Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3618663 A
Publication typeGrant
Publication dateNov 9, 1971
Filing dateMay 1, 1969
Priority dateMay 1, 1969
Publication numberUS 3618663 A, US 3618663A, US-A-3618663, US3618663 A, US3618663A
InventorsNeedham Riley B
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Shale oil production
US 3618663 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent inventor Riley B. Needham Bartlesvllle, Okla. Appl. No. 820,777 Filed May 1, 1969 Patented Nov. 9, 1971 Assignee Phillip Petroleum Company SHALE OlL PRODUCTION 5 Claims, 2 Drawing Figs.

US. Cl 166/247, 166/254. 166/272, 166/303 Int. Cl E2lh43/24, 1521b 43/26 Field of Search 166/247. 272. 303, 271, 254

a Is

[56] References Cited UNITED STATES PATENTS 3,342,257 9/1967 Jacobs etal. 1 166/247 3.465.819 9/1969 Dixon 166/247 Primary Examiner-Stephen J. Novosad V Auorney-Young & Quigg 2-1 3= 40 4a SHALE RICHNES$,GA1

i ON FR 'ON PATENTEDuuv 9 I971 SHEET 1 0F 2 50 z CL I l l l I l l l J l 8 I6 24 32 40 48 SHALERICHNESS, GALLON PER TON F G INVENTOR.

RB. NEEDHAM BY A T TORNE VS P ATENTEDuuv 9 an SHEET 2 OF 2 modmntwmzmh wizm TIME,DAYS

FIG. 2

INVENTOR.

N EEDHAM A TTORNEYS SHALE OIL PRODUCTION BACKGROUND OF THE INVENTION This invention relates to improvements inrecovery of oil from subsurface oil shale and similar formations. In accordance with one aspect, this invention relates to an improvement for fracturing an oil shale formation with a nuclear device to form a chimney and retorting of the mass of fractured oil shale in the chimney with a heated gas. In accordance with another aspect, thisinvention relates to a method for strategically locating a nuclear device in an oil shale formation in order to produce a usable nuclear chimney which can be heated at a lower temperature in order to maintain more permeability without compaction of the shale causing plugging. In accordance with a further aspect, this invention relates to the determining of where to locate a nuclear device in order to produce a nuclear chimney comprising a mass of fractured oil shale with lean shale at the bottom and rich shale near the top of the chimney, followed by producing shale oil from the chimney by heating stepwise at different temperatures.

Despite the widespread occurrence of oil shale throughout much'of the world, the large scale recovery of shale oil from such deposits has not been widely practiced. The barriers of geology, technology and economics have heretofore effectively prevented more than token use of this source of oil. Geologically, many of the potentially most productive shales are covered by deep overburdens of earth and rock and, except in a few instances of outcroppings or surface valleys, are inaccessible for commercial recovery. Technologically, oil shale occurs as a relatively compact, impermeable rock which by present practice must be crushed or fractured by mechanical means before oil can be recovered by retorting the fragments;

because of this imperrneability, in situ retorting of oil shale has not met with success. From the economic standpoint, shale mining by open pit methods involves problems of overburden disposal, transportation to the refinery, crushing and grinding and disposal of spent shale. Similarly, underground mining by gallery techniques and subsequent crushing and heating in special retorts is hardly suitable when considering current day liquid fuel requirements.

Control of the tremendous energy of nuclear devices for peacetime uses has of late become a subject of considerable interest. Withthe knowledge that such energy in the form of thermal nuclear explosives should be available for a fraction of a mil per kilowatt hour equivalent, numerous applications involving underground explosions have been proposed. Further, it has now been realized that ultrahigh energy explosions can be used in mining operations to break up formations in the oil industry to increase or stimulate productivity by heating or raising the pressure of a reservoir and in landscaping or earth moving techniques such as digging canals, making harbors or removing troublesome obstacles.

The present invention is primarily directed to the production of oil utilizing an underground explosion chamber in a bituminous deposit suitable for the explosion of a high energy explosive charge. A nuclear explosion within a bed of shale deep in the earth produces a huge chimney containing a mass of shale rubble which has high permeability and is amenable to production by contacting the shale with hot gases. The nuclear chimney may have a diameter of 600 feet and a height of about 1,400 feet. In heating oil shale with hot gases, one of the problems encountered is that of plastic flow which greatly reduces or completely eliminates permeability, thereby hindering or terminating the pyrolysis operation. This invention is concerned with the strategic location of a nuclear device prior to detonation to form a chimney with lean shale near the bottom and rich shale near the top and subsequent heating with hot gases with the reduction or prevention of plastic flow during the heating of the oil shale, with such gases.

Accordingly, it is an object of this invention to provide a method for producing a usable nuclear chimney in a bituminous formation.

Another object of this invention is to provide a process for producing oil from an oil shale by pyrolysis with hot gases which avoids or substantially diminishes plastic flow of the shale.

Another object is to provide a process for producing oil from shale rubble in a nuclear chimney by effecting pyrolysis with hot gas while avoiding substantial plastic flow of the shale.

A further object of this invention is to provide a process for heating a nuclear chimney at a lower temperature in order to maintain more permeability without'compaction of the shale causing plugging.

Other objects and aspects as well as the several advantages of the invention will become apparent to those skilled in the art upon consideration of the accompanying disclosure and the appended claims.

SUMMARY OF THE INVENTION manner that upon detonation of the nuclear device-a nuclear chimney comprising a mass of fractured oil shale is produced wherein the crumbled shale is lean shale at the bottom and rich near the top of the chimney.

' In accordance with another embodiment of the invention, a mass of fractured or broken oil shale in a nuclear chimney having lean shale at the bottom and rich shale near the top is produced by being preheated with a heating gas at a temperature not in excess of 650 F. for a prolonged period of time so as to maintain permeability of the shale without compaction of the shale and causing plugging, followed by heating at a retorting temperature in excess of 700 F.

In accordance with a preferred embodiment of the inven tion, the nuclear chimney comprising a mass of fractured oil shale with lean shale at the bottom and rich shale nearthe top of the chimney is produced by passing a heating gas through the mass of fractured oil shale at a temperature so as to preheatthe shale at a temperature in the range of 500-575 F. for a period of time of at least 30 days, and then increasing the temperature of the fractured shale at a rate of l /2 to 2 F. per day to a temperature in the range of 600-650 F., and continuing the heating within this range for a period of 3 to 70 days and then rapidly heating the formation to a temperature of 700-800 F., the final retorting temperature to produce the BRIEF DESCRIPTION OF THE DRAWING FIG. 1 graphically illustrates shale richness distribution as a function of formation depth in an oil shale formation treated according to the present invention; and

FIG. 2 graphically shows the temperature history of a fragmented oil shale bed treated in accordance with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS As discussed above, one of the major technical operability uncertainties regarding in situ retorting of oil shale contained in a nuclear chimney is shale compaction during heating and the resulting reduction in permeability. in accordance to the invention, this reduction of permeability is controlled by selection of the chimney location so that the bottom of the fragmented shale is lean and the thick sections of the rich shale are near the top, and producing of the shale oil is preferably effected by prolonged heating of the shale at temperatures below the rapid retorting temperature and then sub sequent recovery of the remaining oil by heating to a higher temperature.

Bituminous deposits containing oil shale can be produced in accordance with the method of the present invention. The process is suitable for rock formations known as oil shale" which contain a combination of organic and inorganic sediments which have become hardened into impermeable rock. Suitable shales have a compressive strength in the range of 5,000 to 30,000 p.s.i. The organic portion laid down in layers is a solid amorphous material generally known as kerogen which can be converted to oil under the application of heat. The oil recovered is a black, viscous, waxy substance which will not flow below about 85 or 90 F.

The method of the present invention is employed with bituminous deposits lying in the range of from I to 20,000 feet below the surface of the earth. The minimum ground cover required is that necessary to insure complete containment of the explosion. This depends upon the energy yield of the explosive utilized. For nuclear devices, the minimum depth in feet is approximately equal to in the range of 250-450 times the cube root of the size of the device in kilotons. Thus, the ex plosion from a l-kiloton nuclear bomb is completely contained if the device is exploded 250450 feet below the nearest surface point. The maximum depth is limited only by the economic considerations involved in penetrating very deep-lying formations with conventional drilling equipment.

The method of the present invention is carried out utilizing a thermal nuclear device such as the hydrogen or atomic bomb. Suitable thermal nuclear devices are now available for underground explosion; therefore, it is to be understood that the present discovery involves merely the use of a nuclear device in a novel and useful method of exploding oil deposits and that the fabrication and manufacture of hydrogen and atomic bombs form no part of this invention.

To employ the invention, it is preferable to drill an access well into the formation and then performing a geological survey of the oil shale along the length of said access well to determine the location of a rich shale section and an underlying lean shale section. In the Green River shale in the Piceance Creek basin there is excellent lateral continuity of the shale strata therefore some definition of the shale beds already exists. In addition the richness of the shale can be obtained by two methods, (a) core drilling of the entire shale section and analysis of the recovered core, and (b) logging of the drilled hole.

Upon determining location of a rich shale section and an underlying lean shale section, a nuclear explosive device is then placed into the formation in such a manner that upon detonation a nuclear chimney is produced with lean shale at the bottom and rich shale near the top of the chimney.

In a specific embodiment of the process, oil is retorted from a shale seam which is 900 feet in thickness and carries an overburden of 1,650 feet of rock. The shale seam contains an average of 27.3 gallons of oil per ton (Fischer assay) in the top half of the seam and 23.1 gallons of oil per ton (Fischer assay) in the bottom half of the seam. A I00 kiloton nuclear device is disposed in a well near the lower innerface of the shale seam and the underlying rock. Upon detonation of the device, a chimney having a radius of 180 feet and 900 feet height is formed. The crumbled shale formation is provided with inlet means for introducing hot retorting gas into the upper portion of the cavity and recovering means for recovery from the bottom of the mass of crumbled shale and bringing to the earth's surface gases and liquids. An inert gas such as nitrogen or combustion gases or hot recycle produced gases are introduced through the inlet means into the cavity and heat the formation as described above to produce shale oil. Gases and condensed liquids are withdrawn and transported to the surface via the recovery means.

The mass of fractured or broken oil shale ordinarily will have a Fischer assay value in the range of -50 gallons per ton.

The fractured shale in a preferred embodiment is first preheated to a temperature of 500-575 F. for a period of time of at least 30 days. Generally the heating will be continued at this temperature for a period of time ranging from 100 to 1,000 days.

The temperature of the preheated fractured shale is then preferably increased to a temperature in the range of 600-65 0 F. at a rate of 1/2 to 2 F. per day, and the heating in this temperature range is continued for a period of 3 to 70 days. Maintaining the shale temperature in these low temperature ranges hardens the shale, retaining more of the fragmented shale bed permeability.

After the formation is heated to 600-650 F. for a prolonged period of time, it is heated rapidly to 700-800 F., the final retorting temperature. The heating during the final retorting temperature is continued generally until the formation is substantially depleted of shale oil.

In heating the oil shale rubble with hot gases, it is feasible to utilize combustion gases, inert gases and/or hot recycle produced gases. It is preferred to inject a hot gas into the top of the chimney and move the heat front downwardly through the rubble.

EXAMPLE In order to illustrate the operation of the invention, the effective permeability at 800 F. has been calculated for four specific cases. These calculations were perfonned using data which are summarized in table 1. The average particle size in the 900-foot high nuclear chimney used in each case was assumed to be one foot. In all four cases the shale represented in FIG. 1 was used. The four cases calculated are stated below.

Case I-A fragmented shale column 900 feet high located between 1,400 and 2,300 feet below the surface in the well shown in FIG. 1. FIG. I shows the position of the shale column as position number I. The shale richness distribution is also shown in FIG. 1. This fragmented shale column is heated to 800 F. by the injection of hot gases into the top of the chimney to recover the shale oil. The resulting retorted fragmented shale bed permeability is estimated to be 20 Darcy.

II-ll-A fragmented shale column 900 feet high located between 1,650 and 2,550 feet below the surface in the well shown in FIG. 1. FIG. 1 shows this position of the shale column as position number 2. Again the shale richness distribution is shown in FIG. I. This fragmented shale column is heated to 800 F. by the injection of hot gases into the top of the chimney to recover the shale oil. The resulting permeability of the retorted fragmented shale bed is estimated to be I20 Darcy.

Case lII-This case is identical to case I except that the shale is heated to 600 F. for 350 hours before the shale temperature is increased to 800" F. This low temperature heating results in a permeability of the retorted fragmented shale bed of 150 Darcy.

Case IV-This case is identical to case II except that the shale is heated to 600 F. for 350 hours before the shale temperature is increased to 800 F. This low temperature heating results in a permeability of the retorted fragmented shale bed of 540 Darcy.

It can be seen that by placing the fragmented shale column in such a position that the richer shale I) are nearer the top (case II compared with case I) that the permeability of the retorted shale bed was increased from 30 to I20 Darcy. It can also be seen that by preheating the shale to 600 F. for 350 hours the retorted shale bed permeability was increased from 30 to I50 Darcy (comparison of case III with case I) and from to 540 Darcy (comparison of case IV to case II) for chimney positions numbers 1 and 2, respectively.

It should especially be noted that a combination of chimney placement and preheating increased the retorted shale bed permeability from 30 to 540 Darcy (comparison of case IV to case I).

Although in the above example the shale was preheated at 600 F. to increase the retorted shale bed permeability, other preheat temperatures and other times can be used. The low temperature (500 to 650 F.) history of the shale is a determining factor in maintaining a high bed permeability. There are several methods that can be used to heat the shale to a low temperature and then continue the retorting at a temperature in excess of 700 and in general about 800 F. One method which uses the injection of hot inert gases and recycle produced gases is outlined below:

A typical operation to achieve the required low temperature heating of the shale would be to inject hot gases into the top of the nuclear chimney and withdraw the gases and generated oil from the chimney bottom. The temperature of the injected gases is increased over a several-day span to a temperature in the 500-575 F. range. Thereafter, the temperature is increased very slowly (perhaps, for example, l/2 to 2 F. per day) to a temperature in the range of 600-650 F. Then the temperature is raised relatively rapidly to the final retorting temperature of at least 700' and generally to about 800 F. This temperature history is represented graphically in FIG. -2. The result of a temperature history such as the above is that the shale throughout the chimney is subjected to a low temperature history without the necessity of an accurate knowledge of the magnitude of the heat losses to the chimney wall. As the heat is carried down the chimney by the injected and created gases, the shale will be heated at a lower rate, thus subjecting the lower shales to a longer effective low temperature history.

it appears that the critical temperature span for subjecting the shale to an effective low temperature history is from about 500 to 650 F. The data in table 1 illustrate that prolonged low temperature heating of the shale at 650 F. had only a minor influence upon the retorted shale bed permeability. The time required to achieve an appreciable permeability benefit at a temperature of 500 F. would be too long for practical application; therefore, temperatures below 500 F. are thus excluded. indeed, the critical temperature range is probable within 550 to 625 F. However, in practice the shale could be heated slowly over a broader temperature range (such as 500 to 650 F.) to insure a sufficient low temperature history even in the presence of natural variations in heating rates due to the heat lost to the chimney wall and variations in the gas flow due to variations in the shale bed permeability.

TABLE I Compaction of a bed of fragmented green river oil shale Average particle size of Shale iregrichness Permea- Time Lithomented by bility of held static shale, Fischer shale bed at "1" pressure diameter assay at 800 F. (hrs.) (p.s.i.) (in.) (gaL/ton) (Darcy) 550 0. 23 26. 9 0. 91 0 450 0. 23 26. 9 2. 0 300 0. 23 26. 9 8. 5 0 150 0. 23 26. 9 74. 7 B 350 550 0. 23 26. 9 5. 7 0 900 0. 23 18. 3 6. 3 0 460 0. 23 18. 3 79. 4 0 450 0. 046 17. 6 10. 7 0 450 0. 046 26. 6 0. 93 0 560 0. 054 23. 7 O. 69 0 450 0. 054 23. 7 1. 9 0 450 0. 054 23. 7 1. 4 B 340 450 0. 054 23. 7 5. 4 b 150 460 0. 064 23. 7 l. 6 0 300 0. 23 37. 4 4. 4

e "T" in these runs was 600 F. b "'I in this run was 650 F.

rapid pyrolysis temperature range) is effective in maintaining a higher permeability. A comparison of runs 12 and 14 shows that a temperature 650 F. had little effect upon the final permeability at 800 F. Heating preferably is achieved by the use of hot inert gases and the use of recycle produced gases.

I claim:

1. An improved process of recovering shale oil from a subsurface oil shale formation containing hydrocarbonsnot n aturally flowable into a well bore traversing said formation with a nuclear explosive device which comprises:

a. forming a nuclear chimney in said formation by detonating a strategically located nuclear explosive device so that the nuclear chimney formed following detonation contains a mass of fractured and broken oil shale with lean shale at the bottom of the chimney and rich shale near the top of the chimney,

b. passing a heated gas through said mass of fractured and broken oil shale at a temperature such that said mass is preheated to a temperature not in excess of 650 F. and maintaining the heating of said mass for a prolonged period of time of at least 30 days sufficient to bake the oil shale to reduce or substantially prevent plastic flow during heating of the oil shale and thereby maintain permeability of the shale without compaction of the shale causing P g.

c. retorting said preheated fractured shale by elevating the temperature of same to above 700 F., the retort temperature of said fractured shale, so as to pyrolyze and produce oil therefrom, and

d. recovering produced oil from said formation.

2. A process according to claim 1 for forming said nuclear chimney in step (a) which comprises the additional steps of:

l. drilling an access well into the formation,

2. performing a geological survey of the oil shale along the length of said access well to determine the location of a rich shale section and an underlying lean shale section,

3. Disposing a nuclear device in said formation and positioning same in said formation so that upon subsequent detonation of said device the fragmented shale forming the nuclear produced chimney is lean at the bottom and the thick sections of rich shale are near the top of the chimney, and

4. detonating the nuclear device to create a cavity in said formation, which cavity at least partially fills with collapsing oil shale to form said chimney of fractured and crumbled shale with lean shale at the bottom and rich shale near the top of said chimney.

3. A process according to claim 1 wherein i. said fractured shale is produced by first preheating same to a temperature of 500-575 F. for a period of time of at least 30 days,

2. the temperature of the preheated fractured shale is increased to 600-650 F. at a rate of l/2 to 2 F. per day and said heating is continued within the latter temperature range for 3 to 70 days, and

3. said preheated fractured shale is then rapidly heated to 700-800 F., the final retorting temperature, and continued within this temperature range until said fractured shale is essentially produced.

4. A process according to claim 1 wherein said heating gas is introduced into the top of the chimney and said oil is recovered principally from the bottom thereof.

5. A process according to claim 1 wherein said gas comprises essentially combustion gases.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3342257 *Dec 30, 1963Sep 19, 1967Standard Oil CoIn situ retorting of oil shale using nuclear energy
US3465819 *Feb 13, 1967Sep 9, 1969American Oil Shale CorpUse of nuclear detonations in producing hydrocarbons from an underground formation
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3882941 *Dec 17, 1973May 13, 1975Cities Service Res & Dev CoIn situ production of bitumen from oil shale
US4047760 *Nov 28, 1975Sep 13, 1977Occidental Oil Shale, Inc.In situ recovery of shale oil
US4149595 *Dec 27, 1977Apr 17, 1979Occidental Oil Shale, Inc.In situ oil shale retort with variations in surface area corresponding to kerogen content of formation within retort site
US4227574 *Jan 8, 1979Oct 14, 1980Occidental Oil Shale, Inc.Locating the top of an in situ oil shale retort for ease of ignition
US4577908 *Sep 19, 1984Mar 25, 1986Phillips Petroleum CompanyMethod for in situ shale oil recovery
US7011154 *Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7040397Apr 24, 2002May 9, 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8200072Oct 24, 2003Jun 12, 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020033257 *Apr 24, 2001Mar 21, 2002Shahin Gordon ThomasIn situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020038711 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043367 *Apr 24, 2001Apr 18, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020053429 *Apr 24, 2001May 9, 2002Stegemeier George LeoIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432 *Apr 24, 2001May 9, 2002Berchenko Ilya EmilIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020056551 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020077515 *Apr 24, 2001Jun 20, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020104654 *Apr 24, 2001Aug 8, 2002Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20030131994 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing and solution mining of an oil shale formation
US20030164234 *Apr 24, 2001Sep 4, 2003De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20030209348 *Apr 24, 2002Nov 13, 2003Ward John MichaelIn situ thermal processing and remediation of an oil shale formation
US20030213594 *Jun 12, 2003Nov 20, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040108111 *Apr 24, 2001Jun 10, 2004Vinegar Harold J.In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20040140096 *Oct 24, 2003Jul 22, 2004Sandberg Chester LedlieInsulated conductor temperature limited heaters
US20040177966 *Oct 24, 2003Sep 16, 2004Vinegar Harold J.Conductor-in-conduit temperature limited heaters
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20100147521 *Oct 9, 2009Jun 17, 2010Xueying XiePerforated electrical conductors for treating subsurface formations
Classifications
U.S. Classification166/247, 166/254.2
International ClassificationE21B43/24, E21B43/16
Cooperative ClassificationE21B43/2403
European ClassificationE21B43/24F