Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3618611 A
Publication typeGrant
Publication dateNov 9, 1971
Filing dateMar 5, 1969
Priority dateMar 5, 1969
Publication numberUS 3618611 A, US 3618611A, US-A-3618611, US3618611 A, US3618611A
InventorsUrban Julius C
Original AssigneeUrban Julius C
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vacuum rotary dissector
US 3618611 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent I 72] Inventor Julius C. Urban 10533 Sarah St., North Hollywood, Calif. 91602 [21 Appl. No. 804,598

[22] Filed Mar. 5, 1969 [45] Patented Nov. 9, 1971 [54] VACUUM ROTARY DISSECTOR 3,6l8,6ll

Primary Examiner-Channing L. Pace A!torney Herzig & Walsh ABSTRACT: The device is a surgical instrument appropriately termed a vacuum rotary dissector, for purposes of performing delicate surgical operations such as brain operations for another elongated sleeve having a bullet-shaped end with a side opening in it. At the end of the inner sleeve, there is a cutout providing side edges which are cutting edges that rotate adjacent to the side opening in the outer sleeve. the tip end of the inner sleeve also being bullet shaped to conform to the interior contour of the tip and of the outer sleeve.

The improvements reside in the contours of the tip ends of the sleeves, the particular shape of the side opening in the outer sleeve, and the particular configuration of the cutting edges or surfaces on the inner sleeve. Also, axial pressure is maintained on the outer sleeve to urge its end surfaces into engagement with surfaces of the tip of the inner sleeve.

PATENTED NOV 9 l97| sum 1 BF 2 VACUUM ROTARY DISSECTOR SUMMARY OF THE INVENTION The device of the invention is a motorized surgical instrument described technically as a vacuum rotary dissector. It is an instrument for performing delicate surgicaloperations such as brain operations where it is necessary to remove undesirable tissues or cut them away in difficult to reachinternal locations.

TI-Ie instrument is of a type embodying an elongatedtubular member or sleeve which is motor-driven by way of a motor mounted in the body of .the instrument which can beheld in one hand. The sleeve which is rotated is the inner sleeve, and it rotates within a second elongated outer sleeve. The outer sleeve is bullet shaped at the end, that is, ogival in shape. The tip end of the inner sleeve is also bullet-shaped, or ogival, being contoured to engage the inner surfaces of the tip end of the outer sleeve which has a side opening of a particular shape. The tip end of the inner sleeve has a cutoutfthe sides of which form cutting edges that rotate adjacentto the side opening in the outer sleeve by which the cutting or dissecting operations are performed. A particular technique is utilizedas described in detail hereinafter in preparing the contiguous surfaces to insure that the surfaces of the tip 'end of the inner sleeve closely and precisely engage and arecontiguous to the inner surfaces of the tip end of the outer sleeve. The cutting edge surfaces at the tip end of the inner sleeve are provided each with an intermediate point to insure that these cutting surfaces will cut into the tissue and not bind or stall.

The inner sleeve is motor-driven by way of a motor embodied in the body of the instrument, the outer sleeve being manually adjustable to adjust the position of the side-opening in the tip end. The outer sleeve is removable from the instrument and the inner sleeve is similarly removable, it having a splined connection to the motor drive means. Means are further provided to normally apply an axial force to the outer sleeve to insure that its tip end engages the outer surface of the tip end of the inner sleeve whereby the purposes of the instrument are effectively and efficiently realized as will be made more clear hereinafter.

The inner end of the inner sleevemakes connections with the motor drive in sealing relationship so that a vacuum can be applied to the bore of the inner sleeve and thus enable the instrument to effectively draw away tissues that have been cut by the instrument. A flexible connection is associated with the body of the instrument for applying the vacuum.

In the light of the foregoing, the primary object of the invention is to provide an improved surgical instrument of the vacuum rotary dissector type, the improvements in effectiveness stemming from unique constructions and configurations of the cutting surfaces and edges of the instrument.

Another object is to provide an improved instrument as in the foregoing wherein an elongated sleeve rotates within a second elongated sleeve, the inner sleeve having cutting edges that move adjacent to a side opening in the tip end of the outer sleeve and each of the cutting edges on the inner sleeve having an intermediate point to insure effective cutting into tissues.

Another object is to provide an improved instrument as-in the foregoing wherein the tip end of the inner sleeve is bullet shaped and the interior contours of the tip end of the outer sleeve is of bullet shape with these surfaces held in contiguous relationship during operation.

Another object is to provide an instrument having the characteristic as in the foregoing object and means to exert an axial force on the outer sleeve to insure that the said surfaces are held in contiguous relationship whereby to more effectively realize the purposes of the cutting edges of the instrument.

Further objects and additional advantages of the invention will become apparent from the following detailed description and annexed drawings wherein:

FIG. 1 is a pictorial view of a tion;

FIG. 2 is a sectional view taken along the line 2-2 of FIG.

preferred form of the invendissector aligned vertically,

FIG. 3 is a view of the tip end of the outer sleeve;

FIG. 4 is a sectional view taken along the line 4-4 of FIG.

FIG. 5 is a perspective view of the tip end of the inner sleeve;

FIGS. 6, 7 and 8 are sectional views taken along the lines 6-6, 7-7 and 8-8 ofFIG. 2.

FIG. 1 shows the instrument in a position with the rotary although it is to be understood that the instrumentas shown may be gripped like a pistol, and in use, the dissector stem may extend in any direction, but more usuallyin a generally horizontal direction.

The instrument embodies a cylindrical body 10, having an end closure 12, of smaller diameter to which flexible electric cable or cord 14 is connected for supplying power to the motor. At the end of the cylindrical housing part 16 is a flange part 18 with scalloped edges to facilitate unscrewing the motor housing 16. The end of the housing 16 is threaded onto a threaded boss from which extends an integral cylindrical part in which is received the shaft of the motor that drives the instrument. At the end of the cylindrical part is an end cap 22 held on by a small screw 24. Integral with this extending cylindrical part is the cylindrical body 28 which houses the drive mechanism for the dissector. The shaft of the motor 16 drives worm 30 which is within the cylindrical portion 20, and this worm meshes with a gear 32 which will be described more in detail presently.

The body part 28 of the instrument comprises a cylindrical barrel part 36. At the upper end of this barrel part is a bore 38 in which is received a fitting 40 having an upper tapered part 42 providing an annular shoulder 44 that fits against the upper end of the barrel 36. Numeral 48 designates an annular counterbore in which is a sealing O-ring 50 that seals the fitting 40 in the end'of the barrel 36. I

The fitting 40 has an angled fitting or nipple 52 which is externally ribbed, as shown at 54, to receive a flexible tubular connection The fitting 40 has a bore 56 whereby vacuum may be applied to the interior of the instrument, as will be described. The fitting 40 has a larger end counterbore 60, and numeral 62 designates a channel in the side wall of this part of the fitting 40. The fitting 40 is held secure in the bore 38 by means of the setscrew 64. At the end of the bore 38 in body 36 is a counterbore 70 which receives sealing O-ring 72, this counterbore being adjacent to a smaller bore 74 that connects to a larger channel 76 in the body 36. The bore 62 in the fitting 40 registers with a transverse bore 78 in the body 36, which is for purposes of controlling the degree of vacuum applied to the interior of the instrument and which is controlled by a manually actuated valve member or shutter 80, which will be described more in detail presently.

In the lower end of the bore 76 is a head or fitting '82 which has an end part 84 that engages against the end of the body 36 and a portion 86 of smaller diameter that fits inside of the bore 76. The fitting 82 has an extending end or flange part 90.

Numeral 92 designates a bushing that is aligned 'within bore 76 and on which is mounted the gear 32, this bushing having a bore 94. Numeral 96 designates a bushing made of a synthetic material such as Teflon or material of similar type which does not require lubrication which fits "within the bore 76. This bushing has a bore 100 within which an end part of the bushing 92 fits. The end of the bushing 96 adjacent to the gear 32 is tapered as shown at 102, so as to eliminate unnecessary friction between the bushing and the gear. Numeral 104 designates a bushing that is similar to the bushing 96 on the opposite side of the gear 32 and fitting in the bore 76, and it having a similar bore 106. As may be seen, the Teflon bushings provide a substantially frictionless rotary mounting for the bushing 92 that carries gear 32 and one that does not require lubrication or maintenance.

Numeral designates the outer elongated sleeve of the vacuum dissector. The inner end of the sleeve is enlarged as shown at 122 and it has a threaded part, as shown at 124, the threaded end being threaded into a threaded bore 126 in fitting 128, which engages with the fitting 82 in the end of the body 36 as will be described.

On the inner end or side of the fitting 128, it has a boss 130 that fits into the bore 130 in the fitting 82 and it can be held in the bore by spring detents as will be described. A sea] is provided in a small counterbore 134 at the inner end of the threaded bore 126. The outer part of the fitting 128 as designated at 138 is of larger diameter and between this part and the boss 130 is a flange 140. Received on the outer part or boss 138 is a manual rotating knob or disc 142 having a bore 144 that receives the boss 138 and to which the knob 142 is secured by a setscrew 146 in radial bore 148. The enlarged part 122 at the end of the outer sleeve 120 is in a bore or counterbore 150 in the boss 138 which is of slightly larger diameter.

As may be seen in FIG. 8 the boss 130 of fitting 82 has three radial bores 154, 156 and 158 which are equally angularly spaced and in which are biasing springs 160, 162 and 164. These springs act against balls 166, 168 and 170 which cooperate with recesses or depressions that are complimentary to the spherical balls in the sidewalls of the boss 130 as designated at 172, 174 and 176. The balls and the recesses from spring detents which releaseably hold the fitting 128, and knob 142 and outer sleeve 120 in position, that is in a position which allows release and removal. In the lower end surface of fitting 82 there is provided a transverse groove 180 in which is received a yoke or slide 182 which constitutes one arm of a bellcrank lever 184 which has another arm 186 that extends adjacent to body 36 and the outer end surface of which is knurled as shown at 188 to adapt it to be engaged by the thumb. The bellcrank lever 184, as may be seen by exerting a slight inward push on the arm 186, is rotated so as to rotate the arm 182 and push downwardly slightly against the surface of flange 140 so as to push the assembly of knob 142 and the fitting 128 and the outer sleeve 120 outwardly so as to release the engagement of the ball detents as described in connection with the FIG. 6 and allow the said assembly to be removed. Otherwise this assembly is held in position as described.

Numeral 200 designates the inner sleeve of the rotary dissector. It rotates within the outer sleeve 120. The tip end of the outer sleeve is bullet shaped or ogival, this tip end being designated at 202. The tip end of the inner sleeve 200 is of similar shape as designated at 204, that is ogival, so that it fits into the inside of the tip end of the outer sleeve with the surfaces mutually contoured to be in engagement with each other. The tip end 202 of the outer sleeve 120 has a side opening as shown at 206 which is of slightly less than 180 in lateral extent and the upper and lower sides of which are of configuration as may be seen in FIG. 3. The tip end of the inner sleeve 200 has a side opening also as designated at 208 and the side edges of this opening have a particular contour as will be described. These side edged are designated at 210 and 212 in FIG. 3.

The cutting edge 210 has an intermediate point 214 and the cutting edge 212 has an intermediate point 216 which points serve the purposes of insuring that the edges will cut into the tissue being dissected without binding or stalling of the sleeve 200. The particular shapes of the tip ends of the sleeves contribute to the realization of it being possible to maintain the cutting edges on the inner sleeve. Maintenance of these edges requires a seal between the surface of the tip end of the inner sleeve and the inner surface of the tip end of the outer sleeve, that is, that these surfaces are in contiguous engagement during operation. In preparing these surfaces, they are lapped with lapping compound which is then removed. No air space remains between these surfaces and the inner sleeve is able to rotate effectively maintaining the cutting surfaces without rotation of the outer sleeve.

At the inner end of the sleeve 200 it has a part 220 of slightly larger diameter that is received in the bore 94 and this end passes through the bore 74 and is sealed by the O-ring 74. Sleeve 200 itself, has a bore 222 which communicates with the bore 60 as shown in FIG. 2. At the inner end of the enlarged part 220 of the inner sleeve, there is a collar 230 which has a group of spaced axial spline grooves 232, there being four of these grooves as may be seen in FIG. 5. At the end of the bushing 92 it has four equally spaced axially extending members or splines 234 that engage in spline grooves 232. Thus, when the spline members are brought into engagement axially as may be seen, the bushing 92 will drive, that is, rotate the inner sleeve 200.

The manual control or shutter valve is of angular configuration as may be seen in FIG. 1 and in FIG. 6, having a flat surface 240 that fits against a fiat side surface on the body 28. It has another surface part 241 including portions at a slight angle to each other and lying in planes substantially normal to the plane of the part 240. The part 240 is pivoted to the flat side surface of the body 28 on screw or pivot pin 242, a part of the surface 240 lying adjacent to the end of the orifice or channel 78 so as to control the degree of vacuum within the instrument.

The effect of the balls 166, 168 and 170, as described in connection with FIG. 6, is to urge the part and the assembly comprised of fitting 128 and knob 142 and the outer sleeve 120 axially inwardly so that the inside surface of the tip end of the outer sleeve 120 is urged against the surface of the tip end of the inner sleeve.

From foregoing, those skilled in the art will understand the operation of the device. The body 10 provides a pistol grip and the instrument may be gripped in this manner by the surgeon and the stem formed by the inner sleeve 200 and outer sleeve 120 may be pointed or extended in any direction. The angle between body 10 and stem 120 is slightly greater than 90. The motor is energized for a driving worm 30 which drives the helical gear 32 and consequently the inner sleeve 200 as described in the foregoing, the drive being virtually frictionless and requiring no lubrication. Vacuum is applied to a flexible tube and by way of nozzle 52 to the interior of the instrument and to the interior of the inner sleeve 200. The degree of vacuum is controlled by manual adjustment of the shutter valve 80 by the surgeon's thumb. The tissue is cut at whatever point the operation is being conducted by the rotation of the cutting edges 210 and 212 and points 214 and 216 adjacent the inner surfaces of the tip end ofthe outer sleeve 120, that is, adjacent to the opening 206 which, as stated, has a lateral extent of less than so that one of the cutting edges is always passing a part of this opening. The vacuum serves to draw the tissue to be cut into the opening, the degree of vacuum being adjusted as necessary to perform this function and to remove the cut tissue. The points 214 and 216 insure that the cutting edges will cut into the tissue without binding. By reason of the configuration of the tip ends of the inner and outer sleeves as described, the cutting edges can be maintained and the cutting edges operate adjacent to the opening 206 in such a way as to insure the desired efiectiveness of the instrument. The outer sleeve can be removed as described simply by exerting pressure on the arm 188 of bellcrank lever 184 sufficient to overcome the ball detents to allow them to release for withdrawal of the boss 130.

From the foregoing, those skilled in the art will understand and appreciate the construction and operation of the device of the invention and the manner in which it achieves and realizes all of the objects and advantages as outlined in the foregoing, as well as the many additional advantages that are apparent from the detailed description.

The foregoing disclosure is representative of a preferred form of the invention and is to be interpreted in an illustrative rather than a limiting sense and the invention to be accorded full scope of the claims appended hereto.

I claim:

1. A surgical instrument comprising;

a support;

an outer tubular member extending from said support and having a closed generally hemispherical distal end and a first laterally directed opening adjacent its distal end and extending axially along said outer tubular member and partially along said generally hemispherical end;

an inner tubular member rotatably mounted in said outer tubular member and having a complementary generally hemispherical end frictionally bearing on an inner complementary surface of the distal end of said outer tubular member; said inner tubular member having a second laterally directed opening axially coextensive with said first opening and defining generally axially extending cutting edges coincident with the inner surface of said outer tubular member; drive means on said support for continuously rotating said inner tubular member relative to said support and said outer tubular member; and biasing means resiliently urging said tubular members axially relative to each other to maintain said hemispherical ends in close surface contact. 2. An instrument as defined in claim 1 wherein said cutting edges include a pointed portion axially intermediate the ends of said openings.

3. An instrument as defined in claim 1 including means for applying suction to the interior of said inner tubular member.

4. An instrument as defined in claim 3 including means for selectively varying the degree of suction.

5. An instrument as defined in claim 1 including means for selectively rotating said outer tubular member relative to said support to direct said first opening in a selected direction.

6. An instrument as defined in claim 1 wherein said cutting edges are on opposite sides of said second opening and wherein said drive means are reversible.

7. An instrument as defined in claim 1 wherein said biasing means comprise spring-urged ball detents on said support engageable with recess means on said outer tubular member, said ball detent means also releasably holding said outer tubular member on said support.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1493240 *Feb 15, 1923May 6, 1924Frank J BohnSurgical bone cutter and extractor
US1663761 *Feb 7, 1927Mar 27, 1928George A JohnsonSurgical instrument
US2503495 *Mar 3, 1947Apr 11, 1950Koester Frederick ACoupling
US2708437 *Mar 31, 1952May 17, 1955Elizabeth Painter HutchinsSurgical instrument
US2721555 *Dec 3, 1952Oct 25, 1955Jenney John ADermatome
US3173414 *Mar 6, 1962Mar 16, 1965Levallois Optique Et PrecBiopsy probe, and combination thereof with an endoscope
DE437932C *May 21, 1925Nov 30, 1926ReinigerGeraet zum Entnehmen von Gewebestuecken aus der Innenwandung von Koerperhoehlen
FR1161400A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3776238 *Aug 24, 1971Dec 4, 1973Univ CaliforniaOphthalmic instrument
US3811442 *Mar 23, 1972May 21, 1974A MarothHypodermic syringe holder and applicator
US3882872 *Apr 25, 1973May 13, 1975Henry T DinkelkampMethod and apparatus for cataract surgery
US3937222 *Nov 9, 1973Feb 10, 1976Surgical Design CorporationSurgical instrument employing cutter means
US3945375 *Apr 30, 1973Mar 23, 1976Surgical Design CorporationRotatable surgical instrument
US4014342 *Apr 11, 1975Mar 29, 1977Concept, Inc.Vitreous cutter
US4108182 *Feb 16, 1977Aug 22, 1978Concept Inc.Reciprocation vitreous suction cutter head
US4203444 *Nov 7, 1977May 20, 1980Dyonics, Inc.Surgical instrument suitable for closed surgery such as of the knee
US4274414 *Feb 21, 1979Jun 23, 1981Dyonics, Inc.Surgical instrument
US4320761 *Aug 13, 1980Mar 23, 1982Haddad Heskel MSurgical device for excision of tissue
US4590936 *Feb 1, 1984May 27, 1986Ewald HenslerMicrosurgical instrument
US4593465 *Nov 7, 1984Jun 10, 1986Bennett Brian ARotary nibbler
US4811734 *Aug 13, 1987Mar 14, 1989Baxter Travenol Laboratories, Inc.Surgical cutting instrument
US4834729 *Dec 30, 1986May 30, 1989Dyonics, Inc.Arthroscopic surgical instrument
US4844064 *Sep 30, 1987Jul 4, 1989Baxter Travenol Laboratories, Inc.Surgical cutting instrument with end and side openings
US4850354 *Aug 13, 1987Jul 25, 1989Baxter Travenol Laboratories, Inc.Surgical cutting instrument
US4867157 *Sep 30, 1987Sep 19, 1989Baxter Travenol Laboratories, Inc.Surgical cutting instrument
US4983179 *Mar 8, 1989Jan 8, 1991Smith & Nephew Dyonics Inc.Arthroscopic surgical instrument
US4998527 *Mar 26, 1990Mar 12, 1991Percutaneous Technologies Inc.Endoscopic abdominal, urological, and gynecological tissue removing device
US5007917 *Mar 8, 1990Apr 16, 1991Stryker CorporationSingle blade cutter for arthroscopic surgery
US5027792 *Dec 19, 1989Jul 2, 1991Percutaneous Technologies, Inc.Resecting system
US5085658 *Sep 5, 1989Feb 4, 1992Percutaneous TechnologiesNeurosurgical pathological tissue removing device
US5131382 *Mar 27, 1989Jul 21, 1992Meyer William FEndoscopic percutaneous discectomy device
US5152744 *Dec 27, 1990Oct 6, 1992Smith & Nephew DyonicsSurgical instrument
US5217479 *Feb 14, 1991Jun 8, 1993Linvatec CorporationSurgical cutting instrument
US5290308 *Jul 15, 1992Mar 1, 1994Edward Weck IncorporatedEndoscopic instrument
US5320635 *Nov 17, 1992Jun 14, 1994Smith & Nephew Dyonics, Inc.Surgical device with surgical element removably connected to drive element
US5322505 *Jul 29, 1992Jun 21, 1994Smith & Nephew Dyonics, Inc.Surgical instrument
US5489290 *May 28, 1993Feb 6, 1996Snowden-Pencer, Inc.Flush port for endoscopic surgical instruments
US5510070 *Apr 28, 1994Apr 23, 1996Smith & Nephew Dyonics, Inc.Method of fabricating a surgical instrument
US5592727 *Oct 12, 1995Jan 14, 1997Linvatec CorporationMethod of making arthroscopic shaver with rotatable collet and slide aspiration control valve
US5601583 *Feb 15, 1995Feb 11, 1997Smith & Nephew Endoscopy Inc.Surgical instrument
US5618293 *Jun 6, 1995Apr 8, 1997Smith & Nephews Dyonics, Inc.Surgical instrument
US5620415 *Sep 23, 1994Apr 15, 1997Smith & Dyonics, Inc.Surgical instrument
US5620447 *Sep 27, 1995Apr 15, 1997Smith & Nephew Dyonics Inc.Surgical instrument
US5658307 *Feb 16, 1996Aug 19, 1997Exconde; Primo D.Method of using a surgical dissector instrument
US5665101 *Apr 1, 1996Sep 9, 1997Linvatec CorporationEndoscopic or open lipectomy instrument
US5676012 *Dec 5, 1995Oct 14, 1997Spectrum Manufacturing, Inc.Process for forming endoscopic shaver blade from elongate tube
US5707350 *Apr 22, 1996Jan 13, 1998Smith & Nephew Endoscopy Inc.For insertion into a joint space of a body cavity
US5720760 *Feb 5, 1997Feb 24, 1998Linvatec CorporationEndoscopic or open lipectomy instrument
US5755731 *Dec 19, 1995May 26, 1998Smith & Nephew Dyonics, Inc.Curved surgical instrument with segmented inner member
US5782834 *Feb 14, 1997Jul 21, 1998Smith & Nephew, Inc.Surgical instrument
US5792167 *Sep 13, 1996Aug 11, 1998Stryker CorporationSurgical irrigation pump and tool system
US5827297 *Sep 30, 1993Oct 27, 1998Medicamat S.A.Device for transplanting small diameter hair grafts
US5833692 *Apr 10, 1996Nov 10, 1998Smith & Nephew, Inc.Surgical instrument
US5910152 *Jan 9, 1998Jun 8, 1999Xomed Surgical Products, Inc.For surgery
US5916231 *Jan 9, 1998Jun 29, 1999Xomed Surgical Products, Inc.Powered handpiece and surgical blades and methods therefor
US5922003 *May 8, 1998Jul 13, 1999Xomed Surgical Products, Inc.Angled rotary tissue cutting instrument and method of fabricating the same
US5957945 *Jan 9, 1998Sep 28, 1999Xomed Surgical Products, Inc.Powered handpiece system
US6007556 *Jun 8, 1998Dec 28, 1999Stryker CorporationSurgical irrigation pump and tool system
US6010477 *Jan 9, 1998Jan 4, 2000Xomed Surgical Products, Inc.Surgical blades assembly
US6080155 *Feb 27, 1995Jun 27, 2000Michelson; Gary KarlinMethod of inserting and preloading spinal implants
US6096038 *Jun 7, 1995Aug 1, 2000Michelson; Gary KarlinApparatus for inserting spinal implants
US6123705 *Oct 1, 1996Sep 26, 2000Sdgi Holdings, Inc.Interbody spinal fusion implants
US6149650 *May 8, 1998Nov 21, 2000Michelson; Gary KarlinThreaded spinal implant
US6210412Jun 7, 1995Apr 3, 2001Gary Karlin MichelsonMethod for inserting frusto-conical interbody spinal fusion implants
US6221088Nov 30, 1999Apr 24, 2001Xomed Surgical Products, Inc.Powered handpiece and surgical blades and methods thereof
US6224595Apr 20, 1998May 1, 2001Sofamor Danek Holdings, Inc.Method for inserting a spinal implant
US6264656May 8, 1998Jul 24, 2001Gary Karlin MichelsonThreaded spinal implant
US6270498Jun 7, 1995Aug 7, 2001Gary Karlin MichelsonApparatus for inserting spinal implants
US6277135 *Mar 17, 2000Aug 21, 2001Kuen-Chyr WangDriven rotary incision scalpel
US6342061Oct 27, 1999Jan 29, 2002Barry J. KaukerSurgical tool with integrated channel for irrigation
US6419684May 16, 2000Jul 16, 2002Linvatec CorporationEnd-cutting shaver blade for axial resection
US6436098Jan 16, 1996Aug 20, 2002Sofamor Danek Holdings, Inc.Method for inserting spinal implants and for securing a guard to the spine
US6758849Aug 18, 2000Jul 6, 2004Sdgi Holdings, Inc.Interbody spinal fusion implants
US6770074Nov 17, 2001Aug 3, 2004Gary Karlin MichelsonApparatus for use in inserting spinal implants
US6875213Feb 21, 2003Apr 5, 2005Sdgi Holdings, Inc.Method of inserting spinal implants with the use of imaging
US6923810Jun 7, 1995Aug 2, 2005Gary Karlin MichelsonFrusto-conical interbody spinal fusion implants
US7207991Mar 18, 2002Apr 24, 2007Warsaw Orthopedic, Inc.Method for the endoscopic correction of spinal disease
US7247161Mar 22, 2002Jul 24, 2007Gyrus Ent L.L.C.Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US7264622Oct 24, 2003Sep 4, 2007Warsaw Orthopedic, Inc.System for radial bone displacement
US7291149Oct 4, 1999Nov 6, 2007Warsaw Orthopedic, Inc.Method for inserting interbody spinal fusion implants
US7326214Aug 9, 2003Feb 5, 2008Warsaw Orthopedic, Inc.Bone cutting device having a cutting edge with a non-extending center
US7399303Aug 20, 2002Jul 15, 2008Warsaw Orthopedic, Inc.Bone cutting device and method for use thereof
US7416539Feb 28, 2007Aug 26, 2008Gyrus Ent L.L.C.Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US7431722Jun 6, 2000Oct 7, 2008Warsaw Orthopedic, Inc.Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine
US7452359Jun 7, 1995Nov 18, 2008Warsaw Orthopedic, Inc.Apparatus for inserting spinal implants
US7462187Sep 3, 2004Dec 9, 2008Gyrus Ent L.L.C.Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US7473263Jan 31, 2005Jan 6, 2009Gyrus Ent L.L.C.Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US7491205Jun 7, 1995Feb 17, 2009Warsaw Orthopedic, Inc.Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US7534254Jun 7, 1995May 19, 2009Warsaw Orthopedic, Inc.Threaded frusto-conical interbody spinal fusion implants
US7569054Nov 8, 2005Aug 4, 2009Warsaw Orthopedic, Inc.Tubular member having a passage and opposed bone contacting extensions
US7648466Oct 24, 2007Jan 19, 2010Ethicon Endo-Surgery, Inc.Manually rotatable piercer
US7686805Jul 1, 2004Mar 30, 2010Warsaw Orthopedic, Inc.Methods for distraction of a disc space
US7691148Mar 19, 2005Apr 6, 2010Warsaw Orthopedic, Inc.Frusto-conical spinal implant
US7722619Apr 25, 2006May 25, 2010Warsaw Orthopedic, Inc.Method of maintaining distraction of a spinal disc space
US7794411Oct 31, 2007Sep 14, 2010Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US7799044Jan 31, 2005Sep 21, 2010Gyrus Ent L.L.C.Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US7828800May 18, 2009Nov 9, 2010Warsaw Orthopedic, Inc.Threaded frusto-conical interbody spinal fusion implants
US7887565Feb 18, 2006Feb 15, 2011Warsaw Orthopedic, Inc.Apparatus and method for sequential distraction
US7914530Apr 25, 2006Mar 29, 2011Warsaw Orthopedic, Inc.Tissue dilator and method for performing a spinal procedure
US7918803Aug 4, 2009Apr 5, 2011Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US7942933Apr 3, 2010May 17, 2011Warsaw Orthopedic, Inc.Frusto-conical spinal implant
US7981050Feb 6, 2007Jul 19, 2011Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US7993347Jul 27, 2000Aug 9, 2011Warsaw Orthopedic, Inc.Guard for use in performing human interbody spinal surgery
US8057475Nov 9, 2010Nov 15, 2011Warsaw Orthopedic, Inc.Threaded interbody spinal fusion implant
US8066705Feb 21, 2003Nov 29, 2011Warsaw Orthopedic, Inc.Instrumentation for the endoscopic correction of spinal disease
US8226652Nov 14, 2011Jul 24, 2012Warsaw Orthopedic, Inc.Threaded frusto-conical spinal implants
US8251997Nov 29, 2011Aug 28, 2012Warsaw Orthopedic, Inc.Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US8353909Apr 25, 2006Jan 15, 2013Warsaw Orthopedic, Inc.Surgical instrument for distracting a spinal disc space
US8394033 *Jul 12, 2006Mar 12, 2013Boston Scientific Scimed, Inc.Biopsy device
US8409292May 17, 2011Apr 2, 2013Warsaw Orthopedic, Inc.Spinal fusion implant
US8454640Jan 31, 2005Jun 4, 2013Gyrus Ent L.L.C.Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
US8591435Mar 11, 2011Nov 26, 2013Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US8679118Jul 23, 2012Mar 25, 2014Warsaw Orthopedic, Inc.Spinal implants
US8721669Dec 6, 2011May 13, 2014Medtronic Xomed, Inc.Systems and methods for surgical removal of brain tumors
US8734447Jun 27, 2000May 27, 2014Warsaw Orthopedic, Inc.Apparatus and method of inserting spinal implants
US8758344Aug 28, 2012Jun 24, 2014Warsaw Orthopedic, Inc.Spinal implant and instruments
US8790276Mar 14, 2013Jul 29, 2014Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US8808199Mar 14, 2013Aug 19, 2014Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US20080027355 *Jul 12, 2006Jan 31, 2008Dicarlo Paul DBiopsy device
US20130190650 *Mar 8, 2013Jul 25, 2013Boston Scientific Scimed, Inc.Biopsy device
USRE38018Mar 7, 2001Mar 4, 2003Medtronic Xomed, Inc.Angled rotary tissue cutting instrument and method of fabricating the same
CN102368964BJan 20, 2010Jun 11, 2014麦德托尼克艾克斯欧麦德股份有限公司用于外科手术摘除脑瘤的系统和方法
DE2848314A1 *Nov 7, 1978May 10, 1979Dyonics IncChirurgisches instrument
DE3006577A1 *Feb 21, 1980Sep 4, 1980Dyonics IncChirurgisches instrument
DE3906301A1 *Feb 28, 1989Dec 14, 1989Olympus Optical CoSurgical resection instrument
DE9016261U1 *Nov 29, 1990Feb 21, 1991Kretz, Walter, 7527 Kraichtal, DeTitle not available
EP0499465A1 *Feb 13, 1992Aug 19, 1992Linvatec CorporationSurgical cutting instrument
EP0700663A2 *Sep 8, 1995Mar 13, 1996Bristol-Myers Squibb CompanyPower-assisted arthroscopic surgical device with suction tube
EP0830846A1 *Sep 24, 1997Mar 25, 1998Xomed Surgical Products, Inc.Powered handpiece and surgical blades and methods therefor
EP1166722A1 *Sep 8, 1995Jan 2, 2002Linvatec CorporationPower-assisted arthroscopic surgical device with suction tube
EP1256319A2 *Sep 24, 1997Nov 13, 2002Xomed Surgical Products, Inc.Powered handpiece and surgical blades and methods thereof
EP1256320A2 *Sep 24, 1997Nov 13, 2002Xomed Surgical Products, Inc.Powered handpiece and surgical blades and methods thereof
EP1256321A2 *Sep 24, 1997Nov 13, 2002Xomed Surgical Products, Inc.Powered handpiece and surgical blades and methods thereof
EP1256322A2 *Sep 24, 1997Nov 13, 2002Xomed Surgical Products, Inc.Powered handpiece and surgical blades and methods thereof
WO1992005742A1 *Sep 30, 1991Mar 29, 1992Georges ComteAncillary material for percutaneous dissectomy in the treatment of slipped discs
WO2010088115A2 *Jan 20, 2010Aug 5, 2010Medtronic Xomed, Inc.Systems and methods for surgical removal of brain tumors
WO2013082602A2Dec 3, 2012Jun 6, 2013Interscope, Inc.Insertable endoscopic instrument for tissue removal
Classifications
U.S. Classification606/170, 30/240, 30/133
International ClassificationA61B17/32
Cooperative ClassificationA61B17/32002
European ClassificationA61B17/32E2
Legal Events
DateCodeEventDescription
Apr 15, 1982AS02Assignment of assignor's interest
Owner name: URBAN ENGINEERING COMPANY, A CORP. OF CA.
Effective date: 19820305
Owner name: URBAN, JOHN C., EXECUTOR OF THE LAST WILL AND TEST
Apr 15, 1982AS05Letters testamentary
Free format text: URBAN, JOHN C., EXECUTOR * URBAN, JULIUS C., DEC D : 19810306
Apr 15, 1982ASAssignment
Owner name: URBAN ENGINEERING COMPANY, A CORP. OF CA.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:URBAN, JOHN C., EXECUTOR OF THE LAST WILL AND TESTAMENT OF JULIUS C. URBAN, DEC D.;REEL/FRAME:003967/0498
Effective date: 19820305
Owner name: URBAN, JOHN C., EXECUTOR
Free format text: LETTERS OF TESTAMENTARY;ASSIGNOR:URBAN, JULIUS C., DEC D;REEL/FRAME:003967/0497
Effective date: 19810306