Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3616943 A
Publication typeGrant
Publication dateNov 2, 1971
Filing dateSep 17, 1969
Priority dateSep 17, 1969
Also published asCA918088A, CA918088A1
Publication numberUS 3616943 A, US 3616943A, US-A-3616943, US3616943 A, US3616943A
InventorsDelbert L Brink
Original AssigneeGrace W R & Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Stacking system
US 3616943 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Unite States Patent [72] Inventor Delbert L. Brink 3,005,282 10/1961 Christiansen 46/25 South Seattle, Wash. 2,849,151 8/1958 Heil 220/97 [211 Appl. No. 858,746 3,371,816 3/1968 Ricci. 220/97 X [22] Filed Sept. 17,1969 3,393,858 7/1968 Heel..... 217/42 UX [45] Patented Nov. 2, 1971 3,481,502 12/1969 Slayman 217/42 [73] Assignee W. R. Grace & Co. FOREIGN PATENTS cambr'dge Mass" 1,300,206 6/1962 France 46/25 Primary Examiner-Gerald M. Forlenza [54] STACKING SYSTEM Assistant Examiner-Frank E. Werner 9 Claims, 12 Drawing Figs. At!0rneys Theodore C. Browne, Metro Kalimon, C. E. [52] U S Cl 214/10 5 R Parker, William L. Baker. Armand McMillan and Lawrence 220/97 B, 46/25 [51] Int. Cl 865g 1/14 [50] Field of Search 214/105;

206/65; 46/25; 220/97, 97 B; 217/42 ABSTRACT: A body such as a box may be stacked with substantial rigidity and provided with the capability of spacing [56] References cued and staggering by providing single and/or multiple rows of UNITED STATES PATENTS protuberances such as beads on upper and lower surfaces ar- 879,455 2/1908 Frost 46/25 ranged so that the beads nest or interlock upon stacking.

m' m n m A n Tux/0W? PATENTEDunv 2 I971 SHEET 1 [IF 3 FIG. I

FIG. 5

nnnmmm \JUUVUUU uvuvvuu FIG. 6

. INVENTOR DELBERT L. BRINK PATENTEDNUV 2 I97! SHEET 2 BF 3 FIG.

FIG.

FIG. 9

vuuuuvu VVVVUV vvvuvuu VVUVVUU PATENTEDuuv 2 197i SHEET 3 [1F 3 FIG. ll

rlllllllllllllll.

FIG. I2

STACKING SYSTEM BACKGROUND OF THE INVENTION The invention relates to stackable bodies in particular to container boxes which are to be stacked wherein it is desired that a rigid stack or formation of stacks be fonned. In particular, the invention relates to such bodies which may be stacked in staggered or overlapped formation to an optional degree with or without spaces between the bodies. In one particularly advantageous embodiment, boxes molded of foamed, agglutinated polystyrene beads are provided with the stacking means of the invention.

In the past it has been known to permit rigid stacking of bodies such as container boxes by shaping them so that some portion of the bottom of one container is captured by the top of another identical container, or visa versa, as in nesting. One common form is where the lower portion of the container is smaller than its upper portion, as by being tapered, and the latter has a cavity for receiving an identical container up to some desired depth. This form is excellent for forming single stacks of empty containers such as nested drinking cups. However, it is inefficient when it is desired to stack filled containers or solid bodies since the space needed to nest is not available for the basic purpose of the container or body. Furthermore, this stacking means only permits single stacks to be formed which must then, if a rigid multistack formation is desired, be joined by some other means such as tying or wrapping, e.g. if more than one stack is desired to be transported. If spacing is desired between containers this can be accomplished only by quite inconvenient spacers between stacks and spacing is effectively impractical within a stack.

Some of these problems have been alleviated by another form of stacking means in which projections or legs are provided at the bottom corners of the container and mating cavities in the top comers. This form permits spacing within a stack but is still ineffective for multistack formations. In addition, in cases where a high degree of rigidity or resistance to dislodgment is desired, it is necessary that the projections and mating cavities be relatively massive and deep thus consuming an undesirably large amount ofspace.

Other severe disadvantages are that the projections or legs interfere with conveyor systems, are easily broken especially if the container is dropped on a corner; and require careful preparation of the floor to assure equal support for all the legs. The cavities of such systems are often found to contain dirt or debris which interferes with proper functioning.

These and other problems are alleviated in the present invention as will be seen by the following discussion.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the top of a box embodying the invention.

FIG. 2 is a perspective view showing the bottom of the box of FIG. 1.

FIG. 3 is a side view of the rows of interposed beads of the embodiment of FIG. 1.

FIG. 4 is an end view ofthe rows of interposed beads.

FIG. 5 is an elevation view of boxes of FIG. 1 vertically stacked.

FIG. 6 is a section view through line 6-6 of FIG. 3.

FIG. 7 is a side view of an alternate embodiment of the invention.

FIG. 8 is an end view ofthe embodiment of FIG. 7.

FIG. 9 is an elevation view of boxes of FIG. 1 stacked with offset and spacing.

FIG. 10 is a perspective schematic view of boxes embodying the invention cross-stacked in a solid formation.

FIG. 11 is a plan view ofmatrix ofFlG. 10.

FIG. 12 is an elevational partially schematic view of another embodiment ofthe invention.

LII

SUMMARY OF THE INVENTION A stackable body is provided on upwardand downwardfacing surfaces with groups of protuberances oriented in rows wherein upon stacking, the rows mate such that the protuberances of one row are axially interposed and offset between the protuberances of another row. The rows are parallel and the protuberances equally spaced so that the bodies may be stacked vertically aligned or may be staggered to form interconnected solid or spaced formations of stacks.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIGS. 1 and 2 a form of the invention is shown as employed in a box 1 having an upper surface or top 2 and a lower surface or bottom 4. The top 2 might typically be a removable cover although that would have no consequence as regards the invention except that the cover should be fairly well secured to the box. Upon the top 2 is a series of pads 6 and upon the bottom 4 a series of similar pads 8. Extending from each of the pads 6 are two parallel rows 10 consisting of protuberances 12 in this particular embodiment in the shape of semispherical beads which can be more plainly seen by reference to FIGS. 3 and 4 and more particular mention of which will be made later. Extending from each of the pads 8 are three parallel rows 14 consisting: of the same protuberances or beads 12 as in the rows 10. The sets of two and three rows may be conveniently referred to respectively as row groups 10 and 14 or alternatively as matrices. The row groups 10 and 14 are oriented on the upper and lower surfaces 2 and 4 respectively so that when boxes I are stacked as shown in FIG. 5 the rows are adjacent and interlock or nest in a manner now to be explained.

In order to exploit all the advantages of the invention all the rows must parallel and the beads must be equally spaced along the axis or the row as shown by the center distance X in FIG. 3. In the preferred embodiment where: the protuberances are symmetrical in cross section, the transaxial distance between rows should be the same distance X as shown in FIG. 4. As suming a datum position for the box 1 as being stacked in ver tical alignment as shown in FIG. 5, then the upward-facing row groups 10 will be axially and transaxially offset one-half the center distance X (FIG. 3) from the beads of the downward-facing row groups 14 to be interposed between and in contact with them. The complete interlocking of the thus mating row groups is shown in partial section in FIG. 6 taken through the line 6-6 of FIG. 3. The: dimension X may be chosen according to a number of factors which are apparent to those comprehending the invention. It is preferable that the beads be so spaced that contact be accomplished without bottoming that is, contacting the planar surface from which the opposing protuberances extend.

In order to effect the interposition of protuberances it is necessary as a minimum that one of the mating row groups have one row and that the other have two rows; or in other words, that one row group have at least one row and the other row group have at least one more row. As can be seen the interlocking effect will not resist vertical separation of stacked boxes but will resist horizontal movement. The relative resistance to dislodgement can be varied according to the number of rows in each mating row group, the ultimate number of interposed protuberances determining the total contact area and thereby the total force resisting rows dislodgement. The shape of the protuberances is also significant in effecting more or less strength in the stack. For example, the truncated cones 16 shown in FIGS. 7 and 8 would be more resistive than the beads shown in FIGS. 3 and 4. However, one of the essential advantages of the invention is that the protuberances be not easily deformed or broken and that they be of sufficient number to distribute the weight of the box evenly especially when they are not stacked and more importantly as to the bottom box in the stack. Thus they should not protrude excessively for it is in their number that the versatility, stacking strength, and other features of the invention are achieved rather than in their individual ability to resist horizontal movement. This advantage is best achieved when the extension or height of the protuberance is equal to or less than its cross distance or width at the place of joinder to the box.

It would also be possible to provide protuberances within the scope of the invention that would resist vertical dislodgement as well by shaping them for interference fit as by a terminal enlargement.

The bead or semispherical form 12 shown herein is particularly advantageous as the interposed beads show good interlocking and resistance to damage when the bead is hemispherical or less in its protrusion from the box.

This form is especially useful in boxes of foamed agglutinated polystyrene granules (commonly called beads, but not so here to avoid confusion) having been found to be superior to other forms in daily commercial use. The strength of a polystyrene body (of a given density) is most effected by the agglutination of the granules, for it is along the granule boundaries that failure usually occurs. Failure through fracture of the granules is considered to indicate the maximum achievable strength. Normally in production products, failure is at granule boundaries. It would seem then that for maximum strength the beads 12 should be formed of as few granules as possible which would also extend into the box. Thus the protuberance would have less area of granule boundaries and be less susceptible to damage. It has been found to the contrary, however, that such relatively large granules do not work well. They tend to bridge and fail to fill the mold cavity constituting the protuberance. In addition, it has been found that beads formed from a plurality of smaller granules have higher compressive strength and are stronger and more resistant to deformation or splitting at granule boundaries than a few larger granules as long as there is no easy starting point for granule boundary separation. Thus the semispherical bead 12 shown in FIG. 3 with at least about five and preferably about 6-8 polystyrene granules 18 across its width is exceptionally resistant to damage and may be conveniently molded while providing good stacking effectiveness. The truncated cones 16 of FigS. 7 and 8 are not as desirable because the sharp corner is an easy starting point for granule separation. Having described the form of the protuberances and their general and preferred function in stacking there will now be described some of the special capabilities available with the invention. FIG. shows a stack in vertical alignment with maximum interlocking of the matrices. It is noted that the interlocking shown in FIGS. 5 and 9 is partially schematic since in practice, one row is partially hidden as in FIGS. 3 and 4. The boxes 1 can be staggered along the row in increments equal to the center distance X so as to form a staggered spaced formation such as in FIG. 9. The formation need not be spaced but may be solid as shown schematically in FIG. 10 where rectangular boxes having long sides and short sides 22 and row groups as in FIG. 1 are stacked according to the pattern shown in FIG, II where the pattern is reversed in alternate levels. The overlap of row groups is shown by the dotted lines indicating a subsequent level where interlocking of protuberances takes place as shown in part in the shaded areas 24.

Ventilation and environmental control are available even with a solid formation by choosing an appropriate size and number of row groups so that there is some space between the interlocked protuberances. At a minimum the channel is the height of the protuberance. More effective ventilation and environmental control is possible by providing the open channels between row groups as described and shown herein, the pads 6 and 8 providing an increased spacing. By adoption of a staggered formation even greater ventilation is possible.

In a commercial application of this preferred embodiment polystyrene box is used for transporting frozen fish. The box is approximately I6Xl2inches and has first row groups of two rows on its upper surface; one row group along each of the long sides and one down the center. These row groups are interrupted by a channel across the width at the center to essentially form the six row groups 10 shown in FIG. 1. Second similar row groups 14 are formed on the bottom surface, each having three rows. The beads are seven-sixteenths inch at their greatest diameter, are spaced one-half inch on center, and have a height of about one-eighth inch. The beads tend to become somewhat flattened in use which does not interfere with their nesting function and is in fact advantageous for overcoming irregularities when placing the box on a planar surface. The six first row groups 10 have l3 beads per row and six second row groups 14 have 14 beads per row. Another application of staggered formation is the ability to tightly pack fixed-size transports, such as trucks and trains by merely stacking the boxes at appropriate spacing to tightly pack the space. It is noted that if the center distance between rows of a row group is the same as that along the row axis, then it is possible to use the compound formation of FIGS. 10 and 11 where boxes are turned at right angles.

Rigid stacking of nonsymmetrical bodies can be achieved if mating surfaces are available such as in the embodiment shown in FIG, 12. All that is required is that each surface be capable of adjacentwise coincidence with at least one other surface.

The box 26 has on one side a flat surface 28 and on the other side two surfaces 30 and 32. When stacked, the flat surfaces 28 mate and the surfaces 30 and 32 mate by alternately inverting the boxes. Four row groups 34-40 are provided. It is possible in any case where a flat surface such as 28 is found to stagger and interconnect stacks, although this can be done only to a limited extent with the unsymmetrical surfaces 30 and 32 because the boxes cannot be stacked cross wise in the later case. So many variations are possible within the broad scope of the invention that further explication is unnecessary.

I claim:

1. A stackable body comprising; an upper surface and a lower surface each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being mounted on pads upon the body and oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surface the protuberances of each first row group are axially interposed between and in ofiset contact with the protuberances ofa second row group.

2. The stackable body of claim I wherein the protuberances are of diminishing circular cross section and are equally spaced both axially and transaxially of the rows.

3. The stackable body of claim 2 wherein the protuberances are semispherical in shape.

4. The stackable body of claim 3 wherein the body is foamed agglutinated polystyrene granules.

5. The stackable body of claim 4 wherein an average of at least five granules extend across the greatest diameter of the protuberances.

6. A stackable body comprising an upper and lower surface, each of said surfaces being capable of adjacentwise coincidence with at least one of them; at least one first row group comprising at least one row of equally spaced protuberances; at least one second row group comprising at least two rows of said equally spaced protuberances; the row groups being oriented upon the surfaces so that upon stacking by adjacentwise coincidence of the surfaces the protuberances of each first row group are axially interposed between and in offset contact with the protuberances of the second row group and the protuberances are ofdiminishing circular cross section are equally spaced both axially and transaxially of the rows a distance such that the protuberances are interposed in contact without bottoming on the surfaces.

7. The stackable body of claim 6 wherein the body is rectangular in plan having a single planar upper surface and a single planar lower surface and having row groups extending parallel to one dimension of the rectangle along the edges thereof.

8. The stackable body of claim 7 further comprising a row group extending centrally of the rectangle and parallel to the other row groups.

9. The stackable body of claim 7 wherein the row groups are mounted on pads upon the body. 5

a i i l 1!

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US879455 *May 29, 1907Feb 18, 1908Charles W FrostToy building-block.
US2849151 *Jan 27, 1955Aug 26, 1958American Viscose CorpStacking container
US3005282 *Jul 28, 1958Oct 24, 1961Interlego AgToy building brick
US3371816 *Oct 22, 1965Mar 5, 1968Fausto M. RicciCollapsible receptacle
US3393858 *May 2, 1967Jul 23, 1968Laeisz FRectangular collapsible carton for the shipment of bananas
US3481502 *Jun 27, 1968Dec 2, 1969Mitchell J SlaymanContainers with interfitted cleats
FR1300206A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3942654 *Mar 22, 1974Mar 9, 1976Performance Packaging, Inc.Self-adhering support
US4234092 *Apr 17, 1978Nov 18, 1980Edwin AxelContainer
US4609106 *Oct 23, 1984Sep 2, 1986Vittorio GentiliPortable jerrican-like container having a suitable-to-be-palletized casing
US4796757 *Jun 1, 1987Jan 10, 1989Strunkmann Meister Karl EVessel
US4815591 *May 9, 1988Mar 28, 1989Tivy Michael BOil change container
US4844263 *Feb 19, 1988Jul 4, 1989Hercules, IncorporatedFood container
US4910033 *May 13, 1988Mar 20, 1990W. R. Grace & Co.Vacuum skin packages with reduced product discoloration
US4938358 *Aug 18, 1989Jul 3, 1990Pantasote, Inc.Storage container
US5060819 *Oct 20, 1989Oct 29, 1991Rehrig-Pacific Company, Inc.Nestable low depth tray
US5061218 *Jul 9, 1990Oct 29, 1991Real Blocks, Inc.Toy building blocks
US5087462 *Oct 12, 1989Feb 11, 1992W. R. Grace & Co.-ConnVacuum skin packages with reduced product discoloration and method of making
US5176272 *May 13, 1991Jan 5, 1993United Plastic Films, Inc.Container for spooled materials
US5186330 *Dec 27, 1991Feb 16, 1993Mcclure Industries, Inc.Stackable container
US5205411 *Jul 8, 1992Apr 27, 1993Hoechst AktiengesellschaftEnd wall for a wound roll, exhibiting improved resistance to lateral breaking
US5248035 *Mar 24, 1992Sep 28, 1993Patrick GallagherCollection and storage unit for recyclable containers
US5273175 *Jan 28, 1993Dec 28, 1993Rehrig Pacific Company, Inc.Split box case construction
US5324919 *Feb 2, 1994Jun 28, 1994Adams Industries, Inc.Open coil heater for efficient transport with nestable heating elements
US5329098 *Sep 11, 1992Jul 12, 1994Adams Industries, Inc.Open coil heater for efficient transport
US5368183 *Apr 23, 1993Nov 29, 1994Singer; Stuart H.Meal tray system
US5392945 *Nov 23, 1993Feb 28, 1995Eastman Kodak CompanyStackable container for premoistened wipes
US5507389 *Jan 17, 1995Apr 16, 1996Reckitt & Colman, Inc.Stackable container for premoistened wipes
US5555996 *Aug 6, 1993Sep 17, 1996Rehrig Pacific CompanyBag-in box with split lid
US5642810 *Jan 2, 1996Jul 1, 1997Carlisle Plastics, Inc.Container/dispenser for rolled plastic bags
US5676251 *Aug 23, 1996Oct 14, 1997The Coca-Cola CompanyFood service kit and method for using
US5709304 *Oct 15, 1996Jan 20, 1998The Coca-Cola CompanyFood service kit
US5833115 *Feb 4, 1997Nov 10, 1998Dean Foods CompanyContainer
US5855310 *Feb 18, 1997Jan 5, 1999Lear CorporationRemovable interior storage container for motor vehicle
US5876776 *Oct 15, 1996Mar 2, 1999The Coca-Cola CompanyMethod for using food service kit
US5890595 *Sep 29, 1997Apr 6, 1999The Coca-Cola CompanyFood service kit
US5967322 *Feb 2, 1995Oct 19, 1999Rehrig Pacific Company, Inc.Container assembly with tamper evident seal
US6889838 *Feb 3, 2003May 10, 2005Atlas Copco Electric Tools GmbhTool Box
US6955273 *Dec 19, 2000Oct 18, 2005Arca Systems AbCollapsible bulk container
US7337917 *Jun 25, 2004Mar 4, 2008Dart Industries Inc.Interlockable seal
US7537119 *May 12, 2005May 26, 2009Environmental Container SystemsStackable container apparatus and methods
US7740138Jul 11, 2008Jun 22, 2010Environmental Container Systems, Inc.Stackable container apparatus and methods
US8016966Oct 28, 2008Sep 13, 2011Environmental Cotainer SystemsStrengthened equipment cases and methods of making same
US8087527 *Aug 27, 2008Jan 3, 2012Graphic Packaging International, Inc.Interconnecting container system for food or other product
US8146762 *Mar 8, 2007Apr 3, 2012Nalge Nunc International CorporationFlexible container handling system
US8640911 *Apr 6, 2006Feb 4, 2014Hardigg Industries, Inc.Modular case and method of forming the same
US8668285Aug 13, 2008Mar 11, 2014Becklin Holdings, Inc.Systems and method for securing electronics equipment
US8763836Dec 8, 2008Jul 1, 2014Becklin Holdings, Inc.Modular equipment case with sealing system
US8789699 *Jan 14, 2009Jul 29, 2014Hardigg Industries, Inc.Container assembly
US8850681Aug 27, 2013Oct 7, 2014Hardigg Industries, Inc.Modular case and method of forming the same
US8851287Feb 27, 2009Oct 7, 2014Becklin Holdings, Inc.Container stacking system with universal members
US8905255Feb 28, 2012Dec 9, 2014Nalge Nunc International CorporationFlexible container handling system
US9108766Jul 19, 2013Aug 18, 2015S.C. Johnson & Son, Inc.Storage container systems
US9511895 *Apr 12, 2005Dec 6, 2016Free Pack Net Holding SaglPackage assembly, in particular a returnable type package assembly
US9682799Jul 14, 2015Jun 20, 2017S. C. Johnson & Son, Inc.Storage container systems
US9738198Mar 23, 2015Aug 22, 2017Robert Quinn SwinkLoad and lock containers for carrying goods in vehicles and associated methods
US9802741Dec 10, 2014Oct 31, 2017Becklin Holdings, Inc.Container with padlock mount
US20030102309 *Dec 19, 2000Jun 5, 2003Peter HartwallCollapsible bulk container
US20060006187 *Jun 25, 2004Jan 12, 2006Hanno KortlevenInterlockable seal
US20060254946 *May 12, 2005Nov 16, 2006Environmental Container Systems, Inc., D/B/A Ecs Composites, Inc.Stackable container apparatus and methods
US20070045310 *Aug 24, 2006Mar 1, 2007Tdk CorporationStorage container
US20070138045 *Dec 21, 2005Jun 21, 2007Sonoco Development, Inc.Stackable blow-molded container and cap therefor
US20070209960 *Mar 8, 2007Sep 13, 2007Nalge Nunc InternationalFlexible Container Handling System
US20070221670 *Apr 12, 2005Sep 27, 2007Orsey Venture Llc.Package Assembly, in Particular a Returnable Type Package Assembly
US20070245651 *Apr 6, 2006Oct 25, 2007Hardigg Industries, Inc.Modular case and method of forming the same
US20080060966 *May 4, 2007Mar 13, 2008Petfast LimitedStack of containers
US20080264820 *Jul 11, 2008Oct 30, 2008Environmental Container Systems Inc., D/B/A Ecs CompositesStackable container apparatus and methods
US20080308439 *Nov 20, 2007Dec 18, 2008Freshxtend Technologies Corp.Grooved Lid for Packaging of Fresh Fruits, Vegetables and Flowers in Corresponding Modified Atmosphere Trays
US20090057306 *Aug 27, 2008Mar 5, 2009Graphic Packaging International, Inc.Interconnecting container system for food or other product
US20090065560 *Sep 5, 2008Mar 12, 2009Colgate-Palmolive CompanyMulti-pack of product packages
US20090145790 *Dec 10, 2007Jun 11, 2009Michael Harmik PanosianModular storage system
US20090178946 *Jan 14, 2009Jul 16, 2009Hardigg Industries, Inc.Container assembly
US20100038328 *Aug 13, 2008Feb 18, 2010Environmental Container Systems, inc., dba ECS CompositesSystems and method for securing electronics equipment
US20100102055 *Oct 28, 2008Apr 29, 2010Environmental Container Systems, Inc., D/B/A Ecs CompositesStrengthened equipment cases and methods of making same
US20100140270 *Dec 8, 2008Jun 10, 2010Environmental Container Systems, Inc. D/B/A Ecs CompositesModular equipment case
US20100219193 *Feb 27, 2009Sep 2, 2010Environmental Container Systems, D/B/A Ecs CompositesContainer stacking system with universal members
US20110139745 *Jun 2, 2009Jun 16, 2011Ben EzraModular bottle closure
US20110180452 *Jan 25, 2010Jul 28, 2011Mattel, Inc.Display Assembly
US20130036707 *Dec 24, 2010Feb 14, 2013Luca ZacchiModular packing system
US20140305829 *Apr 14, 2014Oct 16, 2014Peter RoeslerOrganizing system with packing boxes
US20150083632 *Sep 29, 2014Mar 26, 2015Becklin Holdings, Inc.Hybrid stacking system for containers
US20150344174 *Jun 4, 2014Dec 3, 2015Shenzhen China Star Optoelectronics Technology Co. Ltd.Pallet and packaging case
USRE44656Dec 13, 2010Dec 24, 2013Becklin Holdings, Inc.Stackable container apparatus and methods
USRE45448Nov 29, 2013Apr 7, 2015Becklin Holdings, Inc.Stackable container apparatus and methods
EP0058003B1 *Jan 25, 1982Jan 21, 1987Bigelow-Sanford, Inc.Shipping pallet and a package formed therefrom
EP0522450A1 *Jul 2, 1992Jan 13, 1993Hoechst AktiengesellschaftFlange for core of rolled material having increased resistance to damage to its sides
WO2004060760A1 *Dec 24, 2003Jul 22, 2004Rentapack S.A.Containers suitable for being stacked and placed side by side, with means for their alignment
Classifications
U.S. Classification206/508, 206/511, 446/128, 206/509, 426/419, 206/821
International ClassificationB65D21/02
Cooperative ClassificationY10S206/821, B65D21/0235
European ClassificationB65D21/02H