Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3620616 A
Publication typeGrant
Publication dateNov 16, 1971
Filing dateJun 4, 1969
Priority dateJun 4, 1969
Also published asCA923543A1
Publication numberUS 3620616 A, US 3620616A, US-A-3620616, US3620616 A, US3620616A
InventorsJames R Davidson, Paul R Lagonegro
Original AssigneeXerox Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Transfer drum withdrawal apparatus
US 3620616 A
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [72] inventors Jellies R.Dsvldson Rochester; Paul II. M30 1". Henrietta. both of N.Y. [21 1 Appl. No. 830,235 [22] Filed June 4, 1969 [45] Patented NOV. 16, 1971 [7 3] Assignee Xerox Corporation M, N.Y.

[54] TRANSFER DRUM WITHDRAWAL APPARATUS 5 Chills, 10 Drawing Hp.

[56] References Cited UNITED STATES PATENTS 3,l09 355 ll/l963 Ritzerfeld 355/3 X 3,475,093 [0/ l 969 Mazzio 355/3 Primary Examine r-Samuel S. Matthews Assistant Examiner-- Monroe H. Hayes Atrarneyr- James J. Ralabate, Norman E. Schrader and Bernard A. Chiama ABSTRACT: An apparatus for withdrawing a transfer drum from an electrostatic drum in a reproduction system when a copy sheet is misfed onto the surface of the transfer drum having a misfeed detector adjacent the transfer drum prior to the transfer station and an arm to pivot the main shaft of the transfer drum away from the electrostatic drum in response to a signal from the misfeed detector. When a misfeed occurs, the transfer drum is separated from the electrostatic drum to prevent the toner image on the electrostatic drum from trans ferring to the surface of the transfer drum.

PATENTEDHUV 16 Ian SHEET 1 OF 6 INVIEN'IORS JAMES R. DAVIDSON BY PAUL R. LAGONE R0 ATTORNEY PATENTEBHUV 16 l97| SHEET n []F 6 xsma i cm CONTROL SWITCH CIRCUIT 30v POWER SOURCE TRANSFER RELAY SWITCH CONTROL D. C. POWE soumfgl PATENTEDNUV 16 l97| SHEET 8 BF 6 BACKGROUND OF THE INVENTION This invention relates to withdrawal apparatus to separate a transfer drum from an electrostatic drum in a reproduction system, and more particularly, to an apparatus which removes the transfer drum from the transfer station to prevent a toner image from transferring onto the surface of the transfer drum.

In copying systems such as those which employ transfer or powder imaging a unifonn electrostatic charge is generated on the surface of a photoconductive plate and the plate is exposed to a light image conforming to the information to be copied. A latent electrostatic image is created which isthen developed with a finely divided powder material, referred'to herein astoner. The toner irnagethus created is transferred from the surface of theplate to a copy sheet thereby forming a copy of the information being reproduced.

One technique used to transfer the toner image from the surface of the plate to the copy sheet is to place the copy sheet between the plate and a transfer drum having a conductive core and a relative nonconductive surface material'and apply an electrical potential to the core of the transfer drum as it rotates to bring the copy sheet; in contact with the plate. The application of a potential to the transfer drum forms afield between the transfer drum andplate which causes the .toner image to be attracted to the copy sheet. As a result of this attraction, the toner remains on the copy. sheet when the latter is removed from the plate.

The copy sheet is fed onto the surface of the transfer drum and its leading edge is aligned to register stops and gripped by gripper fingers which are part of the transfer drum. After being secured to the drum by the gripper fingers, the copy sheet is rotated through the transfer station as a potential is applied to the drum core and the toner image is attracted to the copy sheet. Occasionally, a copy sheet is misfed as it travels from the supply of sheets to the transfer drumrAs a result, it can become improperly aligned with the register stops and/or improperly gripped by the gripper fingers on the drum, or it may not even reach the transfer drum at all.

Misfeeding of the copy can be caused by many factors such as improper stacking of the copy sheets, folds and bends in the sheets and their edgesythe presence of foreign matter on the surface of the transfer drum, etc. It is undesirable to continue with the transfer stepwhen a misfeed occurs since the toner on the electrostatic drum -will be transferred to the surface of the transfer roller. The toner transferred to the surface of the transfer drum may eventually work its way to other parts of the system, especially moving parts, and cause malfunction. The presence of toner on the transfer drum may also cause misfeeds of succeeding copy sheets since the toner prevents the copy sheet from being laid flatly against the surface of the transfer drum as they are fed onto it. In addition to the problems mentioned above, the toner on the transfer drum will adhere to the backside of succeeding copy sheets being fed onto the transfer drum thereby giving each succeeding sheet a dirty appearance.

The apparatus disclosed herein is an apparatus which prevents .a toner image from transferringfrom the electrostatic plate to the copy sheet when the copy sheet has been misfed by detecting when a misfeed occurs and pivoting the transfer drum away from the electrostatic drum in response thereto to remove the transfer drum from the transfer station.

Accordingly, it is an object of the invention to improve reproduction apparatus by preventing the transferof toner images to the surface of the transfer drum.

It is a further object of the invention to improve reproduction apparatus by detecting when a copy sheet has been misfed to the transfer drum and separating the transfer drum and electrostatic .plate in response thereto.

It is a further object of the invention to improve reproduction apparatus by removing the transfer drum from the transfer station when a copy sheet is not on the surface of the drum.

SUMMARY OF THE INVENTION The present invention is an apparatus which prevents a toner image formed on an electrostatic plate from being trsnsferred ontothe transfer drum when no copy sheet is on the drum or when the copy sheet has been misaligned relative to the drum. The apparatus includes a misfeed detector which detects that a copy has been misfed and generates a misfeed signal as a result thereof, and a pivotable arm which supports the transfer drum. The arm is connected to a solenoid through a crossbar linkage, and whenthe solenoid receives a misfeed signal from the misfeed detector, it moves the arm through the crossbar linkage so that the transfer drum is removed from the transfer station.

BRIEF DESCRIPTION OF THEJDRAWINGS For a better understanding of the invention, as well as other objectsand further features thereof, reference is had to the following detailed description to be used incon junction with the accompanying drawings, wherein:

FIG. 1 is a schematic illustran'on of the invention in a color copying-machine.

FIG. 2 is a cutaway view of the transfer drum.

FIG. 3 is. a partialsection viewcf'FIG. Ztaken through section3--3.

FIG. 4 isa partial section view of FIG. 2 taken through section 4-4.

FIG. 5 is a partial section view of FIG. 2 taken through section 5-5. I

FIG. 6 is a view of the cam and follower whichcontrol the operation of the register stops and gripper fingers of the transfer drum.

FIG. 7 is a rear view of the transfer drum and supporting mechanisms.

FIG. 8 is aidetailed view-of the mechanism which controls the position of the cam shown in FIG. 6.

FIG. 9 is a side view of the transfer drum and supporting apparatus.

FIG. 10 is a block diagram of the control device which steps up the electrical potential on the transfer drum.

DESCRIPTION OF THE PREFERRED EMBODIMENT .ductive material overlying a conductive material, which rotates through various xerographic processing stations; charging station I0, exposing station 20, developing station 30, transfer station 40, and cleaning station 50. The photoreceptor rotates with shaft 91 in the direction indicated by the arrow through the stations mentioned above in a processing cycle, the approximatepositions of the various stations being shownby the brackets next to the drum surface in FIG. 1.

The photoreceptor makes a plurality of revolutions; for instance, two or'three revolutions, through the processing stations in order to carry out a multicolor copying cycle. During each .revolutiotna latent electrostatic image corresponding to one of the colors in the original is formed on the surface of the photoreceptor and developed with a finely divided, pigmented material suchas toner of the corresponding color, and, then, the toner image is transferred from the photoreceptor to a copy sheet at the transfer station. The toner images, each of a different color, that are formed on the photoreceptor in each revolution of a copying cycle aretransferred to the copy sheet in registration with one another and the composite toner image resulting on the copy sheet after the copying cycle has been completed is a multicolor copy ofthe original.

In the machine shown in FIG. 1, the developing station contains three separate developing assemblies 31, 32, and 33. Although each developing assembly is mechanically similar, the color of the toner applied to the surface of the photoreceptor 90 by each developing assembly is different. In the apparatus shown, for example, the toner colors in the developing assemblies 31, 32, and 33 are yellow, cyan, and magenta, respectively. The three toner colors can be developed in any convenient color order and the different color images formed can be placed on the copy sheet in any order. The developing assemblies are selectively operated during a copying cycle so that only one of the assemblies applies toner to the surface of the photoreceptor during each revolution. Thus, in the system shown in FIG. 1, during the first revolution yellow toner is applied to the surface of the photoreceptor by developing assembly 31 while developing assemblies 32 and 33 remain in an inoperative condition. Then, during the second revolution of the photoreceptor, cyan toner is applied to the surface of the photoreceptor by developing assembly 32 while developing assemblies 31 and 33 remain in an inoperative condition. Finally, during the third revolution of the photoreceptor, magenta toner is applied to the surface of the photoreceptor by developing assembly 33 while developing assemblies 31 and 32 remain inoperative. In this manner, toner images of each of the three developing colors used in the apparatus shown in FIG. 1, yellow, cyan, and magenta, are formed on the photoreceptor and then transferred to the copy sheet during successive revolutions of the photoreceptor.

A latent electrostatic image is formed on the surface of the photoreceptor during each revolution by first placing a uniform charge on its surface and then exposing the charged surface to a light image corresponding to the particular color toner being applied to the photoreceptor by a developing assembly during that revolution. Any suitable device 21 can be used to form the light images. Similarly, any suitable charging means can be utilized at station to charge the surface of the photoreceptor such as the corona charging device indicated by reference number 11. Exposing station 20, in addition to having means to expose the photoreceptor to light images as described above, can include an interimage erasing device which dissipates, or erases, the charge on the surface of the photoreceptor between latent images. This apparatus can be any suitable device for dissipating the charge on the photoreceptor such as an electroluminescent panel 22 which is activated only between latent images. The interimage erasing device is a desirable feature when a latent image formed on the photoreceptor does not completely cover the periphery of the photoreceptor since these areas would otherwise completely develop out as the photoreceptor passed through the developing station and cause a waste of toner.

The developing station 30 includes three identical developing apparatus 31, 32, and 33 which apply toner particles to the latent image on the photoreceptor surface. These three developing assemblies, all of which are normally in an inoperative condition, are brought into an operative condition selectively in accordance with the color toner to be placed on the photoreceptor during any particular revolution. The housing of developing assembly 32 is broken away so that the internal elements of the assembly can be seen. The members which apply toner to the photoreceptor are magnetic brushes 35 which bring magnetic developer, a mixture of magnetic carrier particles and toner particles, into contact with the surface of the photoreceptor 90. The developing assembly is contained within housing 39 and is replenished with toner particles from supply container 34 as the toner is used. The developer is moved to the upper portion of the housing, which contains magnetic transporter 37 and movable gate 38, by agitator 36. Upon reaching the upper portion of the housing the developer is attracted to the magnetic transporter which rotates in the clockwise direction to convey the developer toward the vicinity of gate 38.

Depending upon the position of gate 38, the developer is either passed onto magnetic brushes 35 to be applied to the photoreceptor or is dropper from the transporter directly into the lower portion of the housing without touching the magnetic brushes. The developing assembly is in an inoperative condition when the gate 38 is in the position shown in the solid lines. In this position the gate acts as a guide to direct the developer onto the magnetic transporter away from the magnetic brushes and down directly into the lower portion of the housing. When the gate is in the position shown in dotted lines the developing assembly is placed in the operative condition. In the inoperative position the gate acts as a scrapper and guide which frees the developer from the magnetic transporter 37 and directs it onto the magnetic brushes 35. The developer is brought into contact with the surface of the photoreceptor by the upper magnetic brush where it is again brought into contact with the surface of the photoreceptor. The toner particles in the developer are attracted from the carrier particles to the photoreceptor as the developer is placed adjacent the photoreceptor by the magnetic brushes thereby developing the latent image thereon.

Each developing assembly operates in the manner described above, the latent image on the photoreceptor being developed by that particular developing assembly which has its gate in the position shown in dotted lines. Due to the simplicity of the gate device described above, each developing assembly can be maintained in a standby condition since its agitator, magnetic transporter and magnetic brushes can continue to rotate even though the assembly is not applying toner particles to the photoreceptor.

After the toner image is formed on the surface of the photoreceptor it is transferred from the photoreceptor to a copy sheet in the transfer station 40. Transfer drum 42 is adapted to convey a copy sheet through the transfer station in contact with and in registration with the toner image on the photoreceptor. In sheet feeding apparatus 70, an individual copy sheet is fed to the transfer drum as needed from a stack of sheets 72 by feed roller 71 which moves the sheets through guides 73 and onto the surface of the transfer drum. The copy sheet is fastened to the transfer drum 42 by a series of grippers and the drum carries the copy sheet in three revolutions through the transfer station to transfer the plurality of color images to the copy sheet. The transfer drum has the same size circumference as the photoreceptor and both rotate at the same speed, therefore, once the copy sheet is aligned with the grippers on the drum it is also in registration with the photoreceptor during all three transfer steps. The transfer station 40 includes pretransfer corona charging device 41 which adjusts the electrostatic charge on the toner particles to prepare the toner image from transfer to the copy sheet. The transfer drum 42 has a conductive core with a layer of relatively nonconductive material on its periphery. An electrical bias is applied to the conductive core of the transfer drum during the transfer step to create an electrostatic field between the photoreceptor and a copy sheet which urges the toner image from the photoreceptor to the copy sheet.

After making a plurality of revolutions on the transfer drum the copy sheet is stripped from the surface of the transfer drum by fingers 64 and conveyed into a fusing apparatus 60 by belt conveyors 62 and 63 where the fusing housing 61 fixes the toner image to the copy sheet. After the toner image is fixed to the copy sheet, the copy sheet is guided into vacuum transport assembly by guides 65. The vacuum transport assembly includes a plurality of belts 83 and holes 82 to impose a vacuum between the belts. The vacuum and belt arrangement carries the copy sheet from the area of guides 65 towards storage tray 84 where it is stored.

After each toner image is transferred to the copy sheet, the surface of the photoreceptor is cleaned in preparation for subsequent revolutions in station 50. Cleaning station 50 includes a precleaning corona charging device 51 and a brush cleaning device 52 which act together to remove any residue toner remaining on the surface of the photoreceptor after transfer has taken place. Any toner that is removed by brush $2 is withdrawn from the brush into a filter bag apparatus 53 where it is held separate from the reproduction system.

cally conducting, metal screws 118.

Referring to FIG. 2, the transfer drum has a hollow, conductive core 102 with a layer 104 of insulating material. The cylindrical core 102 is made of any suitable conductive material such as aluminum and has a thin wall in order that the drum islightweight and that the various mechanisms inside the drum have adequate room to function. The end plates 103 and 105, which are supported by and turn with main transfer drum shaft 101, are made of any suitable insulating material such as insulating plastic which efiectively insulates the conductive core 102 from other parts of the machine. The outside surface of the conductive core contains a layer 104 of any suitable relatively nonconductive material, such as a rubberlike insulating material, upon which the copy sheet is supported as it is brought through the transfer station. The layer 104 is preferably made of a rubberlike material so that it yields and, consequently, is not likely to mar the photoreceptor if it should be brought into contact with it.

A ring 116, made of a conductive material such as brass, is fastenedto end plate 105 in a concentric manner with shaft 102 and functions to transmit an electrical bias from stationary brush 117 to the conductive core of the drum. The brass ring 116 is secured to the end plate 105 by a plurality electri- The metal screws pass through the end plate and are threaded into support ring 119 which, in turn, is in contact with the conductive core 102. The electrical bias on brush 117 passes through the ring 116, the screws 118, and support ringl19 to conductive core 102. The other endplate of the transfer drum, endplate 103, also has a support ring 120 and is fastened thereto by screws 125.

The transfer drum contains three sets of registration stops 113 and gripper fingers 112 which are keyed to shaft 111 and which operate to register and grip the leading edge of the copy sheet before the drum takes it through the transfer station. Shaft 111 and frame 124 are mounted on the support plates I30 and 132, shaft 111 being able to rotate about its longitudinal axis in response to'the movement of the follower arm 106. Arm 123, together with a spring 115 (shown in FIG. 3) which biases the shaft 111 in one direction, arms l26which control the movement of register stops 113, and arms 131 which support gripper fingers 112 are supported by and turn with support shaft 111.

The transfer drum also contains frame 124 which is fastened to support plates 130 and 132. In addition to supporting bracket 122, to which the spring on the end of arm 133 is fastened (Shown in FIG. 3), the frame 124 contains slots 129 which guide the up and down movement of register stops 113. The movement of shaft 111 is controlled by a stationary cam 201 (Shown in FIG. 6) in conjunction with follower 107 which rotates with the transfer drum. Follower 107, as it rotates with thetransfer drum, moves about the periphery of fixed cam 201. The movement of the followers, in turn, causes arm 106 to move, and, since arm 106 is supported by and keyed to shaft 111, the shaft 111 rotates in response to the movement of the arm 106.

Referring to FIG. 3, which is a partial view of the transfer drum in FIG. 2 taken through section 3-3, spring 115, acting through arm 123, biases shaft 111 in the counterclockwise direction. lntemal frame 124 has spring support 122 attached to it which is suspended towards the center of the transfer drum and away from the free end of arm 123. The spring 115 is attached between the free end of arm 123 and the tip of the spring support 122. Since am 123 is keyed to shaft 111, the spring 115 acts to bias the shaft in the counterclockwise direction thereby biasing the register stops 113 in their furthest downward position (See FIG. 4) and the gripper fingers 112 in their most clockwise direction (See FIG. 5).

Referring to FIG. 4, which is a partial view of the transfer drum shown in FIG. 2 taken through section 44, register stops 113 are guided in a straight line movement in a plane which is substantially normal to the surface of the transfer drum by the slot 140 in the transfer drum and the slot 129 in the frame 124. Arm 126, which'is keyed to shaft 111, turns with the shaft to move register stops 113 either up or down .depending on the direction of rotation of shaft 111. Slot 127,

which is positioned in the end portion of arm 126, is adapted to enable pin 128, which is fastened to register stop 113. to slide within it thereby transferring the rotary motion of the arm 126 to the linear motion of the register stop. As shaft 111 rotates in the counterclockwise direction, arm 126 rotates in the counterclockwise direction thereby driving register stop 113 in a linear pathtowards the center of the transfer drum. Then, when shaft 111 rotates in the clockwise direction arm 126 rotates in the clockwise direction thereby driving register stop 113 away from the center of the transfer drumto bring it above the surface of the transferdrum. In FIG. 4, the register stops 113 are shown in their furthest downward position.

Referring to FIG. 5, which is a partial view of the transfer drum shown in FIG. 2 taken through section 5-5, the gripper fingers 112 are supported by arm 13! which, in turn, is keyed to shaft 111. As shaft 111 turns in the counterclockwise direction, gripper fingers 112 rotate in the counterclockwise direction to bring the angled tip of the gripper finger 112 down and into contact with the surface of the transfer drum. Then, when the shaft 111 rotates in the clockwise direction, arm 131 and gripper fingers 112 rotate in the clockwise direction to bring the tip of the gripper finger 112 above and away from the surface of the transfer drum. The tip portion of the gripper fingers 112 movethrough slots in the transfer drum when shaft 131 turns in either. direction. In FIG. 5, the gripper fingers 112 are shown in their extreme counterclockwise position.

The movement of shaft. 111 regulates the operation of the gripper fingers and register stops in unison to register, grip and, then, release the leading edge of a copy sheet..ln operation, the shaft 111 first rotates in the clockwise direction from v its biased position to bring the register itops and gripper finge'rs just above the surface of the transfer drum. A copy sheet is then fed onto the surface of the transfer drum until its leading edge is in register with register stops. When the leading edge of the copy sheet has been properly registered, shaft 111 rotates in the counterclockwise direction to bring the register stops below the surface of the transfer drum and the gripper.

fingers into the position where they press the leading edge of thecopy sheet against the surface of the transfer drum. The transfer drum then continues to rotate through its plurality of consecutive revolutions during which the plurality of toner images are transferred from sheet. v

After the plurality of toner images have been transferred to the copy sheet and the copy sheetis to be removed from the transfer drum, haft 111 rotates again in the clockwise direction, but to a greater extent than during the registering and gripping step. As a result the gripper fingers release the copy sheet and the register stops push the leading edged the copy away from the transfer drum surface to such an extent that the leading edge also clears the tip of the gripper fingers. (This is possible since the register stops are joined to arms 126 at a greater distance from shaft 111 than the gripper fingers are joined from the shaft). At this time stripper fingers 64 (shown in FIG. 1) are brought near the surface of the transfer drum and as the transfer drum continues to rotate, the copy sheet is completely separated from the drum surface-and conveyed into thefuser 60 (also shown in FIG. I). The register stops and gripper fingers then rotate counterclockwise with shaft 111 to return to the positions where they are biased by spring 115.

Referring to FIG. 1, transfer drum 42 has misfeed detector 43 adjacent it between sheet feeder 73 and the transfer station 40. The purpose of the misfeed detector is to detect whens copy sheet is improperly registered with the register stops, is not gripped properly by the gripper fingers, or has not been fed into the transfer drum at all. The detector is represented merely by a box adjacent the transfer drum in FIG. 1 since any suitable detector device can be used. For instance, a series of photocells can be placed adjacent the surface of the transfer drum with associated light sources, and, depending on where the leading edge of the sheet is positioned relative to the stops the photoreceptor to the copyor where the gripper finger is located relative to the copy sheet, i.e., over or under the sheet, or whether or not a copy sheet is on the transfer drum at all, certain photocells are activated. The various combinations of photocell signals can then be read" by a logic circuit to detect if a copy sheet is on the transfer drum and is properly aligned. If a copy sheet is properly aligned on the transfer drum, it is allowed to pass through the transfer station where a plurality of toner images are transferred to it. However, if the logic circuit determines that the copy sheet is not properly aligned, it generates a signal which is directed to a solenoid 320 (See FIG. 7) which activates the transfer drum withdrawal apparatus. The withdrawal apparatus rotates the transfer drum away from the photoreceptor thereby preventing the toner image from being transferred to a misaligned copy sheet or to the transfer drum surface when no sheet is on the drum. The apparatus which enables the transfer drum to rotate away from the photoreceptor is described in detail below.

Referring to FIG. 2, the rotation of shaft 111 is controlled by cam 201 and follower 107. The shaft 111, arm 106, and follower 107 rotate with the transfer drum while cam 201 remains in a stationary position. As a result of this arrangement the follower travels around the periphery of the cam and rotates arm 106 in response to the peripheral shape of the cam. The relationship between the cam and follower can be seen best in FIG. 6. Transfer drum 42, along with shaft 111, arm 106 and follower 107, is driven in the clockwise direction by shaft 101, as shown by the arrow. Cam 201, on the other hand, remains stationary relative to shaft 101 and, when engaged with the follower 107, forces the follower to move away from and towards the center of the transfer drum by cam portions 155 and 160. Through arm 106, cam portion 155 causes the registration stops and gripper fingers to register and grip the leading edge of the copy sheet while cam portion 160 causes the register stops and gripper fingers to release the leading edge of the sheet and drive it away from the surface of the transfer drum.

Referring to FIG. 7, cam 201 has a hub 312 which is adapted to slide along shaft 101 so that it can move between an operative position, where it is engaged by follower 107, and an inoperative position, where it does not engage the follower. In this figure the cam and hub are shown in the operative position which places the hub against the end plate of the transfer drum 42. In its operative position, the cam 201 engages the follower and operates the registration stops and gripper fingers as described above. When it is desirable to move the cam out of engagement with the follower, for instance, when the copy is to be brought continuously through a plurality of revolutions on the transfer drum to effect transfer of a plurality of toner images to it, the cam is moved to the left thereby bringing it to its inoperative position.

Shaft 101, the shaft that supports and drives transfer drum 42, is mounted for rotation in frame members 304 and 308. Gear 351 and pulley 352 rotate on shaft assembly 350 which, in turn, is supported for rotation by frame 354. Frame 308 is adapted to rotate about shaft assembly 350 so that when the transfer drum 42 is moved away from photoreceptor 90, gears 351 and 353 remain in a meshed relationship to one another. A belt (not shown) driven by a suitable drive means rotates pulley 352 and gear 351 on shaft assembly 350. The gear 351 drives gear 353 which, in turn, drives the transfer drum 42 through shaft 101.

The movement of cam 201 between its inoperative position and its operative position, which is shown in FIG. 7, is controlled by the position of arm 203. When a signal is received by solenoid 211 to move the cam 201 to the right to its operative position, pill 206 is moved by the solenoid to the left. Arm 203, a second arm (not visible) is on the other side of shaft 101, pivots about pin 204 thereby causing the tip 205 of the arm to force the cam 201 and hub 312 into its operative position against the action of spring 202. When the cam is in the operative position and a signal is received by the solenoid 211 to move it onto the inoperative position, pin 206 is allowed to move to the right causing arm 203 to rotate clockwise about pin 204. Due to the action of spring 202, (a second spring, not visible, is on the other side of shaft 101), which is fastened to hub 312, the cam 201 moves to the left and out of engagement with the follower.

FIG. 8 shows the view of the transfer drum in which part of the frame 306 is broken away from the mechanism which moves the cam so that the various elements of the mechanism can be clearly seen. Solenoid 211 moves pin 206 through solenoid arm 210, the arm moving either to the right and left depending on the signal received by the solenoid. Pin 204 is supported for rotation by an appendage of arm 304 and spring 202 is fastened to arm 304 to maintain a mechanical bias on the cam toward the inoperative position. Referring to FIG. 9,

' stripper fingers 64 on the top of the transfer drum when activated, are placed near the drum surface to help strip a copy sheet from the transfer drum after all the images have been transferred to the copy sheet. Referring to FIG. 7, stripper fingers 64 are supported for rotation by shaft 360 which, in turn, is supported for rotation in frames 306 and 308. The stripper fingers are activated by solenoid 21 1 also. Referring to FIG. 8, arm 275, which is keyed to shaft 360, rotates the shaft 360 to bring the stripper fingers in and out of position adjacent the surface of the transfer drum. Ann 220, which is supported to pivot on frame bracket 209, is in the shape of an "L," the lower extremity of the arm having a slot 376 in which pin 206 travels. As solenoid arm 210 moves to the left bringing pin 206 into the clockwise or downward direction, the stripper fingers are brought adjacent the transfer drum surface. The linkage (not shown) between arm 276 and the horizontal extremity of arm 220 is similar to the linkage between pin 206 and slot 276, the arm 275 having a pin at its end which slides in a slot in the end of the horizontal extremity of arm 220. Through this linkage, arm 275 is forced down by arm 220 thereby rotating shaft 360 to bring the stripper fingers adjacent the surface of the transfer drum. Then, when the signal to solenoid arm 210 ceases, spring 202 causes arm 210 to move pin 206 to the right, the associated action of arms 220 and 275 and shaft 260 driving the stripper fingers away from the surface of the transfer drum. As a result of the linkage described above, the stripper fingers can come into contact with the transfer drum only during the time that cam 201 is in its operative position.

During the rotation of shaft 101, it is necessary to assure that cam 201 does not turn with the shaft, especially when the cam is in its operative position. Keeper arm 313 is intended for this purpose. The lower position of the keeper arm 313 is fastened to hub 312 while its upper portion has a slot 314 which is supported by pin 315. As the hub 312 moves along shaft 101, the keeper arm 313 moves with it, the upper portion of the keeper arm always sliding on pin 315 which is supported by arm 304. Due to this slot and pin arrangement, cam 201 always remains in a stationary position relative to the follower arm 106 even though the shaft 101 and the transfer drum 42 are continuously rotating.

Referring to FIG. 9, transfer drum 42 is brought away from the photoreceptor when a copy sheet is misfed onto its surface by the feeding mechanism. In such a circumstance misfeed detector 43 identifies a misaligned copy sheet or absence of a copy sheet and activates a mechanism which rotates arms 304 and 308 in the counterclockwise direction to carry the transfer drum as well as all of its collateral elements in the counterclockwise direction. When a misfeed signal is received by solenoid 301, solenoid arm 320 moves to the right or away from the transfer drum, bringing cross bar 302, to the right also. Crossbar 302 forces arms 304 and 308 in the counterclockwise direction against the action of spring 377 thereby moving both arms 304 and 308, and the transfer drum, in the counterclockwise direction about shafts 375 and 350. Spring 377 mechanically biases the transfer drum into contact with or in close proximity to the surface of the photoreceptor so that a copy sheet on the surface of the transfer drum contacts the surface of the photoreceptor during the transfer step. By this withdrawal mechanism, the copy sheet can be withdrawn from the transfer station if misaligned or the transfer drum brought away from the transfer station if no copy sheet is on it so that the toner image cannot be transferred to the surface of the transfer drum. This arrangement prevents toner images from being transferred onto the transfer drum itself or onto the copy sheet in any other manner than in perfect register therewith.

Referring to FIG. 7, shaft 375 is mounted in frame 306 and supports arm 304 so that arm 304 can turn on theshaft when crossbar 302 forces the arm 304 to bring the transfer drum away from the photoreceptor. Shafts 350 and 375 have common centerlines and, as a consequence, as crossbar 302 forces frames 304 and 308 to rotate, the drive means for the transfer drum, including gears 351 and 353, moves in tact thereby maintainingthe drive relationship. In this manner the position of any point on the transfer drum surface relative to any point on the photoreceptor surface is preserved even though the transfer drum is withdrawn from the photoreceptor because of a misfeeding of the copy sheet. Gear 351 is driven directly'off the main shaft of the machine by a belt (not shown) through pulley 352.

The arm 304 can be rotated manually by engaging arm 380 with latch 381. Arm 380 can be rotated in the counterclockwise direction (refer to FIG. 9) by causing shaft 382 to rotate in the counterclockwise direction. Shaft 382 turns counterclockwise by pivotingarm 383 counterclockwise. Arm 383 is'supported on brackets 384' and rotates about an axis coincident with shaft 382. As arm 383 pivots in thecounterclockwise direction, connecting bars 385, which connect arm 383 and crossbar 302, are forced away from the transfer drum bringing arm 304 in the counterclockwise direction. The combination of the movement of arms 304 and 380 position am 380 so as to engage the latch 381. Once the latch and arm are in this position, the transfer drum cannot return toward the photoreceptor until latch 381' is released manually. This manual latch feature is especially desirable when maintenance is to be carried out on the transfer drum.

As mentioned above in conjunction with FIG. 1, the photoreceptor makes a plurality of revolutions in order to complete a copying cycle and a toner image of one color is transferred to the sheet during each revolution. The copy sheet is. fed onto the surface of the transfer drum while the drum rotates at the same speed as the photoreceptor. In order to register and grip the leading edge of the copy sheet with the register stops and gripper fingers as the transfer drum rotates, the copy sheet must be fed at a faster rate of speed than the speed at which the surface of the transfer drum is moving.

' Referring to FIG. I register rollers 74 feed the leading edged the copy sheet onto the surface of the transfer drum 42' am speed which is slightly faster than the speedat which the drum surface is moving and at a time when the register stops and gripper fingers are passing through the 6 oclock position of the transfer drum. After the leading edge of the copy sheet is registered on the register stops, the gripper fingers grip the copy sheet and the copy sheet is carried through the transfer station 40 for three revolutions. During the time that register stops and gripper fingers pass through the 6 o'clock positionof the transfer drum until just after gripper fingers grip the copy sheet, cam I06 (refer to FIG. 2) assumes its operative position in which it is engaged by the follower 107. After the gripper fingers have secured the copy sheet to the transfer drum surface, cam 20] is immediately moved to its inoperative position. Then, the transfer drum carries the copy sheet through three revolutions during which yellow, cyan and magenta toner images are transferred to the copy sheet. Of course, the cam 20! could be maintained in its operative position for each revolution of the transfer drum, or for any number of revolutions of the transfer drum, if it were desired to do so. After the leading edge of the copy passes through the transfer station for the final time, cam 201 is moved back into its operative position and the gripper fingers are operated to release the copy sheet, the register stops are activated to force the copy sheet away from the surface of the transfer drum and the stripper fingers are operated to separate the copy sheet from the drum and direct its leading edge towards the fusing apparatus. The stripper fingers are moved adjacent the surface of the transfer drum when the copy sheet is placed on the transfer drum also, due to the operative position of the cam during thistime. However, the stripping fingers do not interfere with copy sheet being fed onto the drum during this time since they are located at approximately the 1 o'clock position of the drum while the leading edge of copy sheet isplaced on the drum at approximately the 6 o'clock position. I

l The transfer of toner images from the photoreceptor to the copy sheet takes place at transfer station 40. During the transfer step, the copy sheet, which is supported against the periphery of the transfer drum, is brought into contact with the surface of the photoreceptor. During-the transfer step the conductive core of the transfer drum is connected to any suitable potential such as a DC positive potential. Since the periphery of the transfer drum is preferably a very poor conductor of electricity, an electrostatic field is-created between the photoreceptor and the transferdrum. This field urges the negatively charged toner image from thephotoreceptor onto the copy sheet thereby effecting the transfer step.

It has been found that a toner image can be transferred from the photoreceptor to a clean copy sheet when the potential placed on the transfer drum is at least 700 volts. However, when successive toner images are transferred to the same copy sheet, transfer efficiency decreases at lower voltages as toner builds up on the copy sheet. For instance, when the first toner image, or yellow image, was transferred to the copy sheet at l,500 volts in the reproduction system described in the drawings, transfer was accomplished efficiently. Then, when the second tonerimage, or cyan image, was transferred onto the copy sheet over the yellow image, transfer of the cyan image was found to be relatively inefficient at 1,500 volts. It is believed that the transfer efficiency was lowered in the case of the cyan image because of the increased resistivity placed between the copy sheet. and photoreceptor due to the presence of the yellow toner image. When the third toner image, or magenta image, was transferred to the copy sheet over the yellowand cyan images by placing 1,500 volts on the transfer drum, the. transfer efiiciency was again reduced over the efficiency of transfer of the cyan image. This additional decrease in transfer efficiency is believed to have been caused by the increased resistivity introduced by the presence of both the yellow andcyan images on the .copy sheet during the third transferstep.

In order to overcome this undesirable decreasein transfer efficiency during successive transfers, the. voltage placed on thetransfer drum during the transfer step is increased after the first and second toner images are transferred to the copy sheet. For example, good transfer occurred during all three transfer steps when the voltage imposed on the transfer drum was 3,000 volts during the first revolution to transfer the yellow toner image, 3,500. volts during the second revolution to transfer the cyan toner image, and 4,000 volts on the final revolution totransfer the magenta toner image. When the voltage on the transfer drum during each successive revolution is stepped up" in this manner, the transfer efficiency during all three transfer steps is maintained at an optimum. The actual voltages used during each of the three transfer steps can be any suitable voltages which transfer the toner images so long as the voltage value is increased in each succeeding transfer.

The apparatus for stepping up the voltages on the transfer drum can be any suitable apparatus which functions to increase the voltage in each successive revolution of a copy cycle. For example, FIG. 10 illustrates a control apparatus in block diagram form which is suitable for this purpose. During each revolution of the photoreceptor, two electrical signals are generated from the transfer drum to indicate that the transfer step is about to begin. Any suitable device can be used to generate the signals; for instance, two cams can be placed on the shaft driving the photoreceptor which have follower arms which, in turn, close a switch as transfer begins to allow current to pass through the switch. The signal-generating devices illustrated in clock form in FIG. are two such cam switches in conjunction with a power source. One switch is a transfer switch which is closed by its cam and follower arrangement just as the leading edge of the copy sheet enters the transfer station to give the go" signal to the control apparatus to apply a voltage to the transfer drum. The other switch is a voltage control circuit switch which tells the voltage control circuit that another revolution is being made by the photoreceptor.

The voltage control circuit is a device which has three possible output voltages. The exact output voltage of the control circuit during each transfer step is dependent on how many signals have already been received from the voltage control circuit switch during the copying cycle. At the beginning of the copying cycle in a three color system; that is, during the first revolution of the photoreceptor, a first signal enters the voltage control circuit and the resulting output of the control circuit is the lowest voltage of its three possible output voltages. Then, during the second revolution of the photoreceptor another signal is fed to the voltage control circuit which results in the voltage control circuit stepping up its output to a voltage which is higher than that of the first revolution. Similarly, during the third and final revolution of the photoreceptor, another signal is fed to the voltage control circuit which results in the voltage control circuit stepping up its output to the highest voltage of its three possible output voltages. At this time the copy cycle has been completed and a new copy cycle begins with a subsequent revolution of the photoreceptor. During the fourth revolution, or the first revolution of a new copying cycle, the voltage control circuit again generates the lowest voltage of its three possible output voltages in response to another signal from the voltage control circuit signal.

Each output voltage of the voltage control circuit is passed through a relay control before being fed into the DC power supply. The signal generated by the transfer switch is fed to the relay control also. The relay control allows current to pass from the voltage control circuit outputs to the DC power source only when the go signal has been received from the transfer switch. The DC power supply, in turn, delivers a voltage to the electrical brush which is a multiple of the voltages fed to it. Assuming that the three output voltages of the voltage control circuit are 30, 35, and 40 volts, and the DC power source generates a voltage which is ten times the voltage it receives from the voltage control circuit, the electrical brush will deliver to the core of the transfer. drum 3,000, 3500 and 4,000 volts in the first, second, and third revolutions, respectively, of the photoreceptor.

It is intended that appropriate drive means be associated with the color copying system described herein, and such drive means used can be any suitable type. For instance, the main shaft 91 of the machine can be driven by a main machine motor and the various processing stations around the photoreceptor driven therefrom by a suitable gearing arrangement. in addition, appropriate control circuits can be applied throughout the machine in order to assure that it functions as described above.

In addition to the apparatus outlined above, many other modifications and/or additions to this invention will be readily apparent to those skilled in the art upon reading this disclosure, and these are intended to be encompassed within the invention disclosed and claimed herein.

What is claimed is:

1. In a reproduction system having an electrostatic drum supported for rotation on a frame, means to form a toner image on the surface of the electrostatic drum conforming to the information to be reproduced, a conductive transfer drum supported for rotation to convey a copy sheet into contact with the electrostatic drum, means for rotating the electrostatic drum and transfer drum at the same surface speed,

means to feed the copy sheet onto the surface of the transfer drum, and means to secure the copy sheet to the surface of the transfer drum, comprising:

a. means to detect that a copy sheet has been misfed onto the transfer drum,

b. means to generate a misfeed signal in response to detecting a misfed copy sheet, and

0. means to separate the transfer drum and electrostatic drum in response to a misfeed signal to prevent the transfer drum from contacting the surface of the electrostatic drum.

2. The apparatus in claim 1 wherein the means to separate the transfer drum and electrostatic drum includes an arm which is pivoted on the frame at one end and is adapted to support the transfer drum at the other end and means to pivot said arm to separate the transfer drum from the electrostatic drum in response to a misfeed signal.

3. The apparatus in claim 2 wherein the arm pivots in a plane perpendicular to the axis of rotation of the transfer drum, and the means to pivot the arm is a solenoid which pivots the arm to move the transfer drum away from the electrostatic drum in response to a misfeed signal, and further including, means to bias the arm to maintain the transfer drum immediately adjacent the electrostatic drum so that a copy sheet on the transfer drum contacts the electrostatic drum as the two drums rotate.

4. The apparatus in claim 3 wherein the means for rotating the transfer drum is a gear train having a driven gear attached to the transfer drum and a driving gear supported for rotation on the frame, the center of rotation of the driving gear being coincident with the pivot of the arm on the frame, whereby the gear train remains entrained so as to rotate the transfer drum as the arm pivots to separate the transfer drum and electrostatic drum.

5. In a xerographic copying machine of the type wherein powder images are formed on a photoconducting surface and transferred to a sheet of copy paper by means of an electrically biased surface pressing the paper into contact with the powder image, an apparatus to protect the biased surface from contacting the powder image in the event that a sheet of paper is not properly positioned between the photoconducting surface and the biased surface including:

a. means to feed a sheet onto the biased surface,

b. means to detect the presence and alignment of the sheet after it is fed onto the biased surface and to generate an electrical signal upon detection of a misaligned sheet or the absence of a sheet,

c. means to urge the biased surface into contact with the copy sheet to effect transfer of the powder image to the copy sheet, and

d. means responsive to a signal from the detecting means to move the biased surface out of contact with the powder image and the photoconducting surface.

a s s =0- e

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3109355 *Mar 28, 1960Nov 5, 1963Gerhard RitzerfeldXerographic duplicator
US3475093 *Jan 25, 1967Oct 28, 1969Dick Co AbFeed mechanism for photocopy machine or the like
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3751156 *Oct 24, 1972Aug 7, 1973Agfa Gevaert AgElectrostatic copying apparatus with means for preventing contamination of transfer material
US3851966 *Dec 11, 1972Dec 3, 1974Xerox CorpReproduction apparatus
US3984182 *Aug 13, 1975Oct 5, 1976Xerox CorporationPretransfer conditioning for electrostatic printing
US4348098 *May 6, 1980Sep 7, 1982Ricoh Company, Ltd.Electrophotographic apparatus
US4875069 *Nov 14, 1988Oct 17, 1989Canon Kabushiki KaishaAnti-fouling device for sheet gripper
US4975741 *Sep 4, 1987Dec 4, 1990Fuji Xerox Co., Ltd.Control unit for a copying machine including automatic shutdown
US5011739 *Oct 2, 1989Apr 30, 1991Eastman Kodak CompanyMoisture stable biasable transfer members and method for making same
US5130748 *Sep 13, 1990Jul 14, 1992Fuji Xerox Co., Ltd.Control unit of copying machines
US5156915 *Nov 26, 1991Oct 20, 1992Eastman Kodak CompanySupport surface to attract charged toner particles of an electroconductive substrate coated with a resilient crosslinked elastomer
US5212032 *Nov 26, 1991May 18, 1993Eastman Kodak CompanyMultilayer resilient element with polyurethanes and polyethers with ferric halide salts
US5217838 *Nov 26, 1991Jun 8, 1993Eastman Kodak CompanyMoisture stable biasable transfer members
US5250357 *Nov 26, 1991Oct 5, 1993Eastman Kodak CompanyContaining resistivity controlling complex of mono-, di-, tri-or tetraethylene glycol and ionizable antimony halide
US5608504 *Oct 13, 1995Mar 4, 1997Fuji Xerox Co., Ltd.Transfer material detecting device
US7214757Mar 8, 2001May 8, 2007Eastman Kodak CompanyPolyurethane elastomers and shaped articles prepared therefrom
EP0690359A2Jun 30, 1995Jan 3, 1996Eastman Kodak CompanyPolyurethane biasable transfer members having improved moisture stability
EP0690360A2Jun 30, 1995Jan 3, 1996Eastman Kodak CompanyPolyurethane biasable transfer members
EP0700055A2Aug 23, 1995Mar 6, 1996Eastman Kodak CompanyBiasable transfer members having extended electrical life
Classifications
U.S. Classification399/18, 271/82, 271/900, 399/303
International ClassificationG03G15/16
Cooperative ClassificationY10S271/90, G03G15/167
European ClassificationG03G15/16F1