompanyLong-handled, swingable driving instrument
US3479030 *Jan 26, 1967Nov 18, 1969Merola AnthonyHollow,metal ball bat
GB314856A * Title not available
GB347443A * Title not available
GB470178A * Title not available
GB191123427A * Title not available
GB191303288A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3969155 *Apr 8, 1975Jul 13, 1976Kawecki Berylco Industries, Inc.Production of tapered titanium alloy tube
US3972529 *Oct 7, 1974Aug 3, 1976Mcneil Walter FReinforced tubular materials and process
US4288075 *Aug 27, 1979Sep 8, 1981Brunswick CorporationUltra light weight golf club shaft
US5009423 *Apr 9, 1990Apr 23, 1991The Yokohama Rubber Co., Ltd.Wood golf club and its production method
US5083780 *Jan 29, 1990Jan 28, 1992Spalding & Evenflo Companies, Inc.Golf club shaft having selective reinforcement
US5257807 *Aug 3, 1992Nov 2, 1993Baumann Peter EGolf club putter
US5282619 *Nov 16, 1992Feb 1, 1994Napolitano Anthony PPractice golf club having a collapsible and adjustable length shaft
US5316297 *Oct 22, 1992May 31, 1994Dunlop Slazenger CorporationGolf club sets
US5316299 *Oct 16, 1992May 31, 1994Taylor Made Golf CompanyGolf club shaft
US5439218 *Jan 3, 1995Aug 8, 1995Gondeck; Richard W.Golf club hosel construction
US5547189 *Jul 20, 1994Aug 20, 1996Billings; David P.Golf club and club shaft constructions
US5569098 *Dec 15, 1994Oct 29, 1996New Vision Golf Corp.Golf putter having tapered shaft and large grip
US5616086 *Jun 7, 1995Apr 1, 1997Dunlop Maxfli Sports CorporationGolf club set
US5681226 *Jun 3, 1996Oct 28, 1997Marshall James, Inc.Golf club shaft with oversized grip section
US5695408 *Jan 24, 1996Dec 9, 1997Goldwin Golf Usa, Inc.Golf club shaft
US5720671 *Sep 5, 1996Feb 24, 1998Harrison Sports, Inc.Composite golf club shaft and method of making the same
US5772525 *Apr 2, 1997Jun 30, 1998New Vision Golf Corp.Golf putter
US5788585 *Sep 6, 1996Aug 4, 1998Jackson; AlComposite golf club shaft and method for its manufacture
US5792007 *Aug 19, 1996Aug 11, 1998Billings; David P.Golf club and club shaft constructions
US5795240 *Sep 19, 1996Aug 18, 1998Dunlop Maxfli Sports CorporationMechanical locking device for attaching a shaft to a golf club head
US5803827 *Jan 18, 1995Sep 8, 1998Natural Golf CorporationGolf clubhead and its method of use
US5813922 *Oct 15, 1997Sep 29, 1998Taylor Made Golf Company, Inc.Golf club shaft
US5820480 *Jan 22, 1997Oct 13, 1998Harrison Sports Inc.Golf club shaft and method of making the same
US5833550 *Feb 4, 1997Nov 10, 1998Chien Ting Precision Casting Co., Ltd.Golf club head
US5857921 *May 24, 1996Jan 12, 1999Fm Precision Golf Manufacturing Corp.Golf club shafts
US5904626 *Jun 6, 1997May 18, 1999Fendel; Edwin B.Light-weight handle
US5935017 *Jun 28, 1996Aug 10, 1999Cobra Golf IncorporatedGolf club shaft
US5947836 *Aug 26, 1997Sep 7, 1999Callaway Golf CompanyIntegral molded grip and shaft
US5957783 *Oct 17, 1997Sep 28, 1999Harrison Sports Inc.Golf club shaft having contoured grip section and kick section
US5971865 *Jan 16, 1998Oct 26, 1999Wilson Sporting Goods Co.Golf club with oversize shaft
US5984803 *Jan 22, 1998Nov 16, 1999Dunlop Maxfli Sports CorporationVariable weight distribution in a golf club head by reducing hosel length
US5989481 *Jun 18, 1996Nov 23, 1999You; Daniel H.Golf club shaft manufacturing process
US6024651 *Jan 12, 1998Feb 15, 2000Harrison Sports, Inc.Golf club shaft having contoured grip section and kick section
US6102274 *Oct 22, 1997Aug 15, 2000Yamada CorporationMethod for manufacturing golf club heads
US6117021 *Dec 24, 1997Sep 12, 2000Cobra Golf, IncorporatedGolf club shaft
US6352662Aug 23, 1999Mar 5, 2002Callaway Golf CompanyIntegral molded grip and shaft
US6540623Feb 28, 2001Apr 1, 2003Al JacksonComposite shaft for a golf club
US6575843 *Oct 10, 2001Jun 10, 2003Acushnet CompanyMetal wood golf club head with selectable loft and lie angulation
US6705954Nov 25, 1998Mar 16, 2004Mitsubishi Rayon Co., Ltd.Golf club shaft and method for manufacturing same
US6752726Mar 11, 2003Jun 22, 2004Burrows Golf, LlcSlotted hosel for a golf club
US6817956May 29, 2003Nov 16, 2004Kim DagenaisGolf club grip
US7485048 *Aug 15, 2003Feb 3, 2009Devilray AsGolf club device
US8241139Feb 24, 2010Aug 14, 2012Sri Sports LimitedGolf club
US8317636 *Jan 24, 2012Nov 27, 2012Callaway Golf CompanyGolf club head with improved aerodynamic characteristics
US8651973 *Jun 1, 2010Feb 18, 2014Nike, Inc.Golf club with wind resistant shaft and golf club head
US8784231Jul 3, 2012Jul 22, 2014Sri Sports LimitedGolf club
US8951142Jul 3, 2012Feb 10, 2015Sri Sports LimitedGolf club
US20030176236 *Mar 14, 2003Sep 18, 2003Fendel Edwin B.Hybrid golf club shaft
US20060122005 *Aug 15, 2003Jun 8, 2006Johnny NilssonGolf club device
US20100273567 *Feb 24, 2010Oct 28, 2010Sri Sports LimitedGolf club
US20110294590 *Jun 1, 2010Dec 1, 2011Nike, Inc.Golf Club With Wind Resistant Shaft And Golf Club Head
US20120129626 *Jan 24, 2012May 24, 2012Callaway Golf CompanyGolf club head with improved aerodynamic characteristics
US20130287976 *Apr 26, 2012Oct 31, 2013Integran Technologies Inc.Anisotropic elongated metallic structural member
USD418566Jul 8, 1997Jan 4, 2000Cobra Golf IncorporatedLower section of a shaft adapted for use in a golf club shaft
WO1997026954A1 *Jan 24, 1997Jul 31, 1997Goldwin Golf Usa, Inc.Club having improved playing characteristics
WO1997046288A1 *Apr 25, 1997Dec 11, 1997Marshall James, Inc.Golf club shaft with oversized grip section
WO1998007476A1 *Aug 19, 1997Feb 26, 1998Billings David PGolf club and club shaft constructions
U.S. Classification473/301, 473/305, 473/316
International ClassificationA63B53/00, A63B53/12
Cooperative ClassificationA63B53/12, A63B59/0077, A63B59/0014, A63B53/00
European ClassificationA63B53/00, A63B53/12