Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3624760 A
Publication typeGrant
Publication dateNov 30, 1971
Filing dateNov 3, 1969
Priority dateNov 3, 1969
Publication numberUS 3624760 A, US 3624760A, US-A-3624760, US3624760 A, US3624760A
InventorsBodine Albert G
Original AssigneeBodine Albert G
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sonic apparatus for installing a pile jacket, casing member or the like in an earthen formation
US 3624760 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [72] lnventor Albert G. Bodine 7877 Woodley Av e., Van Nuys, Calif. 91406 [21 Appl. No. 873,298

[22] Filed Nov. 3, 1969 [45] Patented Nov. 30, 1971 i [54] SONIC APPARATUS FOR INSTALLING A PILE JACKET, CASING MEMBER OR THE LIKE IN AN EARTIIEN FORMATION 6 Claims, 6 Drawing Figs. 7

(52] US. Cl 175/56, 175/171 [51] Int. Cl 1306b 1/10, E21b 5/00 [50] FieldolSearch 175/19, 22, 23, 56, 171

[56] Relerences Cited UNITED STATES PATENTS 869,336 10/1907 Stewart 175/23 1,342,424 6/1920 Cotten 175/171 1,880,218 10/1932 Simmons 175/23 1,966,446 7/1934 Hayes 175/56 2,390,646 12/1945 Hays 175/56 2,830,791 4/1958 Smith 175/56 2,989,130 6/1961 Mathewson, Jr. 175/56 3,151,687 10/1964 Sato et a1. 175/56 3,379,262 4/1968 Bodine, .Ir. 175/19 Primary Examiner-James A. Leppink Attorney-Sokolski & Wohlgemuth ABSTRACT: A jacket member is placed over a bar which forms a mandrel and is acoustically coupled thereto by means of adjustable couplers at a plurality of points therealong. A sonic oscillator of the orbiting mass type is coupled to the mandrel and driven at a frequency such as to set up resonant standing-wave vibration of the mandrel. Sonic energy is thus coupled to the jacket and in turn into the earthen formation into which the jacket is to be installed, thereby fluidizing the earthen material and causing the jacket to be driven into the ground.

PATENTEllunv 30 Ian SHEEI 10F 2 FIG.6

INV ENTOR ALBERT G. BODlNE FIG.4

WI 8: WOHLGEMUTH ATTORNEYS SONIC APPARATUS FOR INSTALLING A FILE JACKET. CASING MEMBER OR THE LIKE IN AN EARTIIEN FORMATION This invention relates to the driving of jacket or casing members into the ground and more particularly to the use of sonic energy for implementing suchdriving action.

In the prior art, apparatus is utilized for forming piles in which a mandrel, which may be tapered or stepped, has a thin steel jacket placed thereover, the two members then being driven into the ground together by means of a hammer drive. When the mandrel and jacket are in position, the mandrel is then removed, leaving the steel jacket in the ground, this jacket then being filled with concrete to form a cast-inplace" pile. The use of a tapered or stepped construction has an advantage in this type of prior art device in that is provides an optimum use of the steel in that the smaller diameter lower sections of the jacket are held in the solider, lower-down portions of the earthen formation, while a larger diameter portion is provided closer to the surface where the earthen formation is generally not quite as dense.

A considerable improvement in the efficiency of the driving action of this type of device can be achieved by utilizing sonic energy to fluidize the earthen formation and thus implement the driving action. This type of sonic driving is described, for example, in my US. Pat. Nos. 2,975,846 and 3,379,263.

The device of this invention is concerned with an improved technique for coupling the sonic energy to the earthen formation by transferring such energy from the mandrel to the jacket at a plurality of optimum coupling points therealong, and in an optimum manner, so as to provide higher efficiency in the utilization of the sonic energy in driving the jacket member into position. Further, in one embodiment of my invention, a stepped mandrel and a correspondingly stepped jacket is utilized, the mandrel providing heavy mass at one end for good impedance coupling to a relatively large orbiting mass oscillator and a much lower mass at the opposite driving end which thus has a high vibrational output for optimum driving action. The device of the invention further utilizes sonic rectification of the energy at its coupling between the mandrel and the jacket to increase the efiiciency of the driving operation to assure its maximum utilization.

It is therefore the principal object of this invention to improve the efficiency of the driving of a jacket or casing member into an earthen formation.

Other objects of the invention will become apparent as the description proceeds in connection with the accompanying drawings, of which:

FIG. I is an elevational drawing indicating the general operation of one embodiment of the device of the invention,

FIG. 2 is an elevational view in cross section illustrating the details of construction of this first embodiment,

FIG. 3 is an elevational view with partial cutaway section illustrating a coupling bushing member which may be used in the embodiment of FIG. I,

FIG. 4 is an elevational view with partial cutaway section illustrating a removable tip portion which may be used in the embodiment of FIG. I

FIG. 5 is an elevational view in cross section of a second embodiment of the device of the invention, and

FIG. 6 is a cross-sectional view taken along the plane indicated by 6-6 in FIG. 5.

Briefly described, the device of the invention comprises a mandrel member over which is placed a relatively thin-wall elastic jacket member. The jacket member is coupled to the mandrel member at several spaced points thereaiong. An orbiting mass oscillator is coupled to one end of the mandrel member and driven at a frequency such as to set up standingwave resonant vibration therein, the coupler points between the mandrel and the jacket preferably being spaced to provide optimum overall energy utilization. The jacket and mandrel are placed in the ground, the sonic energy causing these members to be driven therein. In one embodiment of the device of the invention, the mandrel and jacket have a stepped configuration, the driving end having a much smaller diameter than the end being driven by the oscillator, thus providing optimum coupling between the oscillator and the mandrel with an impedance transformation being provided at the driving end to provide optimum coupling of the sonic energy from the driving tip to the ground. The coupler members for coupling the sonic energy from the mandrel to the jacket are adjustable so that they can be positioned for optimum transfer of energy from the jacket to such mandrel. A special tip attachment is provided to adapt the mandrel to various lengths of jacket in the field. In addition, the couplers are arranged so that they provide sonic rectification in the transfer of the sonic energy from the mandrel to the jacket for optimum utilization of this energy.

It has been found most helpful in analyzing the device of this invention to analogize the acoustically vibrating circuit utilized to an equivalent electrical circuit. This sort of approach to analysis is well known to those skilled in the art and is described, for example, in Chapter 2 of Sonics" by Hueter and Bolt, published in I955 by John Wiley and Sons. In making such an analogy, force F is equated with electrical voltage E, velocity of vibration u is equated with electrical current i, mechanical compliance C,,, is equated with electrical capacitance C,., mass M is equated with electrical inductance L, mechanical resistance (friction) R is equated with electrical resistance R and mechanical impedance Z,.,, is equated with electrical impedance 2,.

Thus, it can be shown that if a member is elastically vibrated by means of an acoustical sinusoidal force F,,sinwr (to being equal to 21r times the frequency of vibration), that Where mM is equal to l/wC,,,, a resonant condition exists, and the efiective mechanical impedance Z,,, is equal to the mechanical resistance R,,,, the reactive impedance com ponents w(M and l/wC cancelling each other out. Under such a resonant condition, velocity of vibration u is at a maximum, power factor is unity, and energy is more efficiently delivered to a load to which the resonant system may be coupled.

It is important to note the significance of the attainment of high acoustical Q in the resonant system being driven, to increase the efficiency of the vibration thereof and to provide a maximum amount of power. As for an equivalent electrical circuit, the Q of an acoustically vibrating circuit is defined as the sharpness of resonance thereof and is indicative of the ratio of the energy stored in each vibration cycle to the energy used in each such cycle. Q is mathematically equated to the ratio between (0M and R,,,. Thus, the effective Q of the vibrating circuit can be maximized to make for highly efficient, high-amplitude vibration by minimizing the effect of friction in the circuit and/or maximizing the effect of mass in such circuit. The heavy, tapered pile gives good Q. Moreover, the rectifier action also increases the energy retention in the mandrel.

In considering the significance of the parameters described in connection with equation I, it should be kept in mind that the total effective resistance, mass, and compliance in the acoustically vibrating circuit are represented in the equation and that these parameters may be distributed throughout the system rather than being lumped in any one component or portion thereof.

It is also to be noted that orbiting mass oscillators are utilized in the implementation of the invention that automatically adjust their output frequency and phase to maintain resonance with changes in the characteristics of the load. Thus, in the face of changes in the effective mass and compliance presented by the load with changes in the conditions of the work material as it is sonically excited, the system automatically is maintained in optimum resonant operation by virtue of the lock-in" characteristic of applicant's unique orbiting mass oscillators. Furthermore in this connection the orbiting mass oscillator automatically changes not only its frequency but its phase angle and therefore its power factor with changes in the resistive impedance load, to assure optimum efficiency of operation at all times. This automatic adjustment to load impedance works particularly well with the rectifier feature of this invention. The vibrational output from such orbiting mass oscillators also tends to be constrained by the resonator to be generated along a controlled predetermined coherent path to provide maximum output along a desired axis.

Referring not to FIG. 1, a first embodiment of the device of the invention is illustrated. Mandrel 11 includes stepped sections Ila, llb and llc, which are fixedly joined together by suitable means such as welding, or interference fit, to form a onepiece integral unit. Mandrel 11 may be formed of cylindrical, thick-walled pipe of a highly elastic material such as steel. Placed over the mandrel sections 11a, 11b and 110 are thinwall steel corrugated tubing sections 12a, 12b and 120, which form a jacket around the mandrel. The jacket sections are coupled to each other by corrugated couplings 14 and 15, as to be described in connection with FIG. 2. The mandrel is coupled to the jacket, with rectifier action, by means of adjustable or selected bushings l7 and 18, as shown in FIG. 2 and later to be described in connection therewith. Suffice. it to say at this point that the couplings may be adjusted to provide the rectified coupling (unidirectional portion of the elastic displacement cycle) of sonic energy in an optimum manner from the mandrel to the jacket.

An orbiting mass oscillator 16 has its casing attached to the top end of mandrel 11 and is rotatably driven by drive means (not shown) coupled to the oscillator through drive shaft 20. Oscillator 16 may be of the type described in my U.S. Pat. No. 3,379,263, which utilizes a pair of eccentric rotors which are rotated in opposite directions so that they produce vibration of mandrel 11 along the longitudinal axis thereof. The speed of rotation of oscillator 16 is adjusted to a frequency whereat resonant standing-wave vibration of the mandrel occurs. The resonant energy is coupled from the mandrel through jacket 12 to earthen formation 25 to fiuidize the formation thereby causing the mandrel and the jacket to be driven therein.

Referring now to FIGS. 2-4, the details of construction of a first embodiment of the device of the invention are illustrated. As already noted, cylindrical corrugated steel jackets 12a12c fit over associated mandrel sections Ila-11c respectively. Jacket section 120 is joined to jacket section 12b by means of cylindrical corrugated coupler 14, which matingly engages the ends of these sections in the manner of screw threads. Jacket section 12b is similarly coupled to section 12c by means of coupler 15. Acoustical coupling is provided between mandrel section 11a and jacket section 12a by means of adjustable or selected bushing coupler member 17, the details of which are illustrated in F IG. 3. Bushing 17 includes a cylindrical tapered spacer member 170. The bushing may be held to the mandrel in a desired position opposite shoulder portion 14a of coupler 14 by means of the wedge action provided by collet 17b with the tightening of screws 17d. Further holding action for retaining the bushing to the mandrel is provided by setscrew 17:. Prior to the time that jacket section 12a is placed over mandrel section 110, bushing 17 is placed in the desired position for coupling energy therebetween and attached to the mandrel in this position by means of collet 17b and setscrew 17c. This adjustment should be made to provide a small rectifier gap 19 between the jacket and the mandrel so that only unidirectional pulses of sonic energy are transferred to the jacket (i.e., the half-cycle of the sonic energy which provides a downward pulse), the mandrel being substantially uncoupled from the jacketon the upward vibratory excursion. The device thus functions as a sonic rectifier, downward driving pulses of sonic energy being provided from the mandrel to the jacket. Bushing 17 should be positioned in place or dimensioned so that gap 19 is such as to afiord optimum transfer of downward pulsating energy. This gap has to be less than the longitudinal distance traversed by the mandrel in an elastic half-cycle. Coupler bushing 18 is similarly adjusted in position for optimum coupling of unidirectional sonic energy between mandrel section 11b and the shoulder portion a of jacket coupler l5.

The frequency of oscillator 16 is adjusted to provide a standing-wave pattern in the mandrel as indicated by graph lines 30. The resonant vibration as shown should be at a frequency whereby any two of the coupling points, i.e., in this instance those at coupler bushings 17 and 18, are spaced within a quarter wavelength of the standing-wave pattern so that the sonic drives on the jacket at these various points are in unison, thereby minimizing the stress on jacket. A removable tip portion 37 is utilized, various lengths of these tip portions being available for installation at the end of the mandrel to match various lengths of jackets so as to provide rectifier action as the need may arise in the field. Tip portion 37, or any of the other joints in the mandrel, may have a tongue 37a thereon which fits into cavity 38 in the center portion of the adjoining portion of the mandrel, joinder between the two members being attained by means of a tapered key 40 which fits through apertures in tongue 37a and mandrel 11c and is held to the mandrel by means of bolt 42 and nut 43.

Several significant features of this first embodiment should be noted at this point. First, the stepped mandrel structure provides a heavy mass at one end for optimum coupling to a large massive oscillator, and a much lower mass at the opposite end to provide an effective step-up transformation of the vibration resulting in high-amplitude vibration at the driving end, where it is most needed. Secondly, the adjustable or selected bushings 17 and 18 provide means for adjusting the coupling between the mandrel and the corrugated jacket to optimum rectifier advantage for each particular installation requirement. Likewise, the use of a removable driving tip enables the use of a tip member which provides optimum driving. Further, the adjustment of the coupling between the mandrel and the jacket through the adjustable bushings to provide sonic rectification, i.e., vibrational drive only in the downward direction, provides the advantages of minimizing the stress placed on the jacket and further makes for better utilization of the sonic energy in that it is not dissipated in an upward loaded excursion, which provides no useful effect in the driving action. The sonic vibrational system by virtue of the sonic rectifier action is made to have a higher efiective Q in view of the fact that the ratio between the energy stored to the energy dissipated in each vibrational cycle is thereby increased.

When the jacket has been installed in the desired position, the mandrel is lifted out therefrom and the jacket filled with concrete to form the piling.

Referring now to FIGS. 5 and 6, a second embodiment of the device of the invention is illustrated. ln this embodiment, the tapered mandrel and jacket of the first embodiment are not used, the mandrel being coupled to the corrugated jacket by means of a plurality of specially designed coupler devices.

Mandrel 51 has a plurality of coupler units 53 installed therein at spaced intervals therealong. Each coupler unit 53 may include three piston units 54, slidably supported in radial cylinders 56 formed in the mandrel. Pistons 54 are hydraulically actuated by pressurized fluid fed through line 58 to charlnel 59 formed in the center of the mandrel. With the pistons 54 unactuated, jacket member 60 is placed over the mandrel. The pistons 54 are then hydraulically actuated to drive them to the position indicated by the dotted lines in FIG. 6, the radial travel of the pistons being arrested by the abutment of piston shoulder 54a against shoulder 66a of retainer plate 66, which is fixedly retained in the mandrel. The travel of piston 54 is thereby arrested as shown by the dotted lines, in a position whereat there is a small gap between piston head 54b and the inner wall of corrugated jacket 60 both radially and longitudinally. This gap provides the rectifier gap necessary to achieve the desired sonic rectification. Thus, with the excitation of oscillator 16 at a frequency such as to cause longitudinal resonant standing-wave vibration of mandrel 51, and with pistons 54in their extended position, unidirectional sonic pulses are coupled from the mandrel to the corrugated jacket at the longitudinal gaps formed between the piston heads and the adjacent jacket corrugations. This second embodiment thus provides another way of transferring unidirectional sonic downward driving pulses to the jacket at several points therealong.

The device of this invention thus provides improved means for acoustically driving a pile jacket in which unidirectional sonic driving pulses are applied to the jacket in the driving direction at several points therealong.

I claim:

1. in combination,

an elastic bar member,

a jacket member surrounding said bar member,

sonic oscillator means coupled to one end of said bar member, said oscillator means being driven at a frequency such as to set up resonant standing-wave vibration in said bar member, and

means for acoustically coupling said bar member to said jacket member at a plurality of predetermined spaced points therealong, so as to rectify the sonic energy such that mainly unidirectional pulses of such energy are transferred to said jacket member.

2. The device of claim 1 wherein said bar member is a mandrel having a plurality of successively stepped sections along the length thereof, running between the oscillator and the end opposite said one end thereof.

3. The device of claim I wherein saidjacket member is corrugated. each of said coupling means being positioned with an end thereof longitudinally spaced from one of the jacket member corrugations to form a rectifier gap therebetween.

4. The device of claim 2 wherein said jacket member is corrugated, each of said coupling means comprising a bushing member removably attached to the mandrel, each of said bushing members being placed along said mandrel with one end thereof ,at a position where a pair of said sections join, a rectifier gap being formed between said one end of said bushing member and a corrugation of said jacket.

5. The device of claim 4 and additionally including removal tip means attached to the end of said mandrel opposite to the oscillator-coupled end thereof for providing a predetermined extension to the mandrel to adapt it to the length of the jacket.

6. The device of claim 3 wherein each of said coupling means comprises piston means mounted in said bar member for motion radially thereof and means for driving said piston means to a position spaced from an associated corrugation of said jacket member so as to form said gap.

* l i It i

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US869336 *Feb 15, 1907Oct 29, 1907Simplex Concrete Piling CompanyConcrete pile and means for driving same.
US1342424 *Sep 6, 1918Jun 8, 1920Cotten Shepard MMethod and apparatus for constructing concrete piles
US1880218 *Oct 1, 1930Oct 4, 1932Simmons Richard PMethod of lining oil wells and means therefor
US1966446 *Feb 14, 1933Jul 17, 1934Harvey C HayesImpact tool
US2390646 *May 10, 1943Dec 11, 1945Hays Russell RWell drilling apparatus
US2830791 *Feb 12, 1954Apr 15, 1958Smith Edward WEarth penetrating apparatus
US2989130 *Jan 23, 1958Jun 20, 1961Bodine AgIsolator for sonic earth boring drill
US3151687 *May 23, 1960Oct 6, 1964Nippon Sharyo Seizo KkDriving head with plural impact motors
US3379262 *Dec 23, 1965Apr 23, 1968Albert G. Bodine Jr.Stepped termination for sonic casing drive
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4280558 *Nov 23, 1979Jul 28, 1981Bodine Albert GSonic technique and system for facilitating the extraction of mineral material
US4665980 *Mar 24, 1986May 19, 1987Bodine Albert GMethod for improving well production by sonically driving granular medium installed in well
US4836299 *Oct 19, 1987Jun 6, 1989Bodine Albert GSonic method and apparatus for installing monitor wells for the surveillance and control of earth contamination
US6582158Mar 2, 1999Jun 24, 2003Ihc Handling SystemsDevice and method for transferring vibrating movement to rigid pipe with pipe clamp for vibrator rammer block
US6857487 *Dec 30, 2002Feb 22, 2005Weatherford/Lamb, Inc.Drilling with concentric strings of casing
US6896075Oct 11, 2002May 24, 2005Weatherford/Lamb, Inc.Apparatus and methods for drilling with casing
US6899186Dec 13, 2002May 31, 2005Weatherford/Lamb, Inc.Apparatus and method of drilling with casing
US6953096Dec 31, 2002Oct 11, 2005Weatherford/Lamb, Inc.Expandable bit with secondary release device
US6994176Mar 5, 2004Feb 7, 2006Weatherford/Lamb, Inc.Adjustable rotating guides for spider or elevator
US7004264Mar 14, 2003Feb 28, 2006Weatherford/Lamb, Inc.Bore lining and drilling
US7013997Dec 15, 2003Mar 21, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7036610Jul 6, 2002May 2, 2006Weatherford / Lamb, Inc.Apparatus and method for completing oil and gas wells
US7040420Nov 19, 2003May 9, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7048050Oct 2, 2003May 23, 2006Weatherford/Lamb, Inc.Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7073598Jul 23, 2003Jul 11, 2006Weatherford/Lamb, Inc.Apparatus and methods for tubular makeup interlock
US7083005May 31, 2005Aug 1, 2006Weatherford/Lamb, Inc.Apparatus and method of drilling with casing
US7090021Mar 16, 2004Aug 15, 2006Bernd-Georg PietrasApparatus for connecting tublars using a top drive
US7090023May 9, 2005Aug 15, 2006Weatherford/Lamb, Inc.Apparatus and methods for drilling with casing
US7093675Aug 1, 2001Aug 22, 2006Weatherford/Lamb, Inc.Drilling method
US7096982Feb 27, 2004Aug 29, 2006Weatherford/Lamb, Inc.Drill shoe
US7100710Dec 18, 2003Sep 5, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100713Apr 2, 2001Sep 5, 2006Weatherford/Lamb, Inc.Expandable apparatus for drift and reaming borehole
US7108084Dec 24, 2003Sep 19, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7128154Jan 29, 2004Oct 31, 2006Weatherford/Lamb, Inc.Single-direction cementing plug
US7128161Sep 20, 2005Oct 31, 2006Weatherford/Lamb, Inc.Apparatus and methods for facilitating the connection of tubulars using a top drive
US7131505 *Feb 22, 2005Nov 7, 2006Weatherford/Lamb, Inc.Drilling with concentric strings of casing
US7137454May 13, 2005Nov 21, 2006Weatherford/Lamb, Inc.Apparatus for facilitating the connection of tubulars using a top drive
US7140445Mar 5, 2004Nov 28, 2006Weatherford/Lamb, Inc.Method and apparatus for drilling with casing
US7147068Dec 5, 2003Dec 12, 2006Weatherford / Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7156189Dec 1, 2004Jan 2, 2007The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationSelf mountable and extractable ultrasonic/sonic anchor
US7165634Oct 2, 2003Jan 23, 2007Weatherford/Lamb, Inc.Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7216727Dec 21, 2000May 15, 2007Weatherford/Lamb, Inc.Drilling bit for drilling while running casing
US7219744Nov 29, 2005May 22, 2007Weatherford/Lamb, Inc.Method and apparatus for connecting tubulars using a top drive
US7234542Feb 9, 2006Jun 26, 2007Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7395882Feb 19, 2004Jul 8, 2008Baker Hughes IncorporatedCasing and liner drilling bits
US7621351May 11, 2007Nov 24, 2009Baker Hughes IncorporatedReaming tool suitable for running on casing or liner
US7624818Sep 23, 2005Dec 1, 2009Baker Hughes IncorporatedEarth boring drill bits with casing component drill out capability and methods of use
US7650944Jul 11, 2003Jan 26, 2010Weatherford/Lamb, Inc.Vessel for well intervention
US7730965Jan 30, 2006Jun 8, 2010Weatherford/Lamb, Inc.Retractable joint and cementing shoe for use in completing a wellbore
US7748475Oct 30, 2007Jul 6, 2010Baker Hughes IncorporatedEarth boring drill bits with casing component drill out capability and methods of use
US7757784Jun 24, 2005Jul 20, 2010Baker Hughes IncorporatedDrilling methods utilizing independently deployable multiple tubular strings
US7857052May 11, 2007Dec 28, 2010Weatherford/Lamb, Inc.Stage cementing methods used in casing while drilling
US7900703Nov 23, 2009Mar 8, 2011Baker Hughes IncorporatedMethod of drilling out a reaming tool
US7938201Feb 28, 2006May 10, 2011Weatherford/Lamb, Inc.Deep water drilling with casing
US7954570Sep 20, 2006Jun 7, 2011Baker Hughes IncorporatedCutting elements configured for casing component drillout and earth boring drill bits including same
US7954571Feb 12, 2008Jun 7, 2011Baker Hughes IncorporatedCutting structures for casing component drillout and earth-boring drill bits including same
US8006785May 29, 2008Aug 30, 2011Baker Hughes IncorporatedCasing and liner drilling bits and reamers
US8167059Jul 7, 2011May 1, 2012Baker Hughes IncorporatedCasing and liner drilling shoes having spiral blade configurations, and related methods
US8177001Apr 27, 2011May 15, 2012Baker Hughes IncorporatedEarth-boring tools including abrasive cutting structures and related methods
US8191654May 2, 2011Jun 5, 2012Baker Hughes IncorporatedMethods of drilling using differing types of cutting elements
US8205693Jul 7, 2011Jun 26, 2012Baker Hughes IncorporatedCasing and liner drilling shoes having selected profile geometries, and related methods
US8225887Jul 7, 2011Jul 24, 2012Baker Hughes IncorporatedCasing and liner drilling shoes with portions configured to fail responsive to pressure, and related methods
US8225888Jul 7, 2011Jul 24, 2012Baker Hughes IncorporatedCasing shoes having drillable and non-drillable cutting elements in different regions and related methods
US8245797Oct 23, 2009Aug 21, 2012Baker Hughes IncorporatedCutting structures for casing component drillout and earth-boring drill bits including same
US8276689May 18, 2007Oct 2, 2012Weatherford/Lamb, Inc.Methods and apparatus for drilling with casing
US8297380Jul 7, 2011Oct 30, 2012Baker Hughes IncorporatedCasing and liner drilling shoes having integrated operational components, and related methods
US20120073107 *Feb 10, 2010Mar 29, 2012Johannes KoecherClamping device on a vibrator and method for clamping a tube on said clamping device
DE102009008581A1 *Feb 12, 2009Aug 19, 2010Thyssenkrupp Gft Tiefbautechnik GmbhSpannvorrichtung an einem Vibrator und Verfahren zum Spannen eines Rohres auf dieser Spannvorrichtung
EP0940506A1 *Mar 1, 1999Sep 8, 1999Ihc Handling Systems VofPipe clamp for vibrator rammer blocks
Classifications
U.S. Classification175/56, 175/171
International ClassificationE21B7/00, E02D7/30, E02D7/18, E21B7/24, E02D7/00
Cooperative ClassificationE02D7/18, E21B7/24, E02D7/30
European ClassificationE02D7/18, E21B7/24, E02D7/30