Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3619549 A
Publication typeGrant
Publication dateNov 9, 1971
Filing dateJun 19, 1970
Priority dateJun 19, 1970
Also published asCA927740A, CA927740A1, DE2130394A1, DE2130394B2
Publication numberUS 3619549 A, US 3619549A, US-A-3619549, US3619549 A, US3619549A
InventorsGage Robert M, Hogan John A
Original AssigneeUnion Carbide Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Arc torch cutting process
US 3619549 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

SR 219-i210 m--- we." 11113, 19,549

[ 1 Inventors J 2 [56] References Cited UNITED STATES PATENTS 2,906,858 9/1959 Morton, J1 219/121 P [2]] Appl. No. 47,840

- 3,l49,222 9/1964 G1ann1n1 et al. 2l9/l2l P [22] PM 1970 3534388 101970 1 1 2191211 [45] Patented Nov. 9, 1971 to eta [73] Assignee Union Carbide Corporation Primary ExaminerJ. V. Truhe New York, N.Y. Assistant Examiner-G. R. Peterson Attorneys-Paul A. Rose, Harrie M. Humphreys and Dominic .I. Terminello ABSTRACT: High quality, square cuts are obtained in metals Y by an arc process wherein an arc is struck between an elec- [541 g g gf PROCESS trode and workpiece, a gas vortex is passed around the elec- 8 trode and is directed into a constricting nozzle passage where [52] U.S. Cl 219/121 P a liquid, usually water, vortex swirling in the same direction as [51] Int. Cl 323k 9/00 the gas vortex is introduced. The arc passes through the gas [50] and liquid vortex and through the nozzle and is directed in a Field ofSearch ..2l9/75, 121

Power Supply highly constricted state against the workpiece to be cut.

Electrode Water In PAIENTEnuev' 9 t9?! 3,619.549

sum 1 or 4 Prior Art 4 Prior Art Prlor Arf INVENTORS JOHN A. HOGAN RQBERT M. GAGE ATTORNEY PAIENTEDNUV 9 I971 3,619,549

SHEET 2 BF 4 Prior Art [9%36! filial; 3 2759154 INVENTORS a 4 JOHN A.HOGA/V BY ROBERT M. GAGE l wwyl zzflm/z ATTORNEY PATENTEU 9 3,619,549

SHEET 3 [IF 4 Prior Art INVENTORS JOHN A. HOGAN ROBERT M. GAGE BY W/ZMZ Prlor Art ATTORNEY PAIEmEnunv 9 l9?! 3.619.549

SHEET 4 [IF 4 I Electrode 5w;

Water In 4 d 6 JOHN 4.1/00

BY ROBERT M. I AG s] 1 M: p n; "M, A ORNEY ARC TORCH CUTTING PROCESS This invention relates to a process for cutting metals. More particularly this invention relates to a process for cutting metals with an arc constricted in a nozzle.

In the late 1950's, R. M. Gage disclosed in his US. Pat. No. 2,806,124 a method for constricting an arc in a nozzle. Since about I957, this process has been ideally suited for Xcutting metals and has received wide acceptance as a significant improvement over oxyfuel gas and other methods of cutting metals, particularly those metals where oxyfuel gas was only useful with some difi'iculty or not at all. While the Gage process was a remarkable improvement over the state of the art at that time, the quality of the cuts obtained in some cases was not always that desired by the user. The industry constantly was seeking a way to obtain a nearly perfect square cut, without dross and a minimum of heat affected zone on the work at higher and higher cutting speeds. Many minor modifications were incorporated into the Gage process but up until now none resulted in both the high quality cuts desired with speed and ease of application to provide a widely accepted high quality cutting process.

Accordingly, it is the main object of this invention to provide a new improved process for are cutting of metals which produces nearly perfectly square cuts.

Another object of the invention is to provide a cutting process which produces high quality cuts with essentially no dross and a minimum heat affected zone.

A further object is to provide an improved arc process for removing metal from a workpiece.

Another object is to provide a simple process for producing high quality cuts at high speed.

These and other objects will either be pointed out or become apparent I from the following descriptions and drawings wherein:

FIG. la, b and c are photographs of cuts made in 56-inch stainless steel with presently known constricted are cutting techniques;

FIG. 2a, b and c are photographs of cuts made in 54-inch stainless steel with the present invention;

FIG. 3a, b and c are photographs of cuts made in r-inch stainless steel with a nozzle having a 4/32-inch diameter constricting passage by prior art cutting techniques;

FIG. 4a, b and c are similar to FIG. 3a, b and c with the exception that a nozzle was used having a 5/32-inch diameter constricting passage;

FIG. 5a, b and c are photographs of cuts made in -inch stainless steel using the techniques of the present invention and a 5/32-inch diameter constricting passage; FIG. 6a, b and c are photographs of cuts made in l-inc stainless steel with prior art techniques;

- FIG. 7a, b of cuts made in I-inch stainless steel with the techniques of the present invention;

FIG. 8 is a schematic diagram of a typical device for practicing the present invention.

In its broadest aspect, the invention resides in a process for removing metal by establishing an arc between an electrode and a workpiece. A vortical flow of gas is introduced around the arc. A vortical flow of liquid having the same direction as the vortical flow of gas is introduced around the flow of gas and the arc. The arc, gas and liquid are then passed through a nozzle and against a workpiece to remove metal from the workpiece.

As was indicated above, various modifications have been made in the plasma arc cutting process described by R. M. Cage in US. Pat. No. 2,806,124. Suchmodifications were made in an effort to improve cut quality, speed of cut and economics of the process, among other things. One of the early modifications was to introduce a vortical flow of gas into the arc zone in hopes of improving cut quality and to prevent the arc current from passing through or destroying the nozzle walls, usually by causing a catastrophic condition known as double arcing." However, if the nozzle is small, less than four thirty-seconds inch in diameter, the vortical swirl of gas will not necessarily eliminate double arcing during the start. Consequently, up until now, attempts to utilize swirling or vortical flows of gas with small orifices to improve cut quality resulted in processes which required rather complicated sequencing of gas flows and currents in order to avoid double arcing.

One of the major advantages of the present invention is that not only is better cut quality achieved even over the best cuts now obtainable, but they are achieved with a much simpler process at cutting speeds much higher than speeds now obtainable with the best high quality plasma cutting techniques.

It is postulated that the remarkable cut quality is obtained in the present invention, with a minimum danger of nozzle destruction because the walls of the noule constrict the are as is taught by Gage in U.S. Pat. No. 2,806,124, but added are constriction is provided by the swirling flow of liquid which is both a more effective coolant and constrictor and is more resistant to the passage of current than is gas alone.

The invention is predicated on the discovery that the coexistence in an arc constricting passage containing both a gas vortical flow and liquid vortical flow having the same direction of swirl will produce unexpectedly high quality cuts in metals.

It long has been known to use a swirling or vortical flow of gas in the process taught by Gage to improve cutting performance. Likewise, it has been taught by H. S. Morton in U.S. Pat. No. 2,906,858 to pass a swirling flow of liquid around an arc to constrict it. However, up until now, notwithstanding the fact that both of these teachings are well known in the art, no one has attempted to combine a swirling flow of gas and swirling flow of liquid (preferably water). Applicants have found that when a swirling flow of gas surrounds the arc and coexists in an arc constricting passage with a swirling flow of water, both swirls having the same direction, unexpectedly high quality cuts are obtained with relative ease. The same quality cuts cannot be obtained by only a swirl gas or only a swirling liquid around an arc. For example, referring to the photographs in the drawings and particularly FIGS. la, b and c and 2a, b and c, it will be evident that the cuts made in V4-inch stainless steel with a nozzle having a 4/32-inch constricting passage with swirling or vortical gas where rounded at the top surface (FIG. la) had a dark appearance along the cut surface (FIG. lb) and had a heat affected area on the top surface (FIG. 10). Cuts made with the inventive concept produced essentially square cuts (FIG. 2a), clean cut surface (FIG. 2b) and essentially no heat affected area (FIG. 2c). Similar comparison can be made by studying FIG. 3-7 which illustrate cuts made in thicker materials under similar conditions.

As will be noted from the photographs, cuts made with the inventive swirling vortex of liquid had a good side to the right of the kerf which is within 2 of being square. The left side of the kerf was within 8 of being square. The reason for this asymmetry is that the clockwise swirl of the cutting gas and liquid causes the anode spot and, therefore, the maximum power density to occur on the right side of the kerf. This phenomena is not detrimental in shape cutting since the high quality side is always on the same side of the kerf.

Referring now to FIG. 8, an arc torch is shown at T. The torch T is connected on one side to a power supply P. The other side of the power source is connected to the work. The torch, shown diagrammatically, includes a nonconsumable electrode 1. Such electrode may be, for example, a tungsten electrode or a thoriated tungsten electrode. Preferably, however, such electrode consists of a water cooled copper holder having a tungsten insert. The insert material can be, if desired, zirconium or other equivalent material. The nonconsumable electrode 1 is in axial alignment with the center passage 7 in the nozzle N. The nozzle N is provided with tangential fluid injection ports 3. In the preferred embodiment, four tangential ports are provided. However, any number of injection ports may be used without departing from the spirit and scope of this invention. Other liquids may be used as the fluid; however, water is preferred. In this embodiment, the water enters the torch through the injection ports 3 and achieves vortical flow in the chamber 5. The chamber 5 has an annular outlet 6 in the center passage 7. The vortical flow of liquid leaves the ample, in R. M. Gages US. Pat. No. 2,862,099, issued Nov. 25, 1958.

While the invention has been described to certain embodiments involving certain preferred arrangement of parts, it should be understood that variations in such arrangements may be made by those skilled in the art without departing from the spirit and scope of this invention.

CUTTIN G CONDITIONS Arc Cutting Cutting Water current Thickness gas (N speed flow rate (amps) Material (in.) at (c.f.h.) (i.p.m.) (g.p.m.) DCSP Nozzle Aluminum 5 170 160 .4 275 962 inch diameter constricting passage With %2 throat length. 170 125 4 D0. 1 170 80 .4 400 Do. Carbon and stainless steels M 170 125 .4 275 D0. 170 100 .4 300 D0. 1 170 50 .4 400 Do.

may be enlarged. As was indicated above, the center passage 7 provides arc constriction as taught by Gage. However, the nozzle passage 7 is large enough (five thirty-seconds inch) so as to minimize the possibility of a double arc situation in the current range of up to about 400 amps. When the liquid is injected into the nozzle passage 7, the arc is further constricted by the vortical flow of liquid from the chamber 5. Thus, the equivalent of a smaller nozzle passage is achieved while minimizing the danger of destroying the nozzle.

Table 1 below summarizes examples of the invention which produced cuts of the quality shown in the photographs. In the preferred embodiment, nitrogen is the gas utilized; however, it should be understood that the gas is not critical except that it should be compatible with the material being cut. While water is preferred to form the constricting fluid vortex since it is obviously the most accessible and cheap liquid to use, other liquids might be used. Water is the preferred liquid because in practice, as will be noted from the photographs, cuts made with water exhibit essentially no heat affected zone and little or no dross on most materials. Also, water minimizes surface discoloration caused by excessive heat normally generated by the arc. Further, in addition to the arc constricting effect of the water, hydrogen and oxygen gases are added to the arc column itself from the water, thereby providing the wellknown benefits of these gases for cutting as described, for ex- What is claimed is: 1. Process for removing metal from a workpiece comprising:

gas and said are are passed through an arc constricting passage in said nozzle.

3. Process according to claim 1 wherein said arc, gas flow and liquid flow are passed through an arc constricting passage in said nozzle.

4. Process according to claim 1 wherein said vortical flow of liquid is introduced in the nozzle.

5. Process according to claim 4 wherein said vortical flow of liquid is introduced in an arc constricting passage in said nozzle.

6. Process according to claim 1 wherein said liquid is water.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2906858 *Oct 10, 1957Sep 29, 1959Union Carbide CorpLiquid vortex arc torch process
US3149222 *Aug 21, 1962Sep 15, 1964Giannini Scient CorpElectrical plasma-jet apparatus and method incorporating multiple electrodes
US3534388 *Mar 10, 1969Oct 13, 1970Hitachi LtdPlasma jet cutting process
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3720598 *Dec 31, 1970Mar 13, 1973IbmCryogenic arc furnace and method of forming materials
US3833787 *Oct 15, 1973Sep 3, 1974Hypotherm IncPlasma jet cutting torch having reduced noise generating characteristics
US3851864 *Jun 26, 1973Dec 3, 1974Lukens Steel CoApparatus and process for suppression of noise and fumes generated by plasma-arc cutting operation
US4058698 *Oct 30, 1975Nov 15, 1977David Grigorievich BykhovskyMethod and apparatus for DC reverse polarity plasma-arc working of electrically conductive materials
US4291217 *Aug 14, 1979Sep 22, 1981Messer GriesheimProcess for underwater plasma cutting of workpieces
US4311897 *Jul 18, 1980Jan 19, 1982Union Carbide CorporationPlasma arc torch and nozzle assembly
US4338509 *Nov 14, 1980Jul 6, 1982Vysoka Skola Chemicko-TechnologickaProcess of and apparatus for producing a homogeneous radially confined plasma stream
US4791268 *Jan 30, 1987Dec 13, 1988Hypertherm, Inc.Arc plasma torch and method using contact starting
US4816637 *Jun 2, 1987Mar 28, 1989Hypertherm, Inc.Underwater and above-water plasma arc cutting torch and method
US4902871 *Sep 26, 1988Feb 20, 1990Hypertherm, Inc.Apparatus and process for cooling a plasma arc electrode
US5124525 *Aug 27, 1991Jun 23, 1992Esab Welding Products, Inc.Plasma arc torch having improved nozzle assembly
US5164568 *Jan 21, 1992Nov 17, 1992Hypertherm, Inc.Nozzle for a plasma arc torch having an angled inner surface to facilitate and control arc ignition
US5194715 *Nov 27, 1991Mar 16, 1993Esab Welding Products, Inc.Plasma arc torch used in underwater cutting
US5208441 *Jul 23, 1992May 4, 1993Century Manufacturing Co.Plasma arc ignition system
US5380976 *Mar 1, 1993Jan 10, 1995Hypertherm, Inc.Process for high quality plasma arc and laser cutting of stainless steel and aluminum
US5414236 *Dec 11, 1992May 9, 1995Hypertherm, Inc.Process for high quality plasma arc cutting of stainless steel and aluminum
US5416296 *Mar 11, 1994May 16, 1995American Torch Tip CompanyElectrode for plasma arc torch
US5558786 *Oct 6, 1994Sep 24, 1996Hypertherm, Inc.Process for high quality plasma arc and laser cutting of stainless steel and aluminum
US5653896 *Sep 9, 1996Aug 5, 1997Hypertherm, Inc.Process for high quality plasma arc and laser cutting of stainless steel and aluminum
US6054669 *May 20, 1998Apr 25, 2000The Esab Group, Inc.Plasma marking torch and method of operating same
US6163009 *Oct 23, 1998Dec 19, 2000Innerlogic, Inc.Process for operating a plasma arc torch
US6326581Jan 22, 1999Dec 4, 2001Fronius Schweissmaschinen Produktion Gmbh & Co. KgTorch for cutting processes
US6326583Mar 31, 2000Dec 4, 2001Innerlogic, Inc.Gas control system for a plasma arc torch
US6498317Apr 2, 2001Dec 24, 2002Innerlogic, Inc.Process for operating a plasma arc torch
US6677551Jul 23, 2002Jan 13, 2004Innerlogic, Inc.Process for operating a plasma arc torch
US6841754Mar 8, 2002Jan 11, 2005Hypertherm, Inc.Composite electrode for a plasma arc torch
US6969819May 18, 2004Nov 29, 2005The Esab Group, Inc.Plasma arc torch
US7659488Feb 9, 2010Hypertherm, Inc.Composite electrode for a plasma arc torch
US8278810Feb 13, 2009Oct 2, 2012Foret Plasma Labs, LlcSolid oxide high temperature electrolysis glow discharge cell
US8568663Aug 2, 2012Oct 29, 2013Foret Plasma Labs, LlcSolid oxide high temperature electrolysis glow discharge cell and plasma system
US8785808Jan 21, 2013Jul 22, 2014Foret Plasma Labs, LlcPlasma whirl reactor apparatus and methods of use
US8796581Jan 21, 2013Aug 5, 2014Foret Plasma Labs, LlcPlasma whirl reactor apparatus and methods of use
US8810122Oct 1, 2012Aug 19, 2014Foret Plasma Labs, LlcPlasma arc torch having multiple operating modes
US8833054Oct 26, 2011Sep 16, 2014Foret Plasma Labs, LlcSystem, method and apparatus for lean combustion with plasma from an electrical arc
US8904749Oct 26, 2011Dec 9, 2014Foret Plasma Labs, LlcInductively coupled plasma arc device
US9051820Oct 16, 2008Jun 9, 2015Foret Plasma Labs, LlcSystem, method and apparatus for creating an electrical glow discharge
US9105433Sep 25, 2013Aug 11, 2015Foret Plasma Labs, LlcPlasma torch
US9111712Aug 15, 2012Aug 18, 2015Foret Plasma Labs, LlcSolid oxide high temperature electrolysis glow discharge cell
US9163584Sep 15, 2014Oct 20, 2015Foret Plasma Labs, LlcSystem, method and apparatus for lean combustion with plasma from an electrical arc
US9185787Mar 14, 2014Nov 10, 2015Foret Plasma Labs, LlcHigh temperature electrolysis glow discharge device
US9230777Mar 17, 2014Jan 5, 2016Foret Plasma Labs, LlcWater/wastewater recycle and reuse with plasma, activated carbon and energy system
US9241396Jul 9, 2014Jan 19, 2016Foret Plasma Labs, LlcMethod for operating a plasma arc torch having multiple operating modes
US20050067387 *Sep 30, 2004Mar 31, 2005Hypertherm, Inc.Composite electrode for a plasma arc torch
US20050258151 *May 18, 2004Nov 24, 2005The Esab Group, Inc.Plasma arc torch
US20060289407 *Jul 28, 2006Dec 28, 2006Cook David JComposite electrode for a plasma arc torch
US20090200032 *Aug 13, 2009Foret Plasma Labs, LlcSystem, method and apparatus for creating an electrical glow discharge
US20090206721 *Feb 13, 2009Aug 20, 2009Foret Plasma Labs, LlcSystem, method and apparatus for coupling a solid oxide high temperature electrolysis glow discharge cell to a plasma arc torch
Classifications
U.S. Classification219/121.5, 219/121.69, 219/121.39, 219/121.48
International ClassificationH05H1/34, H05H1/26, B23K9/013, B23K10/00
Cooperative ClassificationB23K9/013, H05H1/3405, H05H2001/3421, B23K10/00, H05H2001/3468
European ClassificationB23K9/013, B23K10/00, H05H1/34E
Legal Events
DateCodeEventDescription
Sep 16, 1986ASAssignment
Owner name: L-TEC COMPANY, EBENEEZER ROAD, POST OFFICE BOX F-6
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION, A CORP OF NY.;REEL/FRAME:004610/0384
Effective date: 19860828
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION, A CORP OF NY.;REEL/FRAME:004610/0384
Owner name: L-TEC COMPANY, SOUTH CAROLINA
Jul 29, 1985ASAssignment
Owner name: SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP.
Free format text: SECURITY INTEREST;ASSIGNOR:L-TEC COMPANY A NY LIMITED PARTNERSHIP;REEL/FRAME:004445/0860
Effective date: 19850716
Jul 22, 1985ASAssignment
Owner name: L-TEC COMPANY, 666 THIRD AVENUE, NEW YORK, NY 100
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004436/0460
Effective date: 19850712
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004436/0460
Owner name: L-TEC COMPANY, NEW YORK