Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3624661 A
Publication typeGrant
Publication dateNov 30, 1971
Filing dateMay 14, 1969
Priority dateMay 14, 1969
Also published asCA993941A1, DE2023719A1, DE2023719B2, DE2023719C3
Publication numberUS 3624661 A, US 3624661A, US-A-3624661, US3624661 A, US3624661A
InventorsMichael S Shebanow, Ronald F Borelli
Original AssigneeHoneywell Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrographic printing system with plural staggered electrode rows
US 3624661 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [72] Inventors Michael S. Shebanow;

Ronald F. Borelli, both of Mediield, Mass. [2!] Appl. No. 824,4l9 [22] Filed May 14, 1969 [45] Patented Nov. 30, 197i [73] Assignee Honeywell Inc.

Minneapolis, Minn.

[54] ELECTROGRAPIIIC PRINTING SYSTEM WITH PLURAL STAGGERED ELECTRODE ROWS 17 Claims, 12 Drawing Figs.

[52] U.S. Cl 346/74 ES,

l0 i/DIG. l3 5| Int.Cl ....G03g 15/00 [50] Field of Search 346/74 ES [56] References Cited UNITED STATES PATENTS 2,934,673 4/1960 MacGritf 346/74 3,157,456 llll964 Kikuchi 346/74 ABSTRACT: In an electrographic printing system, a multiple row electrode structure wherein successive rows are mutually spaced from each other, each row including mutually spaced electrodes, the electrodes of successive rows being positioned in a staggered manner with respect to each other. The system further comprises improved electrode drive circuitry, including a plurality of high-voltage drivers and a selection matrix wherein a plurality of passive elements are coupled to the drivers. A plurality of output lines couple the matrix to the electrodes so as to selectively apply a high voltage to the electrodes in order to produce a latent image on a dielectric medium. Toning means subsequently make the latent image visible.

PATENTEBW 30ml 3,624.661 SHEET 10F 5 v I INvrzN'mRs Fig. l. RONALD F. BORELLI MICHAEL s. SHEBANOW AT ()RNIZY PAIENTEUNIN 30 I97] SHEET 2 OF 5 v SCAN LINE 16 SCAN LINE 25 W m O 0L N LA \EB i M 5 mm A H O l R M 2 U l ATTORNEY PATENTEU 30 3 624. 661

SHEET 30F 5 MICHAEL S. SHEBANOW PAIENTEDNIW 3 I9?! 3.624.661

SHEET nor 5 POSITION INPUTS 7O DATA INPUTS 72 \ELECTRODE STRUCTURE F \SEQUENTIAL OUTPUTS(192 x11) POSITION INPUTS\ 7 0 82b 85b 88b 81b 84b 87b 1 83b 86b 89b r v 1 W q DATA INPUTS 82o 87 SEQUENTIAL 85o. 82 OUTPUTS as INVI'INI'HRS RONALD F BORELLI MICHAEL S. SHEBANOW ELECTROGRAPIIIC PRINTING SYSTEM WITH PLURAL STAGGERED ELECTRODE ROWS- BACKGROUND AND OBJECTS OF THE INVENTION The present invention pertains generally to the field of image reproduction and relates more particularly to an electrographic printing system wherein the medium to be recorded on includes a conductive base substrate and a dielectric layer.

There presently exist various specific techniques of image reproduction most of which are concerned with the electrostatic transfer of charges. Generally speaking in electrographic printing systems, including one employing the principles of the present invention, a latent image is formed on a dielectric medium by placing the medium in the field established between twoelectrodes. These two opposed electrodes which can assume various shapes (round, square, character-shaped, etc.) have a high electrical potential'difference applied across them, thereby establishing the necessary field. The latent charged image fonned is in the shape of the electrode that faces the dielectric surface of the medium.

Most electrographic printing systems can generally be categorized into two areas with respect to electrode configura tions; systems employing character-shaped electrodes and systems employing pin-shaped electrodes. In systems of the former type, for example, a print drum is rotated at high speed and selected electrodes are pulsed when the desired character is facing the dielectric surface, causing the formation of a latent image on the medium at the area where the character electrode was located. Associated with such systems, however, are certain disadvantages. For instance, it has been found necessary to provide a drum consisting of individual, electrically insulated segments and to provide means for commutating to each segment of the rotating character drum. Thus there are mechanical problems associated with the rotating drum. In addition, in order to operate at a reasonable printing speed without causing character smear, the duration of the selection pulse must be short and the paper has to remain stationary during printing. This results in a printing speed limitation with a system of this type.

In printing systems where an array of pin electrodes is employed, various patterns, such as alphanumeric characters, can be reproduced by selecting predetennined electrodes as the recording medium passes these electrodes. Associated with such a system, however, are certain problems that result in a poor quality printout. Two of the more significant problems derive from the poor contrast density and resolution of the finally printed characters. The contrast (shade) density may be defined as the degree of darkness as represented on the gray scale, while resolution may be defined as the capability of forming perfectly shaped characters. Theoretically, 100 percent contrast provides printed characters which are perfectly black. The pin electrodes have to be separated a minimum distance from each other, so that they can be selectively activated. If this is not the case, poor density and poor resolution of the printed character result.

Another problem associated with a pin electrode system derives from the fabrication of the electrode array itself. Usually the electrodes are very small in cross section and are located close together. The structure, therefore is prone to damage and is generally difficult to fabricate.

The cost of presently available electrographic printing systems is relatively high. One of the important factors contributing to the high cost of such systems is the necessity for providing one driver per electrode. In systems requiring relatively high resolution and shade density, the total number of electrodes may be of the order of 200 electrodes per inch. Where a separate high-voltage driver is required for each of these electrodes, the cost of the system becomes inordinately high.

It is an object of the present invention to provide an electrographic printing system which is not subject to the foregoing disadvantages.

It is another object of the present invention to provide an electrographic printing system which provides a printout of improved quality with respect to resolution and shade density.

It is-a further object of the present invention to provide an electrographic printing system which is capable of operating at relatively high speeds.

It is still another object of the present invention to provide a novel electrode structure for such a printing system which can be easily and accurately fabricated at relatively low cost.

It is a further object of the present invention to provide an economical electrographic printing system which has improved reliability.

SUMMARY OF THE INVENTION The foregoing objects are satisfied in the present invention by providing an electrographic printing system of the kind wherein a recording medium has latent images formed thereon by the application of a high potential across the medium and wherein a toner is subsequently applied to the medium to make the latent images visible. The printing system further comprises a multiple row electrode structure, a character generator, and a selection matrix which permits the use of a smaller number of high-speed drivers than the total number of electrodes in the electrode structure.

The printing system which constitutes the subject matter of the present invention permits printing with improved resolution by providing the heretofore unattainable capability of printing between adjacent electrode areas. A staggered electrode structure is employed in the present invention which provides the capability of printing at a far higher shade density (up to percent), than was heretofore possible. Further advantages of the invention derive from its ability to be inexpensively fabricated.

These and other objects of the invention as well as the features and advantages thereof will become apparent from the following detailed specification, when read in connection with the drawings, in which:

FIG. I is a perspective drawing (partially in block form) of a portion of a preferred embodiment of the present invention.

FIG. 2A is an end view of the electrode structure shown in FIG. 1.

FIG. 2B discloses a segment of the recording medium showing the latent charge pattern for the letter E.

FIGS. 3A through 3B show the various stages of fabrication of a dual electrode structure.

FIG. 4 is a block diagram of the electrode structure and its associated drive circuitry.

FIG. 5 is a circuit diagram of one embodiment of the electrode drive circuitry.

FIG. 6 is a circuit diagram of the driver shown in FIGS. 5 and 7.

FIG. 7 is a circuit diagram of a second embodiment of the electrode drive circuitry.

ELECTRODE STRUCTURE FIG. 1 is a perspective view of a portion ofa preferred printing system in accordance with the present invention, showing an electrode structure 10 having a section thereof cut away thereby exposing electrodes l2. For theillustrative embodiment shown, each electrode has a substantially square cross section and terminates in a working surface I4, which lies within a common surface in close proximity to a recording medium 20. In one practical embodiment, surface 14 is 0.005 inch square and the electrode rows, as well as adjacent electrodes within a row, are separated by a distance (d) of 0.005 inch.

In the preferred embodiment of the invention illustrated, two rows of electrodes 15 and 17 are used. Eachworking surface 14 (except those at the end of the rows), is aligned with More specifically, a scan line can be represented as an imaginary line on the medium having the width of an electrode, as shown in FlG. 28. Given an upper limit on the speed with which a row of electrodes can be energized to print a latent image on the scan line above it, the minimum spacing between electrode rows is determined by the paper speed and r the completion of printing of a single scan line. Such printing must be completed before that scan line moves above the second row of electrodes.

Rollers l6 and 18 show a means of propelling medium 20 past electrode structure 10. Various other propelling means can be used all of which fall within the spirit and scope of the present invention. Medium 20 can include a conductive base substrate, such as treated paper having affixed thereto a dielectric layer of a prescribed thickness, usually thinner in dimension than the base material. The dielectric side of medium 20 faces roller 16, whereas the conductive side faces roller 18.

As previously mentioned, the generation (printing) of a latent image occurs when a high potential is applied across the recording medium at a predetermined place on the medium. Over this predetermined area (the area above the electrode surface 14), an electrostatic charge transfer takes place and the dielectric retains this charge pattern for a sufficient period so that a toner can be applied and fused to the medium in areas where the charge is present. This toning steps makes the latent image visible.

With the system shown in FIG. 1, a source 19 provides the high voltage necessary for printing. This high voltage is coupled to a roller 18 by way of a commutating brush 21, which is adapted to apply the high voltage to roller 18, and is then applied to the conductive side of medium 20. As the medium moves in the direction indicated by arrow 23 at a speed of, for example, inches/second, selected electrodes are pulsed to ground by electrode drive circuitry 24 thereby creating a charge on the dielectric surface of medium 20 in a particular pattern. A character generator 26 is connected to electrode drive circuitry 24 and determines the configuration or printing pattern..

Generator 26 receives suitable electrical waveforms (not shown), e.g. from a computer, representative of pictorial, alphanumeric, or other information to be recorded and converts these waveforms into timed and distributed electrical pulses which are applied to circuitry 24. Configuration generator 26 may be a typical function generator, such as disclosed in U.S. Pat. No. 3,289,030 to Lewis et al.

By way of illustration, let it be assumed that printing of a latent image is to take place in section 21 of medium 20. The portion of section 21 that has either passed electrode structure 10, or is above it, is shown shaded so as to indicate where the latent image has been formed. Actually the dielectric surface of medium 20 retains the charge. For the purposes of illustration, however, the side of medium 20 visible in FlG. 1 is shaded. Directly above electrode structure 10, the latent image is tooth-shaped, as shown.

At one point in time in the operation of the system, the first electrode row has been energized and the second electrode row 17 has not yet been energized. Had only one electrode row been used for printing, the required minimum spacing between the adjacent electrodes in a row would have yielded a printing density no higher than approximately 60 percent. With the staggered, dual electrode structure shown in FIG. 1, however, a printing density of up to to 100 percent can be attained. The use of this particular structure also allows for increased resolution, particularly when printing curved alphanumeric characters. This improved resolution is due primarily to the fact that twice as many scans exist in the direction of paper motion as a result of the staggered electrode arrangement, than is the case where a single electrode row is used. As a consequence, better character definition is provided by the present invention.

PRINTING EXAMPLE As an aid to a better understanding of the printing system of the present invention, reference is directed to FlGS. 2A and 28. FIG. 2A shows an end view of the staggered dual electrode structure while FIG. 2B shows a segment of medium 20 on which a character has been printed. The segment is shown dissected into imaginary cells (elements) 30 dimensioned identically to the electrode surface 14 (0.005 inch square, for example). The entire character segment consists of a group of cells arranged in a [6X25 matrix. To provide intercharacter spacing, a 13X l 6 array of cells defines the particular character, an E-shaped character in the example of FIG. 2B.

The electrodes shown in FIG. 2A have been designated a through 11 for electrode row 15 and a through h for electrode row 17. Like designations are shown along scan line 1 of FIG. 23. Assuming that the electrode structure 10 remains stationary and that the segment of medium 20 shown in H0. 28 is about to pass over the electrodes in the direction of the arrow showing paper motion, the following occurs. As determined by character generator 26, for printing the character E, when scan line 1 is positioned above first electrode row 15 electrodes a through g are excited, but electrode 11 is not. The cells designated a through g are electrostatically charged, but cell h is not. When scan line 2 is above the first electrode row 15, the same electrodes are excited (a through 3). Simultaneously, scan line 1 is located over an interelectrode surface 25, which is part of the aforesaid common surface. Electrode row 17 has not yet been excited at this time.

At a later time, when scan line 3 has moved directly above the first electrode row 15, only electrode a is excited. Simultaneously, scan line 1 has moved above the second electrode row 17. Electrodes a through f are now excited but electrodes g and h are not. This procedure repeats in a manner to permit the printing of latent images in the shaded areas of FIG. 2B. The character generator 26 programs the excitation sequence of each electrode row. Thus, it is possible to print alphanumeric characters, special characters, and virtually any other desired patterns.

Although only a segment of medium 20 is shown in the drawing, in a practical character-printing system I32 characters may be printed in a horizontal direction. With a possible 25 scans being used to complete a character, 132 characters (a character line) may be printed for every 25 scans. The number of electrodes needed to accomplish this is determined as follows. With 132 character positions and 16 cells per character position, there are a total of 2,112 electrodes per scan line (1,056 electrodes per electrode row). If it is desired to print 5,000 lines of characters per minute, with the paper moving at approximately 10 inches/second (maximum character height of one-eighth inch), it takes l2 milliseconds to print a character line (60 see/min. 5,000 character lines/min) If 25 scan lines per line of characters are used, a scan line is printed in 0.48 milliseconds (12 milliseconds 25 scan lines).

In order to obtain a print of good quality, a print pulse width of between 40 and 50 microseconds is needed. The pulse width is determined primarily by the RC time constant of the electrographic medium. Using a minimum pulse width of 40 microseconds, one could use 12 (0.48 milliseconds 40 microseconds) print intervals to print a scan line. Using a pulse width of 50 microseconds, only 9.6 print intervals per scan line are required. If one chooses an intermediate value of ll intervals, one can use ll intervals each of 12 character positions. The printing pulse for this particular example would be approximately 43.5 microseconds.

Thus, in a practical embodiment of the invention, one scan line may include 132 character positions, and 25 scan lines will complete the printing of the entire line of characters. The 132 character positions are printed in ll intervals. During each such interval, 12 character positions are printed, i.e. l92 (l2 l6) cells are printed (corresponding to 192 electrodes). Each print interval thus takes 43.5 microseconds and a total of 12 milliseconds is needed to print an entire character line. With the dual electrode row operation explained with particular reference to FIG. 2B, the I92 electrodes that are excited at one time to print the l2 character positions. physically constitute two rows each having 96 electrodes which are staggered as shown in FIG. 2A.

Electrode Fabrication The electrode structure of the present invention can be fabricated in various ways. The particular electrode cross section need not be square in shape. but can instead be rectangular, circular or have various other shapes. FIG. 3A shows a portion of a printed circuit board 40 having two conductive copper layers 42 separated by an insulative layer 44 of glass epoxy or like material. These three layers are affixed together by glueing or other suitable means.

One particular way of fabricating the electrode structure is to start with an etched printed circuit board having copper conductors on both sides which, in a preferred embodiment, are 0.005 inch in width and spaced 0.005 inch apart (see FIG. 3B). The techniques used in making this etched board are similar to those used in manufacturing conventional printed circuits. However, due to the small width of the conductors (electrodes) and the small interconductor spacing certain process control is required.

The first step in fabricating the electrode structure is to deposit a photoresist on both sides of the copper-glass epoxycopper laminate. After suitable cleaning and drying of the board, a negative is aligned with the coated board (one on each side) and it is exposed to ultraviolet light. The board is then developed in a conventional developer. The final step in obtaining the structure of FIG. 3B is a chemical etching step. This is accomplished by immersing the board in a warm 40 percent solution of a mild acid such as ferric chloride. After washing to remove all traces of the acid and drying, the board is ready for the next fabrication step.

Subsequently the gaps between strips 52 must be filled with epoxy. Epoxy sheets 50 are shown abutting against strips 52 in FIG. 3C.

Externally, glass epoxy sheets 46 are placed against sheets 50. Spacers 48 determine the extent to which sheets 46 can be pressed against sheets 50. When the assembly is heated and pressure is applied, as shown by arrows 54, the epoxy sheets 50 melt and fill the cavities between strips 52. After the structure has cooled, a grinding and polishing operation takes place to obtain the final electrode structure 57 shown in FIG. 3D. An end view of the FIG. 3D structure is shown in FIG. 3E along with rollers 56 and medium 58.

ELECTRODE DRIVE CIRCUITRY As previously mentioned, prior art electrographic printing systems use a driver circuit for each electrode that is to be excited. Because of the high voltage levels required for printing (in the vicinity of 750 volts), sharing of the high-voltage driver circuits proved unsuccessful heretofore.

FIG. 4 is a block diagram showing electrode drive circuitry 24 and electrode structure 10. A preferred implementation of circuitry that can be used as electrode drive circuitry 24 is shown in FIGS. 5, 6 and 7. Electrode drive circuitry 24 has position inputs 70 and data inputs 72. For the practical embodiment of the invention discussed hereinabove, the position inputs number I 1, corresponding to the 11 printing intervals, while the data inputs number 192, corresponding to the 192 electrodes excited to print 12 character positions. (Refer to printing example above). Output lines 74 connect from electrode drive circuitry 24 to electrode structure 10, l I such connections being shown. However, in reality each connection includes l92lines capable to excitation of their corresponding segments of electrode structure I0.

FIG. 5 disclosed one embodiment of a part of electrode drive circuitry 24, including drivers 76, data inputs 72, position inputs 70, outputs 74 and a resistor matrix. Resistor pairs 81a, 81b through 89a, 89b connect individually in series with their common joining node being referred to as nodes 81 through 89 respectively. Nodes 81 through 89 then connect externally to output line 74. The other terminals of resistors 81a, 84a and 87a respectively connect in common to a a driver 76, while the terminal of resistor trios 82a, a, 88a; 83a, 86a, 89a; 81b, 82b, 83b; 84b, 85b, 86b; and 87b, 88b, 8% each connect in common to the other drivers 76 of FIG. 5. In this embodiment, all resistors are of approximately the same value. The drivers that receive the data line inputs 72 are continuously switching with each new data scan line presented. More than one data driver can be and in most cases is, active at one time. The drivers that receive the position inputs 70 on the other hand, are active, one at a time.

The printing scheme of FIG. 1 used with the resistive matrix of FIG. 5 requires that the electrode (roller 18) on the conductive side of the medium be biased at a high voltage of, for example, 700 volts. The pin electrodes which face the dielectric side of the medium, when switched to ground, provide the necessary high voltage for printing.

In presently available electrographic printing systems, there is insufiicient charge established on the dielectric surface of the medium to attract and hold the toner when the applied voltage across the dielectric is of the order of one-half of the usual 700-volt potential. Thus, the 350-volt difference can be considered to be a threshold value below which successful printing will not occur.

This fact is taken advantage of in the present invention, as shown below. The drivers shown in FIGS. 5, 6 and 7 have a binary output of 900 volts for nonselect operation and 0 volts for select operation. The data drivers, therefore, have either 900 or 0 volts at their outputs. Since only one position driver of a total of l 1 drivers is on at any one time, this driver will have an output of 0 volts while the remainder are at 900 volts. It will be understood that the position inputs 70 for all the position drivers are sequentially energized by character generator 26.

Referring to FIG. 5 in particular, assume that the left position driver 76 is selected along with the uppermost data driver 76. The outputs from these two drivers would therefore be at ground potential and the voltage at node 81 would be essentially ground. In a practical embodiment, the electrode on the other side of the medium is biased to 700 volts. The electrode associated with node 81 then prints. The nodes 85, 86, 88 and 89 are then at 900 volts and no printing occurs. (There is actually a reverse 200volt potential difference across the recording medium.) The remaining nodes, 82, 83, 84, 87 are at one-half of 900 volts or 450 volts. The potential difference across the medium in that case is 250 volts, (i.e. 700 volts, 450 volts) which is well below the threshold voltage of 350 volts. Node 81 is the only one, therefore, that has the correct potential applied thereto to facilitate printing.

It will be understood that position inputs 70 are sequentially energized for the drivers 76 as a result of the action of character generator 26. As a result, the action described above will occur in sequence, i.e. the nodes will be selected sequentially in groups of threes, i.e. nodes 81-82-83; 84-85-8 6; and 87-88-89. Similarly, the outputs 74 will be selected sequentially in accordance with the above sequence and with the selected data input.

FIG. 6 shows a preferred circuit configuration for the driver 76. The input at tenninal is a O-volt or +l5-volt signal. The input signal is normally at ground and goes to the +15- volt level for selection (output 128 goes toward ground for selection). A diode 112 has its cathode connected to an input terminal I10 and its anode connected in common to the anode of a diode 116. A resistor 114 connects from the anodes of diodes 112 and 116 to a power supply +V,. The parallel combination of resistor 118 and capacitor 119 connect between the cathode of diode 116 and the anode of a diode 120. The cathode of diode I20 connects to the base of transistor I24 while resistor 122 is coupled from the base of transistor 124 to power supply V,. Transistors 124 and 126 connect in series transistor 124 coupled to the emitter of transistor I26 and the collector of transistor 126 connect via resistor 130 to highpotential supply +V,. Output terminal 128 is connected to the collector of transistor 126. A resistor 132 ties from the base of transistor 126 to a high-potential supply +V,, a resistor I34 connects from the base of transistor 126 to ground and a capacitor 133 connects from the base of transistor 126 to ground.

In operation, when driver 76 is not selected, input terminal 110 is held at ground potential and a forward current of approximately 3.5 ma. flows through diode 112 and resistor 114. Little or no current flows in diodes 116 or 120 and the slight negative bias on the base of transistor 124 determined primarily by resistor 122, maintains transistor 124 turned off. Transistor 126, which is rendered capable of conduction by the positive bias on the base of transistor 126 (resistors 132 and 134 in part provide the positive bias); is maintained in its off condition because there is no path to ground, i.e. transistor 124 is nonconductive.

When driver 76 is to be selected, the voltage applied to input terminal 110 goes to approximately +l5 volts. Diode 112 becomes back biased, while diodes I16 and 120 conduct. Current ilows from source +V,, through resistor 114, diode 116, resistor-capacitor pair 118, 119, diode 120 and resistor 122 to source V,. Due to the preselected values of resistors 114, I18 and 122 (the resistance of resistors 122 is greater than the resistance of resistor 114 plus resistor 118), the base voltage of transistor 124 becomes positive, thereby turning transistor 124 on. This action is speeded up by bridging resistor 118 and by capacitor 119.

When the input signal goes positive therefore, capacitor 119 instantaneously shorts resistor H8 and transistor 124 is rapidly saturated. This action causes transistor 126 to conduct due to the positive base voltage established by resistors 132 and 154 and capacitor 133. The voltage output at terminal 128 which was at approximately +V (+900 volts, for example) now assumes a value of approximately volts (slightly positive). This voltage is supplied by way of output resistor 130.

In FIG. 7 there is disclosed another embodiment of electrode drive circuitry, corresponding reference numerals having been retained. As shown, drive circuitry 24 includes drivers 76, data inputs 72, position inputs 70, sequential outputs 74 and a diode-resistor matrix. Diode pairs 91a, 91b through 99a, 99b connect individually in series with their cathodes being connected to nodes 91 through 99, respectively. Nodes 91 through 99 then connect externally to sequential output lines 74 and also, respectively to one side of resistors 910 through 99c. The other terminals of resistors 910 through 99c connect to ground potential. The anodes of the diodes 91a, 94a and 97a connect in common to a driver 76 while the anodes of diode trios 92a, 95a, 98a; 93a, 96a, 99a; 91b, 92b, 93b; 94b, 95b, 96b; and 97b, 98b, 99b each connect in common to the other drivers 76 of FIG. 7. The drivers that receive the data line inputs 72 are continuously switching with each new data scan line presented. More than one data driver can be, and in most cases is, active at one time. The drivers that receive the position inputs 70 on the other hand, are active one at a time.

Referring to FIG. 7, assume that the left position driver 76 is selected along with the uppermost data driver 76. The outputs from these two drivers (refer to FIG. 6) are therefore at ground potential and the voltage at node 91 is essentially at ground, (diodes 91a and 91b are reverse biased). With the electrode on the other side of the medium at 700 volts, the electrode associated with node 91 prints. The nodes 95, 96, 98 and 99 are therefore at 900 volts and no printing occurs. In practice, there is actually a reverse ZOO-volt potential difference across the medium. The remaining nodes, 92, 93, 94, 97 are at one-half of 900 volts or 450 volts. The potential difference across the medium is that case would 250 volts (700-450 volts) which is well below the threshold voltage of 350 volts. Node 91 is the only one, therefore, that has the cor rect potential applied thereto to facilitate printing.

The present invention has been described with reference to certain illustrative embodiments. It should be understood, however, that modifications may be made in the apparatus described which lie well within the scope of the present invention. For example, a structure using more than a pair of electrode rows could be used advantageously. If three rows were used, for instance, the individual electrodes in each row could be spaced somewhat further apart. Also, the voltage levels and polarities need not be as set forth in the illustrative example. A potential difference of 700 volts may be needed for printing. However, the roller could be kept at ground and the pin electrodes may be selectively pulsed to the high voltage, either positive or negative. Further, the common surface of the electrode structure can assume various shapes.

From the foregoing it becomes apparent that the apparatus of the present invention provides an improved electrographic printing system. The staggered multiple row electrode structure provides for improved resolution and for the possibility of obtaining 100 percent shade density. This is particularly advantageous when printing alphanumeric characters. The electrode drive circuitry also furnishes additional advantages in that fewer drivers are needed than in presently available systems, with an attendant cost savings. Improved reliability and cost savings is also a feature of the present invention, particularly with reference to the above-illustrated fabrication techniques of the electrode structure.

Having now described the invention, what is claimed as new and novel and for which it is desired to secure Letters Patent ls:

I. An electrographic printing system of the kind wherein a recording medium is moved along a path to have latent images formed thereon by the application of a high potential across the medium and wherein a toner is subsequently applied to the medium to make the latent image visible, said electrographic printing system comprising:

a. an electrode structure adjacent said path including 1. a plurality of mutually spaced rows of electrodes, successive electrodes within each row being spaced from each other, the electrodes of successive rows being positioned in a staggered manner with respect to each other,

2. a single steady-state potential means disposed adjacent the opposite side of said path and extending substantially for an entire electrode row width for imparting a continuous potential across the medium over the total medium area covered by said electrode rows, and

b. electrode drive circuitry for selectively energizing each electrode individually including 1. a character generator 2. first and second groups of high-voltage drivers connected to be energized by said character generator,

3. a selection matrix including a first plurality of passive elements coupled to the output of each of said first group of high-voltage drivers, a second plurality of passive elements coupled to the output of each of said second group of high-voltage drivers, each of said elements coupled to one of said first group of drivers being connected to form a common node with a separate element coupled to one of said second group of drivers, an output line connecting each of said nodes to one of said electrodes, each of said output lines being selectively adapted to apply a high voltage to its corresponding electrode in dependence upon the output of said character generator.

2. An electrographic printing system as defined in claim I wherein the spacing between successive rows of electrodes is substantially equal to the width of each of said electrodes in a direction transverse to said rows.

3. An electrographic printing system as defined in claim I wherein each of said passive elements includes a resistor connected between the output of a high-voltage driver and said common node.

4. An electrographic printing system as defined in claim 1 wherein each of said passive elements includes a diode connected between the output of said high-voltage driver and said common node, said common node being resistively coupled to a reference potential.

5. An electrographic printing system as defined in claim 1 wherein each of said high-voltage drivers has an input terminal and an output terminal and further includes a. a first transistor having base, emitter and collector electrodes, said emitter being tied to ground and said base being coupled to said input terminal; and

b. a second transistor having base, emitter and collector electrodes, said last-recited emitter being connected to the collector electrode of said first transistor, said lastrecited base being coupled to a reference potential. and said last-recited collector being coupled to said output terminal.

6. The printing system of claim 1 wherein said steady-state potential means is a roller employed to feed said medium along the prescribed path.

7. The printing system of claim 1 wherein each of said electrodes terminates in a common surface and said common surface is convex.

8. The printing system of claim 1 wherein said steady-state potential means is biased at a voltage of less magnitude than said high voltage applied to said electrodes when energized and greater than the voltage applied to said electrodes when not energized.

9. An electrographic printing system as defined in claim 1 wherein said electrodes terminate in a common surface, each electrode defining a working surface within said common surface, said working surfaces being aligned with respective spaces between the electrodes of successive rows and being dimensioned to substantially fill said spaces.

10. An electrographic printing system as defined in claim 9 wherein each of said working surfaces has a square shape.

11. In an electrographic printing system of the kind wherein a recording medium is moved along a path to have latent images formed thereon by the application of a high potential across the medium and wherein a toner is subsequently applied to the medium to make the latent image visible, an electrode structure adjacent said path including, a plurality of mu tually spaced rows of electrodes, successive electrodes within each row being spaced from each other, the electrodes of successive rows being positioned in a staggered manner with respect to each other, means for selectively energizing individually, and a simple steady-state potential means disposed adjacent the opposite side of said path and extending substantially for an entire electrode row width for imparting a continuous potential across the medium over the width of an electrode row, wherein said single steady-state potential means is effective to provide a continuous potential to the medium for each successive row of said plurality of rows.

12 The apparatus as defined in claim I1, and further including electrode drive circuitry adapted to selectively energize said electrodes by applying a high voltage thereto.

13. The printing system of claim 11 wherein said steadystate potential means is a roller employed to feed said medium along a prescribed path.

14. The apparatus as defined in claim 11 wherein said electrode structure consists of a pair of spaced rows of electrodes, each electrode of a row being aligned with the space defined between the electrodes of the other row and having substantially the same dimension in a direction along said rows.

15. The apparatus of claim 14 wherein each of said electrodes terminates in a square working surface lying within a common surface, the spacing between said rows and between adjacent electrodes within a row being substantially equal to the side of one said square working surfaces.

16. The apparatus of claim 15 wherein said common surface defines a plane.

17. The apparatus of claim 15 wherein said common surface is convex.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2934673 *Aug 31, 1956Apr 26, 1960Macgriff Jack EImage control tube
US3157456 *Jan 31, 1963Nov 17, 1964Nippon Electric CoPrinter
US3469028 *Jul 1, 1966Sep 23, 1969Tokyo Shibaura Electric CoElectrode control systems of a multineedle electrode type electrostatic recording device
US3483566 *Sep 16, 1965Dec 9, 1969Philips CorpElectrographical printing or recording devices which employ coincident current drive of the print electrodes
Non-Patent Citations
Reference
1 *Military Standardization Handbook Mil-HDBK-215, 15 June 1960 page 2 30. Copy in 346/74
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3724028 *May 25, 1971Apr 3, 1973CellopaneMethod and apparatus for photoelectric reproduction of continuous relief originals
US3771634 *May 6, 1971Nov 13, 1973Bausch & LombSurface pattern stylus board
US3798609 *Dec 4, 1972Mar 19, 1974Rapifax CoDynamic shift register for staggered printing head
US3900095 *May 31, 1973Aug 19, 1975Citizen Watch Co LtdDriving circuits for electrical printers
US3946403 *Jun 6, 1974Mar 23, 1976Tokyo Shibaura Electric Co., Ltd.Electrostatic recorder with three state switching
US3947626 *Mar 27, 1974Mar 30, 1976U.S. Philips CorporationMethod of recording cinematographic images from an electric signal produced by scanning image sequences to be displaced and device for carrying out this method
US3958251 *Jan 2, 1973May 18, 1976Honeywell Information Systems Inc.Electrographic printing system utilizing multiple offset styli
US3979760 *Mar 4, 1975Sep 7, 1976Hitachi, Ltd.Electrostatic recording apparatus with auxiliary electrodes
US3984844 *Nov 18, 1975Oct 5, 1976Hitachi, Ltd.Thermal recording apparatus
US4161141 *Oct 5, 1977Jul 17, 1979Lakhani Kishor MTwo side multi roller toner station for electrographic non-impact printer
US4163980 *Oct 26, 1977Aug 7, 1979Firma Dr. -Ing. Rudolf Hell GmbHRecording electrode assembly for use in electrostatic reproduction
US4165514 *May 11, 1978Aug 21, 1979Ricoh Co., Ltd.Electrostatic recording multi-stylus electrode device
US4165686 *Oct 5, 1977Aug 28, 1979Honeywell Information Systems, Inc.Two-sided non-impact printing system
US4189736 *Aug 29, 1977Feb 19, 1980Exxon Research & Engineering Co.Facsimile stylus assembly
US4192232 *Mar 14, 1978Mar 11, 1980Fuji Photo Film Co., Ltd.Electrostatic image recording method and apparatus therefor
US4251822 *Apr 17, 1979Feb 17, 1981Ricoh Company, Ltd.Recording head
US4262294 *Jul 31, 1978Apr 14, 1981Ricoh Company, Ltd.Electrostatic printing apparatus comprising improved electrode drive means
US4287525 *Sep 19, 1978Sep 1, 1981Sharp Kabushiki KaishaMulti-pin record electrode assembly and driving method of the same
US4353080 *Dec 20, 1979Oct 5, 1982Xerox CorporationControl system for electrographic stylus writing apparatus
US4385306 *Jul 7, 1980May 24, 1983Ing. C. Olivetti & C., S.P.A.Dot writing head for high definition printers, and a method of manufacturing the same
US4399447 *May 4, 1981Aug 16, 1983Honeywell Information Systems Inc.Wear resistant electrode head for electrographic printers
US4400709 *Jul 14, 1980Aug 23, 1983Compagnie Industrielle Des Telecommunications Cit-AlcatelImage printer stylus bar, manufacturing method therefor and image printer device
US4419679 *Jun 3, 1980Dec 6, 1983Benson, Inc.Guadrascan styli for use in staggered recording head
US4445796 *Jun 16, 1982May 1, 1984International Business Machines CorporationPrint electrode control circuit
US4490611 *Sep 22, 1983Dec 25, 1984Fuji Xerox Co., Ltd.One-dimensional scanner having staggered and overlapping electrodes
US4496962 *Dec 22, 1980Jan 29, 1985General Electric CompanyHigh resolution magnetic printing head
US4504340 *Jul 26, 1983Mar 12, 1985International Business Machines CorporationMaterial and process set for fabrication of molecular matrix print head
US4533921 *Jan 3, 1984Aug 6, 1985International Business Machines CorporationElectroerosion printhead with tungsten electrodes, and a method for making same
US4617576 *Nov 26, 1984Oct 14, 1986International Totalizator Systems, Inc.Thermal printhead structure
US4803565 *Jul 29, 1988Feb 7, 1989Fuji Xerox Co., Ltd.Optical write head
US4864331 *Oct 22, 1986Sep 5, 1989Markem CorporationOffset electrostatic imaging process
US5128697 *Nov 28, 1990Jul 7, 1992Rastergraphics, Inc.Integrated thick film electrostatic writing head incorporating in-line-resistors and method of fabricating same
US5140347 *Jun 29, 1990Aug 18, 1992Nippon Steel CorporationElectrostatic recording apparatus
US5489934 *May 3, 1993Feb 6, 1996Calcomp Inc.Printed wire recording transducer for electrostatic printing/plotting applications
US6661442Dec 10, 2002Dec 9, 2003Seiko Epson CorporationImage forming apparatus having writing electrodes for forming an electrostatic latent image
US7286149Dec 14, 2004Oct 23, 2007Palo Alto Research Center IncorporatedDirect xerography system
US7325903Dec 14, 2004Feb 5, 2008Palo Alto Research Center IncorporatedQuill-jet printer
US7325987Dec 14, 2004Feb 5, 2008Palo Alto Research Center IncorporatedPrinting method using quill-jet
US7342596 *Dec 14, 2004Mar 11, 2008Palo Alto Research Center IncorporatedMethod for direct xerography
US8080000Dec 20, 2011Acclarent, Inc.Methods and apparatus for treating disorders of the ear nose and throat
US8088101Oct 26, 2007Jan 3, 2012Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US8090433Jan 3, 2012Acclarent, Inc.Methods and apparatus for treating disorders of the ear nose and throat
US8100933May 8, 2008Jan 24, 2012Acclarent, Inc.Method for treating obstructed paranasal frontal sinuses
US8114062Oct 1, 2009Feb 14, 2012Acclarent, Inc.Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US8114113Oct 4, 2005Feb 14, 2012Acclarent, Inc.Multi-conduit balloon catheter
US8118757Apr 30, 2007Feb 21, 2012Acclarent, Inc.Methods and devices for ostium measurement
US8123722Oct 29, 2007Feb 28, 2012Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US8142422Mar 4, 2008Mar 27, 2012Acclarent, Inc.Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8146400Jul 31, 2007Apr 3, 2012Acclarent, Inc.Endoscopic methods and devices for transnasal procedures
US8172828May 8, 2012Acclarent, Inc.Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8182432Mar 10, 2008May 22, 2012Acclarent, Inc.Corewire design and construction for medical devices
US8190389May 17, 2006May 29, 2012Acclarent, Inc.Adapter for attaching electromagnetic image guidance components to a medical device
US8317816Nov 27, 2012Acclarent, Inc.Balloon catheters and methods for treating paranasal sinuses
US8388642Aug 29, 2008Mar 5, 2013Acclarent, Inc.Implantable devices and methods for treating sinusitis and other disorders
US8414473Sep 16, 2009Apr 9, 2013Acclarent, Inc.Methods and apparatus for treating disorders of the ear nose and throat
US8425457Dec 29, 2009Apr 23, 2013Acclarent, Inc.Devices, systems and methods for diagnosing and treating sinusitus and other disorder of the ears, nose and/or throat
US8435290Mar 24, 2010May 7, 2013Acclarent, Inc.System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8439687Dec 29, 2006May 14, 2013Acclarent, Inc.Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US8485199May 8, 2007Jul 16, 2013Acclarent, Inc.Methods and devices for protecting nasal turbinate during surgery
US8702626Dec 29, 2006Apr 22, 2014Acclarent, Inc.Guidewires for performing image guided procedures
US8715169Oct 30, 2007May 6, 2014Acclarent, Inc.Devices, systems and methods useable for treating sinusitis
US8721591Jan 23, 2012May 13, 2014Acclarent, Inc.Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8740929Feb 6, 2002Jun 3, 2014Acclarent, Inc.Spacing device for releasing active substances in the paranasal sinus
US8747389Apr 24, 2007Jun 10, 2014Acclarent, Inc.Systems for treating disorders of the ear, nose and throat
US8764709Jun 30, 2010Jul 1, 2014Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US8764726Aug 18, 2009Jul 1, 2014Acclarent, Inc.Devices, systems and methods useable for treating sinusitis
US8764729Dec 22, 2008Jul 1, 2014Acclarent, Inc.Frontal sinus spacer
US8764786Oct 9, 2012Jul 1, 2014Acclarent, Inc.Balloon catheters and methods for treating paranasal sinuses
US8777926Mar 15, 2013Jul 15, 2014Acclarent, Inc.Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
US8828041Mar 18, 2010Sep 9, 2014Acclarent, Inc.Devices, systems and methods useable for treating sinusitis
US8852143Apr 7, 2010Oct 7, 2014Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US8858586Jan 18, 2007Oct 14, 2014Acclarent, Inc.Methods for enlarging ostia of paranasal sinuses
US8864787Apr 9, 2008Oct 21, 2014Acclarent, Inc.Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8870893Apr 29, 2010Oct 28, 2014Acclarent, Inc.Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8894614Feb 16, 2006Nov 25, 2014Acclarent, Inc.Devices, systems and methods useable for treating frontal sinusitis
US8905922Mar 26, 2012Dec 9, 2014Acclarent, Inc.Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8932276May 16, 2007Jan 13, 2015Acclarent, Inc.Shapeable guide catheters and related methods
US8945088Apr 28, 2010Feb 3, 2015Acclarent, Inc.Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8951225May 18, 2006Feb 10, 2015Acclarent, Inc.Catheters with non-removable guide members useable for treatment of sinusitis
US8961398Oct 31, 2007Feb 24, 2015Acclarent, Inc.Methods and apparatus for treating disorders of the ear, nose and throat
US8961495Oct 29, 2007Feb 24, 2015Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US8968269Jan 18, 2012Mar 3, 2015Acclarent, Inc.Multi-conduit balloon catheter
US8979888Jul 30, 2009Mar 17, 2015Acclarent, Inc.Paranasal ostium finder devices and methods
US9039657Sep 3, 2009May 26, 2015Acclarent, Inc.Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9039680Apr 21, 2008May 26, 2015Acclarent, Inc.Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9050440Sep 22, 2006Jun 9, 2015Acclarent, Inc.Multi-conduit balloon catheter
US9055965Mar 22, 2010Jun 16, 2015Acclarent, Inc.Devices, systems and methods useable for treating sinusitis
US9072626May 6, 2013Jul 7, 2015Acclarent, Inc.System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US9084876Mar 15, 2013Jul 21, 2015Acclarent, Inc.Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9089258Mar 15, 2007Jul 28, 2015Acclarent, Inc.Endoscopic methods and devices for transnasal procedures
DE2337611A1 *Jul 24, 1973Feb 7, 1974Mead CorpVerfahren und vorrichtung fuer die reproduktion von zeichenmatrizes
DE2400048A1 *Jan 2, 1974Jul 11, 1974Honeywell Inf SystemsVerfahren zum elektrographischen drucken auf einem aufzeichnungstraeger sowie elektrographisches drucksystem
DE2842779A1 *Sep 30, 1978Apr 19, 1979Honeywell Inf SystemsElektrographisches drucksystem
DE2842823A1 *Sep 30, 1978Apr 19, 1979Honeywell Inf SystemsElektrographisches drucksystem
DE2919587A1 *May 15, 1979Dec 6, 1979Ricoh KkAufzeichnungskopf
EP0013161A1 *Dec 21, 1979Jul 9, 1980Xerox CorporationApparatus for reproducing graphic information
EP0022704A1 *Jul 2, 1980Jan 21, 1981COMPAGNIE INDUSTRIELLE DES TELECOMMUNICATIONS CIT-ALCATEL S.A. dite:Image printing array, its manufacturing method and image printing device
EP0091073A1 *Mar 29, 1983Oct 12, 1983AlcatelElectrostatic printing head
EP1193071A2 *Oct 1, 2001Apr 3, 2002Seiko Epson CorporationImage forming apparatus
Classifications
U.S. Classification347/141, 178/30, 347/142, 101/DIG.370, 346/139.00C
International ClassificationB41J2/395, G03G15/32, G06K15/14
Cooperative ClassificationG06K15/14, G03G15/325, Y10S101/37, B41J2/395
European ClassificationG06K15/14, G03G15/32C2, B41J2/395