US3626190A - Sample changing elevator and light sealing mechanism for scintillation counting - Google Patents

Sample changing elevator and light sealing mechanism for scintillation counting Download PDF

Info

Publication number
US3626190A
US3626190A US541654A US3626190DA US3626190A US 3626190 A US3626190 A US 3626190A US 541654 A US541654 A US 541654A US 3626190D A US3626190D A US 3626190DA US 3626190 A US3626190 A US 3626190A
Authority
US
United States
Prior art keywords
elevator
shutter
passage
shaft
drive wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US541654A
Inventor
Raymond E Cannon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beckman Coulter Inc
Original Assignee
Beckman Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beckman Instruments Inc filed Critical Beckman Instruments Inc
Application granted granted Critical
Publication of US3626190A publication Critical patent/US3626190A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/08Means for conveying samples received

Definitions

  • Harder ABSTRACT Describes a sample handling system for a liquid scintillation counter or the like having a sinusoidal drive for a sample changer elevator with a positively interlocked upper shutter mechanism and a cooperating lower light seal carried by the elevator which overlaps the lower end of the elevator passage while the shutter is open.
  • the mechanism is driven by a unidirectional motor.
  • This invention relates to a sample conveying elevator and light sealing mechanism for moving a sample vial from one vertical plane to another from a sample conveying chain to a position in a counting chamber, exposing the sample to photomultiplier tubes for counting light scintillations emanat ing therefrom and, more particularly, to such a mechanism in which the light sealing mechanism and drive mechanism for the sample elevator and shutter is simple and highly reliable in order to insure smooth operation and that no light from outside the counting chamber will reach the photomultiplier tubes when they are activated.
  • Prior art liquid scintillation counting systems first employed a mechanism such as disclosed in US. Pat. No. 3,085,155, Kern et al. in which a sample containing vial is placed on a shutter over a photomultiplier tube. The shutter is interlocked with a cover which is brought down over the sample to shield it from outside light and radiation such that it is only open when the cover is down.
  • a mechanism such as disclosed in US. Pat. No. 3,085,155, Kern et al. in which a sample containing vial is placed on a shutter over a photomultiplier tube. The shutter is interlocked with a cover which is brought down over the sample to shield it from outside light and radiation such that it is only open when the cover is down.
  • Such a system has the obvious disadvantage that only a single sample can be measured at a time and requires replacement by an operator.
  • the mechanism is not readily susceptible to automation.
  • the prior art In attempting to automate a liquid scintillation counting system such that a number of samples carried by a conveyor could be automatically lowered into a counting chamber, the prior art also employed a device in which a sample is first lowered by one elevator onto a rotating disc or mechanism which will serve to laterally transfer the sample to a second elevator. Prior to opening a shutter to lower the sample down the second elevator, a shutter is closed in the first elevator, then the second elevator lowers the sample down between the photomultiplier tubes. Such an arrangement is obviously mechanically complex and expensive.
  • the shaft in this device is provided with gear teeth to drive it up and down by means of a spur gear, driven in turn by a reversible motor.
  • Conventional limit switches are used to sense the up and down positions and a relatively expensive bidirectional motor is required to drive the device. This tends to complicate the associated electronic control because a memory or reset circuit must be employed.
  • the output at the elevator shaft is linear, making acceleration and deceleration severe, tending to cause rough operation of the elevator and undue stress on the rack and spur gear. This is so rough that a relatively expensive shock absorbing device has to be used in the form of two coaxial shafts, isolated from each other by springs.
  • the linear motion output also requires that the elevator shaft be braked effectively upon reaching the upper or lower limits, at which times it is going at full speed when it contacts the limit switch. Even the most effective braking system will allow some amount of over-run, presenting a problem of reproducible accuracy of positioning. Also, the type of limit switches used display an adverse characteristic commonly termed bounce" which means that when the switch is actuated, the contacts make and break several times and give several signals to the electronics which are only looking for one signal. This requires additional circuitry to blank out all but the first signal.
  • the shutter mechanism which cooperates with the light seal on the elevator shaft, utilizes a push-pull cable actuated by a ramp cut into the elevator shaft, which in turn actuates the leaf shutter by means of an actuating arm and spring return.
  • the spring return can fail structurally or the push-pull cable can become stiff and binding from lack of lubrication, or become kinked, or the lever arm and shutter leaf can bind, preventing the shutter from closing.
  • the operator may put a distorted plastic vial in the machine, or not let go of the vial soon. enough, resulting in the shutter closing on the vial.
  • a light pipe is employed between the photomultiplier tubes, and the seals carried by the elevator shaft are expanded and contracted. Theyare contracted when passing the light pipe so as not to rub against the pipe, and are expanded when in the elevator passage above the light pipe.
  • This mechanism also uses a leaf shutter that moves back and forth for the upper light seal, but it is driven differently.
  • a length of thin, rectangular bar stock, twisted approximately is connected to the leaf shutter and is rotated'by means of a hollow tube connected to the elevator shaft by brackets. Pins positioned in the tube allow the thin section of rectangular bar stock to pass freely. As the tube is raised or lowered, the pins engage the twisted portion of the rectangular bar and turn it. If a sample vial gets in the way of the shutter, when the shutter is closing as mentioned above, the rectangular bar could incur damage by twisting, exposing and damaging the photomultiplier tubes.
  • the main purpose of the invention includes three aspects.
  • the first is to provide a new and improved sample changing elevator for scintillation counting to accomplish the movement of a sample vial from one vertical plane to another, position it accurately and provide a signal to an electronic section when in position, moving the sample in a smooth manner with an uncomplicated and inexpensive mechanism.
  • the second is to provide a timed and mechanically interlocked light-tight shutter in the elevator passage for cooperating with a simple sealing mechanism which closes off the lower end of the elevator passage when the shutter is open, to protect the photomultiplier tubes from light and yet enable the sample vial to be inserted and withdrawn from a detector chamber.
  • the third is to provide an improved light sealing mechanism in which a seal carried by the elevator shaft does not enter the elevator passage but overlaps its lower end, reducing the amount of machining and driving accuracy required.
  • a sample changing elevator and light sealing mechanism of the type having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a direction chamber and returning them to the conveyor, characterized by a unidirectional drive motor connected to said elevator shaft to drive it in a nonlinear manner, a rotating shutter mechanism for opening and closing a shutter at the top of said passage, interlocking means connecting said shutter mechanism for intermittent actuation by said motor to only open said shutter when said table has entered said passage at its lower end and to always close said shutter before said table leaves said passage at its lower end, and a light seal cooperating with said shaft to withdraw with said table when it leaves the lower end of said passage and to extend from said shaft to a position overlapping thelower end of said passage to block light from going therebetween when said table enters or is in said passage.
  • FIG. 1 is a view of a cross section through the center of a detector housing, shutter and shutter drive wheel, elevator drive wheel and elevator guide bearing, exposing the elevator shaft, table and seal and shutter drive shaft and illustrating the motor mounting bracket and unidirectional motor, of one embodiment of the invention.
  • FIG. 2 is an isometric drawing of the elevator and shutter driving mechanism illustrated in FIG. 1, taken in the direction A and illustrating a photocell mounting bracket, not illustrated in FIG. 1 for purpose of clarity.
  • a unidirectional motor is mounted on a motor mounting bracket 1 1, to a lower mounting plate 12.
  • Motor 10 has a shaft 13, connected through a gear box 14 to a gear motor output drive shaft 15, which serves to drive the elevator drive wheel 16, and is positively, pin-connected thereto.
  • a hearing shaft 17 is mounted perpendicular to and through drive wheel 16 at a point near its circumference for mounting a drive bearing 18 thereon.
  • a detector housing 21 containing a detection chamber 22 is mounted on lower mounting plate 12 and extends upwardly to conveyor base-plate 23, over which the sample conveyor chain carrying the sample bottles (not illustrated) rides.
  • Such a conveyor is illustrated more fully in a copending application entitled "Control Tower and Method for Programming Automatic Radioactivity Measuring System," R. E. Nather, (Beckman Docket 7D-128) filed concurrently herewith and assigned to the assignee of the present invention.
  • An elevator passage 24 extends downwardly from conveyor base-plate 23 and is formed of a cylindrical tube contained in a hole in detector housing 21. Passage 24 extends slightly down into the detection chamber 22.
  • An elevator access hole 25 extends downwardly from detection chamber 22, in axial alignment with elevator passage 24, and over a hole 26 in lower mounting plate 12.
  • An elevator guide bearing 27 is contained in the lower portion of elevator access hole 25, secured to detector housing 21 and having a reduced diameter portion at its upper end to provide a relatively snug fit to serve as a bearing surface and guide for elevator shaft 20.
  • elevator shaft 20 Light is kept from entering the lower portion of the detection chamber 22 by the seal 28, which may be made of wool felt and fits snugly against elevator shaft 20, mounted on the bracket 29 to housing 21' and bearing 27.
  • the upper end of elevator shaft contains an elevator table 30, which is a round disc having a diameter smaller than that of elevator passage 24 and elevator access hole 25. The disc may be screwed into the end of the elevator shaft 20, as illustrated.
  • an elevator shaft seal 31 which may be made of a soft material such as wool felt, is mounted around the elevator shaft 20.
  • Seal 31 rides on the upper lip 32 of a cup-shaped metallic member 33, which contains two other washer-shaped seal members 34 of smaller diameter than seal 31.
  • Cup 33 is made of metal and has a hole in the bottom through which elevator shaft 20 extends.
  • the elevator shaft 20 can ride through the seals 31, 34 and cup 33 without undue friction since the hole in the bottom of cup 33 has a slightly larger diameter than elevator shaft 20.
  • the seals cooperate with elevator shaft 20 to provide a light seal therebetween.
  • the diameter of seal 31 is greater than that of passage 24 but less than that of access hole 25.
  • a compression spring 35 in the form of a cylindrical coil, has its lower end surrounding and fitted to the reduced diameter portion of elevator guide bearing 27, and its upper end sur-' rounding and fitted to cup 33, urging it upward and, in turn, urging the seal 31 against the elevator table 30 in such a manner that when the elevator shaft goes up through detection chamber 22 and table 30 enters passage 24, table 30 will proceed upward through passage 24 while seal 31 will engage the end of the portion of passage 24 extending down into detection chamber 22, in an overlapping manner, will not enter passage 24, and will be urged against it by the spring 35. The seal 31 will then keep light from coming down the passage 24 while the elevator table 30 is in the passage 24 by sealing from across the lower portion of passage 24 to a sliding seal against the shaft 20.
  • the unidirectional motor 10 and gear box 14 together make up a l0 r.p.m. gear motor for driving the elevator drive wheel 16 at 10 r.p.m.
  • the bearing 18 cooperates with the channel in guide rail 19 as wheel 16 revolves, here in a counterclockwise direction, in a manner such that at the extremes of up and down, the guide rail 19 will be moving slowly.
  • the overall motion of the guide rail in the up and down direction will be nonlinear, sinusoidal in nature, and the resulting up and down movement of the elevator shaft 20 will be sinusoidal, such that at the top and bottom limits of its excursion it is moving very slowly, avoiding the aforementioned problems which are incurred with linear motion.
  • a photocell assembly 36 is shown, adjustably mounted on an upper portion of a rod 37.
  • a second photocell assembly 38 is adjustably mounted on the lower portion of the rod 37, the rod 37 being mounted downwardly from the lower mounting plate 12 (not illustrated in FIG. 2).
  • the righthand extremity of the drive track 19 carries a flag 39 which cooperates with the upper and lower photocell assemblies 36 and 38 when the track 19 is in its upper and lower positions and the elevator shaft 20 is correspondingly in its upper and lower positions, to actuate the controls (not illustrated) for unidirectional motor 10.
  • the upper end of housing 21 contains a shutter wheel 40, which is pin-connected to and rotated by a shutter drive shaft 41 and contains holes 47 therein. Holes 47 will index with the passage 24 when the shutter is to be opened to receive a sample bottle during the time when table 30 and shaft 20 are in passage 24 and the seal 31 is closing off light at the lower end of passage 24, keeping it out of detection chamber 22.
  • Felt packing 48 is placed around wheel 40 to keep light from leaking around it into the passage 24. Packing 48 has holes in it directly over passage 24.
  • the lower end of shutter drive shaft 41 carries a shutter drive wheel 42, pin attached thereto.
  • FIG. 2 in which the shutter drive shaft 41 and wheel 42 are illustrated in more detail.
  • Wheel 42 carries a set of upper teeth 43 and a set of lower teeth 44.
  • Upper teeth 43 extend along two lines perpendicular to each other and lower teeth 44 also extend along two lines perpendicular to each other, displaced 45 around the axis of the shaft 41 from teeth 43.
  • the teeth 43 extend outwardly over the circumference of the wheel 16 when directed thereat and serve to engage a drive pin 45, which will then serve to rotate the shaft 41 in a counterclockwise direction, at the same time inserting one of the lower teeth 44 into a notch 46 in the circumference of wheel 16, which will permit shaft 41 to turn. This will serve to rotate the shaft 41 and the shutter 40 to place the shutter in the open position if previously closed, or in the closed position if previously open, by rotating them 90.
  • the drive pin 45 is positioned on the circumference of wheel to, together with the notch as, at a point to actuate the shutter mechanism when the elevator 30 has just entered or is about to leave passage M.
  • the table 30 is in passage 24 for over half the time of the excursion of shaft 20, or for over half the time of the total rotation of wheel 16.
  • a second drive pin and notch (not illustrated) similar to drive pin 45 and notch as, are positioned at another point on the circumference of wheel 116 to perform a similar function. For every revolution of wheel 16, shaft goes up and down once and a pin 45 is actuated to turn shaft M twice, 90 each time, such that shutter 40 turns l80 for each revolution of the wheel 16. This is why shutter Ml contains the two holes d7 rather than one.
  • the invention uses a rotary shutter rather than the reciprocating shutter used on the other systems referred to.
  • the interlock mechanism is sturdy enough to stall the elevator motor 110 in the event of a malfunction, which will prevent damage to the photomultiplier tubes in the detection chamber 22.
  • the device of the invention also permits the use of a relatively inexpensive unidirectional motor, which can employ much simpler control circuitry and does not require the accurate braking required of the bidirectional motors of the prior art, since the elevator table 30 is moving very slowly when at the top and bottom extremities.
  • the use of the photocell detectors avoids the problem of bounce associated with the limit switches employed in the prior art, permitting further simplification of the motor control circuitry.
  • a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor;
  • a unidirectional drive motor connected to said elevator shaft to drive it in a nonlinear manner
  • a rotating shutter mechanism for opening and closing a shutter at the top of said passage
  • interlocking means connecting said shutter mechanism for intermittent actuation by said motor to only open said shutter when said table has entered said passage at its lower end and to always close said shutter before said table leaves said passage at its lower end
  • a light seal cooperating with said shaft to withdraw with said table when it leaves the lower end of said passage and to extend from said shaft to a position overlapping the lower end of said passage to block light from going therebetween when said table enters or is in said passage.
  • a guide rail having a channel therein connected to said elevator shaft at an angle therewith, said bearing being positioned to ride back and forth in said channel and upon linear rotation of said elevator drive wheel to cause said elevator shaft to go up and down in nonlinear motion.
  • a shutter drive wheel connected for rotation on said shutter drive shaft and containing two sets of teeth
  • At least one drive mechanism extending from said elevator drive wheel followed during rotation of said elevator drive wheel by a slot in the circumference of said elevator drive wheel, said drive mechanism positioned to contact a tooth in one of said sets of teeth during rotation of said elevator drive wheel and cause said shutter drive wheel and shutter drive shaft to rotate by inserting a tooth from the: other of said sets of teeth into said slot to permit rotation of said shutter connecting wheel, said other set of teeth normally coacting against said elevator drive wheel to prevent said shutter drive wheel from rotating.
  • said elevator drive wheel has two of said drive mechanisms, each formed by a pin extending from its circumference, each followed by one of said slots, for permitting rotation of said shutter twice during each revolution of said elevator drive wheel, said pins and slots being positioned at points on the circumference of said elevator drive wheel to rotate said shutter wheel, said shutter drive shaft and said shutter drive wheel after said table enters said passage from its lower end to open said shutter and before said table leaves said passage from its lower end to close said shutter.
  • said shutter wheel having two holes therein located apart for indexing with said elevator passage to alternate ly open and close the top of said passage.
  • said light seal is biased against the lower end of said passage to extend from said elevator shaft overlapping the lower end of said passage to block light from going therebetween when said table enters or is in said passage.
  • a rotating shutter mechanism including;
  • a shutter drive wheel connected for rotation on said shutter drive shaft and containing two sets of teeth
  • a unidirectional drive motor having a shaft
  • an elevator drive wheel having a slot in the periphery thereof and a smooth surface over the remainder of the periphery connected for rotation on said motor shaft,
  • At least one drive mechanism extending from said elevator drive wheel followed during rotation of said elevator drive wheel by a slot in the circumference of said elevator drive wheel, said drive mechanism positioned to contact a tooth in one of said sets of teeth during rotation of said elevator drive wheel and cause said shutter drive wheel and shutter drive shaft to rotate by inserting a tooth from the other said sets of teeth into said slot to permit rotation of said shutter drive wheel, said other set of teeth normally coacting against said smooth surface of said elevator drive wheel to prevent said shutter drive wheel from rotating.
  • said elevator drive wheel has two of said drive mechanisms, each formed by a pin extending from its circumference, each followed by one of said slots, for permitting rotation of said shutter twice during each revolution of said elevator drive wheel, said pins and slots being positioned at points on a circumference of said elevator drive wheel to rotate said shutter wheel, said shutter drive shaft and said shutter drive wheel after said table enters said passage from its lower end to open said shutter and before said table leaves said passage from its lower end to close said shutter.
  • said shutter wheel having two holes therein located apart for indexing with said elevator passage to alternately open and close the top of said passage.
  • a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor;
  • said shaft is mounted for motion through an elevator guide bearing
  • a compression spring is connected between said cup and said elevator guide bearing to urge said seal against said table when said table is withdrawn from said passage and to urge said seal against the lower end of said passage, overlapping said passage, when said table is in said passage, said seal always fitting snugly to provide a light seal around said shaft.
  • An apparatus for scintillation counting and analogous purposes comprising wall means defining a counting chamber and an elongated passage connecting said chamber with the exterior, said wall means having a shoulder portion between the counting chamber and the exterior, a sample platform moveable through a ortion of said passa e and into said counting chamber, a shaft coupled to said p atform for positioning said platform within said passage and said counting chamber, and a sleeve moveable about said shaft, said sleeve having light-sealing means for engaging said shoulder portion of said wall means.

Abstract

Describes a sample handling system for a liquid scintillation counter or the like having a sinusoidal drive for a sample changer elevator with a positively interlocked upper shutter mechanism and a cooperating lower light seal carried by the elevator which overlaps the lower end of the elevator passage while the shutter is open. The mechanism is driven by a unidirectional motor.

Description

nite States tent [56] IIeIea-ences Cited UNITED STATES PATENTS 422,825 3/1890 Perry, .lr. 95/6l 3,163,756 12/1964 Meeder etal 250/106 SC OTHER REFERENCES Solderholm, Lars G., Elevator and Index Mechanism Handle Samples in Radiation Detector," Design News, Aug. 4, 196] Primary Examiner-Archie R. Borchelt Assistant Examiner-Morton .l. Frome Attorneys-Robert .l. Steinmeyer and Paul R. Harder ABSTRACT: Describes a sample handling system for a liquid scintillation counter or the like having a sinusoidal drive for a sample changer elevator with a positively interlocked upper shutter mechanism and a cooperating lower light seal carried by the elevator which overlaps the lower end of the elevator passage while the shutter is open. The mechanism is driven by a unidirectional motor.
[72] Inventor Raymond E. Cannon San Diego, Calif.
[2|] Appl. No. 541,654
[22] Filed Apr.11, 1966 [45] Patented Dec. 7, 1971 [73] Assignee Beckman Instruments, Inc.
[54] SAMPLE CHANGING ELEVATOR AND LIGHT SEALING MECHANISM FOR SCINTILILA'IION COUNTING 14 Claims, 2 Drawing Figs.
[51] Int.CI GOIt 1/20,
GO It 7/02 [50] lField oi Search 250/106 SC.7l.5;9S/6l rill/111,
SAMPLE CHANGING ELEVATOR AND LIGHT SEALING MECHANISM FOR SCINTILLATION COUNTING This invention relates to a sample conveying elevator and light sealing mechanism for moving a sample vial from one vertical plane to another from a sample conveying chain to a position in a counting chamber, exposing the sample to photomultiplier tubes for counting light scintillations emanat ing therefrom and, more particularly, to such a mechanism in which the light sealing mechanism and drive mechanism for the sample elevator and shutter is simple and highly reliable in order to insure smooth operation and that no light from outside the counting chamber will reach the photomultiplier tubes when they are activated.
Prior art liquid scintillation counting systems first employed a mechanism such as disclosed in US. Pat. No. 3,085,155, Kern et al. in which a sample containing vial is placed on a shutter over a photomultiplier tube. The shutter is interlocked with a cover which is brought down over the sample to shield it from outside light and radiation such that it is only open when the cover is down. Such a system has the obvious disadvantage that only a single sample can be measured at a time and requires replacement by an operator. The mechanism is not readily susceptible to automation.
In attempting to automate a liquid scintillation counting system such that a number of samples carried by a conveyor could be automatically lowered into a counting chamber, the prior art also employed a device in which a sample is first lowered by one elevator onto a rotating disc or mechanism which will serve to laterally transfer the sample to a second elevator. Prior to opening a shutter to lower the sample down the second elevator, a shutter is closed in the first elevator, then the second elevator lowers the sample down between the photomultiplier tubes. Such an arrangement is obviously mechanically complex and expensive.
In an attempt to further improve mechanisms for sample conveying and light sealing, the device of US. Pat. No. 3,163,756, Meeder et al. was conceived. This device employs a number of sealing rings carried by the sample conveying elevator which cooperate with a shutter. The shutter is closed during the period when the elevator is down in the counting chamber. When the elevator goes up to discharge a sample and pick up the next sample, prior to the time the shutter opens, the sealing rings will engage the wall of the elevator passage between the counting chamber and the conveyor, preventing light from impinging upon the photomultiplier tubes. This device requires that the elevator and seal be machined accurately to fit snugly in the elevator passage and that the elevator be driven with precision such that it does not bind upon entering the passage.
In addition, the shaft in this device is provided with gear teeth to drive it up and down by means of a spur gear, driven in turn by a reversible motor. Conventional limit switches are used to sense the up and down positions and a relatively expensive bidirectional motor is required to drive the device. This tends to complicate the associated electronic control because a memory or reset circuit must be employed. The output at the elevator shaft is linear, making acceleration and deceleration severe, tending to cause rough operation of the elevator and undue stress on the rack and spur gear. This is so rough that a relatively expensive shock absorbing device has to be used in the form of two coaxial shafts, isolated from each other by springs.
The linear motion output also requires that the elevator shaft be braked effectively upon reaching the upper or lower limits, at which times it is going at full speed when it contacts the limit switch. Even the most effective braking system will allow some amount of over-run, presenting a problem of reproducible accuracy of positioning. Also, the type of limit switches used display an adverse characteristic commonly termed bounce" which means that when the switch is actuated, the contacts make and break several times and give several signals to the electronics which are only looking for one signal. This requires additional circuitry to blank out all but the first signal.
The shutter mechanism, which cooperates with the light seal on the elevator shaft, utilizes a push-pull cable actuated by a ramp cut into the elevator shaft, which in turn actuates the leaf shutter by means of an actuating arm and spring return. There is no mechanical interlock to prevent the tubes from being exposed to external light or radiation should the shutter fail to close, which will happen from time to time. The spring return can fail structurally or the push-pull cable can become stiff and binding from lack of lubrication, or become kinked, or the lever arm and shutter leaf can bind, preventing the shutter from closing. Also, when operating in a manual mode, the operator may put a distorted plastic vial in the machine, or not let go of the vial soon. enough, resulting in the shutter closing on the vial.
Another approach to solving the problem of sample conveying and light sealing in a liquid scintillation spectrometer is illustrated in US. Pat. Nos. 3,188,468, Packard and 3,198,948, Olson. In this mechanism, the elevator shaft is raised and lowered by means of a cable, one end of which is attached to one end of the elevator shaft. The cable is routed over an idler drum positioned very close to the elevator, then to a motor driven pay-in, payout drum and back over the idler drum and finally to the other end of the elevator shaft. A reversible motor is used so that the elevator can be made to move up or down. Position sensing is again accomplished using limit switches.
This mechanism again necessitates the use of reversible motors with the aforerecited disadvantages and it also has a linear output, requiring a solution of the problems associated therewith as well as those associated with the limit switches aforementioned.
In this mechanism, a light pipe is employed between the photomultiplier tubes, and the seals carried by the elevator shaft are expanded and contracted. Theyare contracted when passing the light pipe so as not to rub against the pipe, and are expanded when in the elevator passage above the light pipe. This requires the use of a complicated actuating mechanism for the seals and again requires accurate machining and driving of the elevator mechanism.
This mechanism also uses a leaf shutter that moves back and forth for the upper light seal, but it is driven differently. A length of thin, rectangular bar stock, twisted approximately is connected to the leaf shutter and is rotated'by means of a hollow tube connected to the elevator shaft by brackets. Pins positioned in the tube allow the thin section of rectangular bar stock to pass freely. As the tube is raised or lowered, the pins engage the twisted portion of the rectangular bar and turn it. If a sample vial gets in the way of the shutter, when the shutter is closing as mentioned above, the rectangular bar could incur damage by twisting, exposing and damaging the photomultiplier tubes.
The main purpose of the invention includes three aspects. The first is to provide a new and improved sample changing elevator for scintillation counting to accomplish the movement of a sample vial from one vertical plane to another, position it accurately and provide a signal to an electronic section when in position, moving the sample in a smooth manner with an uncomplicated and inexpensive mechanism. The second is to provide a timed and mechanically interlocked light-tight shutter in the elevator passage for cooperating with a simple sealing mechanism which closes off the lower end of the elevator passage when the shutter is open, to protect the photomultiplier tubes from light and yet enable the sample vial to be inserted and withdrawn from a detector chamber. The third is to provide an improved light sealing mechanism in which a seal carried by the elevator shaft does not enter the elevator passage but overlaps its lower end, reducing the amount of machining and driving accuracy required.
These and other objects are achieved by providing a sample changing elevator and light sealing mechanism of the type having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a direction chamber and returning them to the conveyor, characterized by a unidirectional drive motor connected to said elevator shaft to drive it in a nonlinear manner, a rotating shutter mechanism for opening and closing a shutter at the top of said passage, interlocking means connecting said shutter mechanism for intermittent actuation by said motor to only open said shutter when said table has entered said passage at its lower end and to always close said shutter before said table leaves said passage at its lower end, and a light seal cooperating with said shaft to withdraw with said table when it leaves the lower end of said passage and to extend from said shaft to a position overlapping thelower end of said passage to block light from going therebetween when said table enters or is in said passage.
The novel features which are believed to be characteristic of the invention are set forth with particularity in the appended claims. The invention, and further objects and advantages thereof, can best be understood by reference to the following description and accompanying drawings in which:
FIG. 1 is a view of a cross section through the center of a detector housing, shutter and shutter drive wheel, elevator drive wheel and elevator guide bearing, exposing the elevator shaft, table and seal and shutter drive shaft and illustrating the motor mounting bracket and unidirectional motor, of one embodiment of the invention; and,
FIG. 2 is an isometric drawing of the elevator and shutter driving mechanism illustrated in FIG. 1, taken in the direction A and illustrating a photocell mounting bracket, not illustrated in FIG. 1 for purpose of clarity.
Turning now to the drawings, it can be seen that a unidirectional motor is mounted on a motor mounting bracket 1 1, to a lower mounting plate 12. Motor 10 has a shaft 13, connected through a gear box 14 to a gear motor output drive shaft 15, which serves to drive the elevator drive wheel 16, and is positively, pin-connected thereto. A hearing shaft 17 is mounted perpendicular to and through drive wheel 16 at a point near its circumference for mounting a drive bearing 18 thereon. Drive bearing 18, in turn, cooperates with a channel in drive track 19, which is attached to the lower end of an elevator shaft 20.
A detector housing 21 containing a detection chamber 22 is mounted on lower mounting plate 12 and extends upwardly to conveyor base-plate 23, over which the sample conveyor chain carrying the sample bottles (not illustrated) rides. Such a conveyor is illustrated more fully in a copending application entitled "Control Tower and Method for Programming Automatic Radioactivity Measuring System," R. E. Nather, (Beckman Docket 7D-128) filed concurrently herewith and assigned to the assignee of the present invention.
An elevator passage 24 extends downwardly from conveyor base-plate 23 and is formed of a cylindrical tube contained in a hole in detector housing 21. Passage 24 extends slightly down into the detection chamber 22. An elevator access hole 25 extends downwardly from detection chamber 22, in axial alignment with elevator passage 24, and over a hole 26 in lower mounting plate 12. An elevator guide bearing 27 is contained in the lower portion of elevator access hole 25, secured to detector housing 21 and having a reduced diameter portion at its upper end to provide a relatively snug fit to serve as a bearing surface and guide for elevator shaft 20.
Light is kept from entering the lower portion of the detection chamber 22 by the seal 28, which may be made of wool felt and fits snugly against elevator shaft 20, mounted on the bracket 29 to housing 21' and bearing 27. The upper end of elevator shaft contains an elevator table 30, which is a round disc having a diameter smaller than that of elevator passage 24 and elevator access hole 25. The disc may be screwed into the end of the elevator shaft 20, as illustrated.
Below elevator table 30, an elevator shaft seal 31, which may be made of a soft material such as wool felt, is mounted around the elevator shaft 20. Seal 31 rides on the upper lip 32 of a cup-shaped metallic member 33, which contains two other washer-shaped seal members 34 of smaller diameter than seal 31. Cup 33 is made of metal and has a hole in the bottom through which elevator shaft 20 extends. The elevator shaft 20 can ride through the seals 31, 34 and cup 33 without undue friction since the hole in the bottom of cup 33 has a slightly larger diameter than elevator shaft 20. However, the seals cooperate with elevator shaft 20 to provide a light seal therebetween. The diameter of seal 31 is greater than that of passage 24 but less than that of access hole 25.
A compression spring 35, in the form of a cylindrical coil, has its lower end surrounding and fitted to the reduced diameter portion of elevator guide bearing 27, and its upper end sur-' rounding and fitted to cup 33, urging it upward and, in turn, urging the seal 31 against the elevator table 30 in such a manner that when the elevator shaft goes up through detection chamber 22 and table 30 enters passage 24, table 30 will proceed upward through passage 24 while seal 31 will engage the end of the portion of passage 24 extending down into detection chamber 22, in an overlapping manner, will not enter passage 24, and will be urged against it by the spring 35. The seal 31 will then keep light from coming down the passage 24 while the elevator table 30 is in the passage 24 by sealing from across the lower portion of passage 24 to a sliding seal against the shaft 20.
The unidirectional motor 10 and gear box 14 together make up a l0 r.p.m. gear motor for driving the elevator drive wheel 16 at 10 r.p.m. As can be seen better, referring to FIG. 2, the bearing 18 cooperates with the channel in guide rail 19 as wheel 16 revolves, here in a counterclockwise direction, in a manner such that at the extremes of up and down, the guide rail 19 will be moving slowly. The overall motion of the guide rail in the up and down direction will be nonlinear, sinusoidal in nature, and the resulting up and down movement of the elevator shaft 20 will be sinusoidal, such that at the top and bottom limits of its excursion it is moving very slowly, avoiding the aforementioned problems which are incurred with linear motion.
In FIG. 2, a photocell assembly 36 is shown, adjustably mounted on an upper portion of a rod 37. A second photocell assembly 38 is adjustably mounted on the lower portion of the rod 37, the rod 37 being mounted downwardly from the lower mounting plate 12 (not illustrated in FIG. 2). The righthand extremity of the drive track 19 carries a flag 39 which cooperates with the upper and lower photocell assemblies 36 and 38 when the track 19 is in its upper and lower positions and the elevator shaft 20 is correspondingly in its upper and lower positions, to actuate the controls (not illustrated) for unidirectional motor 10. These photocell assemblies 36 and 38 avoid the problems associated with the bounce of the limit switches, aforementioned.
The upper end of housing 21 contains a shutter wheel 40, which is pin-connected to and rotated by a shutter drive shaft 41 and contains holes 47 therein. Holes 47 will index with the passage 24 when the shutter is to be opened to receive a sample bottle during the time when table 30 and shaft 20 are in passage 24 and the seal 31 is closing off light at the lower end of passage 24, keeping it out of detection chamber 22. Felt packing 48 is placed around wheel 40 to keep light from leaking around it into the passage 24. Packing 48 has holes in it directly over passage 24. The lower end of shutter drive shaft 41 carries a shutter drive wheel 42, pin attached thereto.
Operation of the shutter mechanism will be better understood by referring again to FIG. 2, in which the shutter drive shaft 41 and wheel 42 are illustrated in more detail. Wheel 42 carries a set of upper teeth 43 and a set of lower teeth 44. Upper teeth 43 extend along two lines perpendicular to each other and lower teeth 44 also extend along two lines perpendicular to each other, displaced 45 around the axis of the shaft 41 from teeth 43. The teeth 43 extend outwardly over the circumference of the wheel 16 when directed thereat and serve to engage a drive pin 45, which will then serve to rotate the shaft 41 in a counterclockwise direction, at the same time inserting one of the lower teeth 44 into a notch 46 in the circumference of wheel 16, which will permit shaft 41 to turn. This will serve to rotate the shaft 41 and the shutter 40 to place the shutter in the open position if previously closed, or in the closed position if previously open, by rotating them 90.
The drive pin 45 is positioned on the circumference of wheel to, together with the notch as, at a point to actuate the shutter mechanism when the elevator 30 has just entered or is about to leave passage M. As can be seen from the drawing of HG. l, the table 30 is in passage 24 for over half the time of the excursion of shaft 20, or for over half the time of the total rotation of wheel 16. A second drive pin and notch (not illustrated) similar to drive pin 45 and notch as, are positioned at another point on the circumference of wheel 116 to perform a similar function. For every revolution of wheel 16, shaft goes up and down once and a pin 45 is actuated to turn shaft M twice, 90 each time, such that shutter 40 turns l80 for each revolution of the wheel 16. This is why shutter Ml contains the two holes d7 rather than one.
After the lower teeth 4d have entered the notch 46 and rotated the shaft 411, two of them are again positioned adjacent the wheel to and at 45 angles thereto to prevent the shaft 4H1 from any further rotation until the next pin 45 and notch 46 are encountered, thus providing a positive mechanical interlock. The invention uses a rotary shutter rather than the reciprocating shutter used on the other systems referred to. The interlock mechanism is sturdy enough to stall the elevator motor 110 in the event of a malfunction, which will prevent damage to the photomultiplier tubes in the detection chamber 22.
It can be seen from the foregoing description that the elevator drive wheel to and bearing llfi, cooperating with the drive track 19, will drive the elevator shaft 20 in a sinusoidal manner, which has many advantages over the prior art. Also, since seal 311 overlaps the lower portion of the passage 24 and the table fits loosely therein, the need for precision motion is relaxed. The manner of rotating the shutter-wheel is such that a positive mechanical interlock has been provided which will override the motor 110 inthe event of a malfunction such as a bottle being jammed in the shutter. The device of the invention also permits the use of a relatively inexpensive unidirectional motor, which can employ much simpler control circuitry and does not require the accurate braking required of the bidirectional motors of the prior art, since the elevator table 30 is moving very slowly when at the top and bottom extremities. The use of the photocell detectors avoids the problem of bounce associated with the limit switches employed in the prior art, permitting further simplification of the motor control circuitry.
Since the principles of the invention have now been made clear, modifications which are particularly adapted for specific situations without departing from those principles will be apparent to those skilled in the art. The appended claims are intended to cover such modifications as well as the subject matter described and to only be limited by the true spirit of the invention.
What is claimed is:
1. In a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor;
a unidirectional drive motor connected to said elevator shaft to drive it in a nonlinear manner;
a rotating shutter mechanism for opening and closing a shutter at the top of said passage,
interlocking means connecting said shutter mechanism for intermittent actuation by said motor to only open said shutter when said table has entered said passage at its lower end and to always close said shutter before said table leaves said passage at its lower end, and
a light seal cooperating with said shaft to withdraw with said table when it leaves the lower end of said passage and to extend from said shaft to a position overlapping the lower end of said passage to block light from going therebetween when said table enters or is in said passage.
2. The mechanism of claim 11 in which said unidirectional drive motor has a motor shaft and is connected to said elevator shaft by;
an elevator drive wheel mounted for rotation on said motor shaft,
a drive bearing connected at a point on said elevator drive wheel,
a guide rail having a channel therein connected to said elevator shaft at an angle therewith, said bearing being positioned to ride back and forth in said channel and upon linear rotation of said elevator drive wheel to cause said elevator shaft to go up and down in nonlinear motion.
3. The mechanism of claim 2 in which said angle is a right angle and said nonlinear motion is sinusoidal.
4i. The mechanism of claim 2 in which photocell sensing means are positioned to cooperate with a portion of said guide rail to detect the upper and lower extremes of traverse of said elevator shaft and generate an elevator motor control signal.
5. The mechanism of claim 11 in which said rotating shutter mechanism includes;
a shutter wheel connected for rotation on a shutter drive shaft at the top of said passage,
a shutter drive wheel connected for rotation on said shutter drive shaft and containing two sets of teeth,
and in which said interlocking means includes;
a motor shaft on said motor, an elevator drive wheel connected for rotation on said motor shaft,
at least one drive mechanism extending from said elevator drive wheel followed during rotation of said elevator drive wheel by a slot in the circumference of said elevator drive wheel, said drive mechanism positioned to contact a tooth in one of said sets of teeth during rotation of said elevator drive wheel and cause said shutter drive wheel and shutter drive shaft to rotate by inserting a tooth from the: other of said sets of teeth into said slot to permit rotation of said shutter connecting wheel, said other set of teeth normally coacting against said elevator drive wheel to prevent said shutter drive wheel from rotating.
6. The mechanism of claim 5 in which said elevator drive wheel has two of said drive mechanisms, each formed by a pin extending from its circumference, each followed by one of said slots, for permitting rotation of said shutter twice during each revolution of said elevator drive wheel, said pins and slots being positioned at points on the circumference of said elevator drive wheel to rotate said shutter wheel, said shutter drive shaft and said shutter drive wheel after said table enters said passage from its lower end to open said shutter and before said table leaves said passage from its lower end to close said shutter.
7. The mechanism of claim ti in which said two sets of teeth each contain four teeth extending radially outward from said shutter drive wheel and located degrees apart around the circumference of said shutter drive wheel, said two sets of teeth being displaced 45 degrees around the circumference of said shutter drive wheel and axially along said shutter drive shaft, and
said shutter wheel having two holes therein located apart for indexing with said elevator passage to alternate ly open and close the top of said passage.
ti. The mechanism of claim l in which said light seal is biased against said table to withdraw with said table when it leaves the lower end of said passage, and
said light seal is biased against the lower end of said passage to extend from said elevator shaft overlapping the lower end of said passage to block light from going therebetween when said table enters or is in said passage.
9. In a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor, a rotating shutter mechanism including;
a shutter wheel connected for rotation on a shutter drive shaft at the top of said passage, l
a shutter drive wheel connected for rotation on said shutter drive shaft and containing two sets of teeth,
a unidirectional drive motor having a shaft,
an elevator drive wheel having a slot in the periphery thereof and a smooth surface over the remainder of the periphery connected for rotation on said motor shaft,
at least one drive mechanism extending from said elevator drive wheel followed during rotation of said elevator drive wheel by a slot in the circumference of said elevator drive wheel, said drive mechanism positioned to contact a tooth in one of said sets of teeth during rotation of said elevator drive wheel and cause said shutter drive wheel and shutter drive shaft to rotate by inserting a tooth from the other said sets of teeth into said slot to permit rotation of said shutter drive wheel, said other set of teeth normally coacting against said smooth surface of said elevator drive wheel to prevent said shutter drive wheel from rotating.
10. The mechanism of claim 9 in which said elevator drive wheel has two of said drive mechanisms, each formed by a pin extending from its circumference, each followed by one of said slots, for permitting rotation of said shutter twice during each revolution of said elevator drive wheel, said pins and slots being positioned at points on a circumference of said elevator drive wheel to rotate said shutter wheel, said shutter drive shaft and said shutter drive wheel after said table enters said passage from its lower end to open said shutter and before said table leaves said passage from its lower end to close said shutter. 1
11. The mechanism of claim 10 in which said two sets of teeth each contain four teeth extending radially outward from said shutter drive wheel and located 90 degrees apart around the circumference of said shutter drive wheel, said two sets of teeth being displaced 45 degrees around the circumference of said shutter drive wheel and axially along said shutter drive shaft, and
said shutter wheel having two holes therein located apart for indexing with said elevator passage to alternately open and close the top of said passage.
12. ln a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor;
a light seal,
means biasing said light seal against said table to withdraw it with said table when said table leaves the lower end of said passage, and
means biasing said light seal against the lower end of said passage to extend from said shaft overlapping the lower end of said passage to block light from going therebetween when said table is in said passage.
13. The mechanism of claim 12 in which said light seal is mounted in a cup having a hole larger than said shaft centrally located in its bottom through which said shaft moves,
said shaft is mounted for motion through an elevator guide bearing, and
a compression spring is connected between said cup and said elevator guide bearing to urge said seal against said table when said table is withdrawn from said passage and to urge said seal against the lower end of said passage, overlapping said passage, when said table is in said passage, said seal always fitting snugly to provide a light seal around said shaft.
14. An apparatus for scintillation counting and analogous purposes, comprising wall means defining a counting chamber and an elongated passage connecting said chamber with the exterior, said wall means having a shoulder portion between the counting chamber and the exterior, a sample platform moveable through a ortion of said passa e and into said counting chamber, a shaft coupled to said p atform for positioning said platform within said passage and said counting chamber, and a sleeve moveable about said shaft, said sleeve having light-sealing means for engaging said shoulder portion of said wall means.
' m3? WTED STATES PATENT @Fmm CERTWMATIE @F QRREGTKN Patent No 3,626 190 Damd December '7 1.971
1nvent0r(s) Raymond non It is certified that error appears "in the above -identified patent and. that said Letters Patent are here'by cnrrected as shown below:
Column 6, line 4% aftex "shutter" delete "cunnec'ting" and insert drive m Signed and sealed this 30th day 01 May @9720 QSEAL) Attes'tz EDWARD MQFLETGHER JR ROBERT GOI'TSGHALK 1 A'lstesting Officer Gemmissioner of Patents

Claims (14)

1. In a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor; a unidirectional drive motor connected to said elevator shaft to drive it in a nonlinear manner; a rotating shutter mechanism for opening and closing a shutter at the top of said passage, interlocking means connecting said shutter mechanism for intermittent actuation by said motor to only open said shutter when said table has entered said passage at its lower end and to always close said shutter before said table leaves said passage at its lower end, and a light seal cooperating with said shaft to withdraw with said table when it leaves the lower end of said passage and to extend from said shaft to a position overlapping the lower end of said passage to block light from going therebetween when said table enters or is in said passage.
2. The mechanism of claim 1 in which said unidirectional drive motor has a motor shaft and is connected to said elevator shaft by; an elevator drive wheel mounted for rotation on said motor shaft, a drive bearing connected at a point on said elevator drive wheel, a guide rail having a channel therein connected to said elevator shaft at an angle therewith, said bearing being positioned to ride back and forth in said channel and upon linear rotation of said elevator drive wheel to cause said elevator shaft to go up and down in nonlinear motion.
3. The mechanism of claim 2 in which said angle is a right angle and said nonlinear motion is sinusoidal.
4. The mechanism of claim 2 in which photocell sensing means are positioned to cooperate with a portion of said guide rail to detect the upper and lower extremes of traverse of said elevator shaft and generate an elevator motor control signal.
5. The mechanism of claim 1 in which said rotating shutter mechanism includes; a shutter wheel connected for rotation on a shutter drive shaft at the top of said passage, a shutter drive wheel connected for rotation on said shutter drive shaft and containing two sets of teeth, and in which said interlocking means includes; a motor shaft on said motor, an elevator drive wheel connected for rotation on said motor shaft, at least one drive mechanism extending from said elevator drive wheel followed during rotation of said elevator drive wheel by a slot in the circumference of said elevator drive wheel, said drive mechanism positioned to contact a tooth in one of said sets of teeth during rotation of said elevator drive wheel and cause said shutter drive wheel and shutter drive shaft to rotate by inserting a tooth from the other of said sets of teeth into said slot to permit rotation of said shutter drive wheel, said other set of teeth normally coacting against said elevator drive wheel to prevent said shutter drive wheel from rotating.
6. The mechanism of claim 5 in which said elevator drive wheel has two of said drive mechanisms, each formed by a pin extending from its circumference, each followed by one of said slots, for permitting rotation of said shutter twice during each revolution of said elevator drive wheel, said pins and slots being positioned at points on the circumference of said elevator drive wheel to rotate said shutter wheel, said shutter drive shaft and said shutter drive wheel after said table enters said passage from its lower end to open said shutter and before said table leaves said passage from its lower end to close said shutter.
7. The mechanism of claim 6 in which said two sets of teeth each contain four teeth extending radially outward from said shutter drive wheel and located 90 degrees apart around the circumference of said shutter drive wheel, said two sets of teeth being displaced 45 degrees around the circumference of said shutter drive wheel and axially along said shutter drive shaft, and said shutter wheel having two holes therein located 180* apart for indexing with said elevator passage to alternately open and close the top of said passage.
8. The mechanism of claim 1 in which said light seal is biased against said table to withdraw with said table when it leaves the lower end of said passage, and said light seal is biased against the lower end of said passage to extend from said elevator shaft overlapping the lower end of said passage to block light from going therebetween when said table enters or is in said passage.
9. In a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor, a rotating shutter mechanism including; a shutter wheel connected for rotation on a shutter drive shaft at the top of said passage, a shutter drive wheel connected for rotation on said shutter drive shaft and containing two sets of teeth, a unidirectional drive motor having a shaft, an elevator drive wheel having a slot in the periphery thereof and a smooth surface over the remainder of the periphery connected for rotation on said motor shaft, at least one drive mechanism extending from said elevator drive wheel followed during rotation of said elevator drive wheel by a slot in the circumference of said elevator drive wheel, said drive mechanism positioned to contact a tooth in one of said sets of teeth during rotation of said elevator drive wheel and cause said shutter drive wheel and shutter drive shaft to rotate by inserting a tooth from the other said sets of teeth into said slot to permit rotation of said shutter drive wheel, said other set of teeth normally coacting against said smooth surface of said elevator drive wheel to prevent said shutter drive wheel from rotating.
10. The mechanism of claim 9 in which said elevator drive wheel has two of said drive mechanisms, each formed by a pin extending from its circumference, each followed by one of said slots, for permitting rotation of said shutter twice during each revolution of said elevator drive wheel, said pins and slots being positioned at points on a circumference of said elevator drive wheel to rotate said shutter wheel, said shutter drive shaft and said shutter drive wheel after said table enters said passage from its lower end to open said shutter and before said table leaves said passage from its lower end to close said shutter.
11. The mechanism of claim 10 in which said two sets of teeth each contain four teeth extending radially outward from said shutteR drive wheel and located 90 degrees apart around the circumference of said shutter drive wheel, said two sets of teeth being displaced 45 degrees around the circumference of said shutter drive wheel and axially along said shutter drive shaft, and said shutter wheel having two holes therein located 180* apart for indexing with said elevator passage to alternately open and close the top of said passage.
12. In a sample changing elevator and light sealing mechanism having an elevator shaft and table for lowering samples from a sample conveyor through an elevator passage to a detection chamber and returning them to the conveyor; a light seal, means biasing said light seal against said table to withdraw it with said table when said table leaves the lower end of said passage, and means biasing said light seal against the lower end of said passage to extend from said shaft overlapping the lower end of said passage to block light from going therebetween when said table is in said passage.
13. The mechanism of claim 12 in which said light seal is mounted in a cup having a hole larger than said shaft centrally located in its bottom through which said shaft moves, said shaft is mounted for motion through an elevator guide bearing, and a compression spring is connected between said cup and said elevator guide bearing to urge said seal against said table when said table is withdrawn from said passage and to urge said seal against the lower end of said passage, overlapping said passage, when said table is in said passage, said seal always fitting snugly to provide a light seal around said shaft.
14. An apparatus for scintillation counting and analogous purposes, comprising wall means defining a counting chamber and an elongated passage connecting said chamber with the exterior, said wall means having a shoulder portion between the counting chamber and the exterior, a sample platform moveable through a portion of said passage and into said counting chamber, a shaft coupled to said platform for positioning said platform within said passage and said counting chamber, and a sleeve moveable about said shaft, said sleeve having light-sealing means for engaging said shoulder portion of said wall means.
US541654A 1966-04-11 1966-04-11 Sample changing elevator and light sealing mechanism for scintillation counting Expired - Lifetime US3626190A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54165466A 1966-04-11 1966-04-11

Publications (1)

Publication Number Publication Date
US3626190A true US3626190A (en) 1971-12-07

Family

ID=24160509

Family Applications (1)

Application Number Title Priority Date Filing Date
US541654A Expired - Lifetime US3626190A (en) 1966-04-11 1966-04-11 Sample changing elevator and light sealing mechanism for scintillation counting

Country Status (4)

Country Link
US (1) US3626190A (en)
JP (1) JPS5020469B1 (en)
DE (1) DE1589513A1 (en)
GB (1) GB1167204A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809897A (en) * 1967-03-29 1974-05-07 Intertechnique Sa Sample changing and light sealing device for liquid scintillation spectrometer
US3932752A (en) * 1974-02-19 1976-01-13 Beckman Instruments, Inc. Gamma counter shutter assembly
FR2503370A1 (en) * 1981-04-03 1982-10-08 Valpron Grpt Valorisa Produits Continuous sample analyser - employing chemiluminescence reagents injection and light emission measurement
EP0102433A1 (en) * 1982-09-03 1984-03-14 Biosys S.A. Device for the biochemical testing of a plurality of samples
US4472352A (en) * 1982-09-24 1984-09-18 Biosys S.A. Device for biochemical quantitative analysis of successive samples
US4634869A (en) * 1982-08-11 1987-01-06 Institut Molekulyarnoi Genetiki Akademii Nauk Sssr Liquid scintillation counter
US20020098117A1 (en) * 1998-05-01 2002-07-25 Gen-Probe Incorporated Incubator for use in an automated diagnostic analyzer
US20060204997A1 (en) * 2005-03-10 2006-09-14 Gen-Probe Incorporated Method for performing multi-formatted assays
US8192992B2 (en) 1998-05-01 2012-06-05 Gen-Probe Incorporated System and method for incubating the contents of a reaction receptacle
US8718948B2 (en) 2011-02-24 2014-05-06 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
US9046507B2 (en) 2010-07-29 2015-06-02 Gen-Probe Incorporated Method, system and apparatus for incorporating capacitive proximity sensing in an automated fluid transfer procedure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220855A (en) * 1978-09-28 1980-09-02 Packard Instrument Company, Inc. Scintillation counter with rotatable light seal
GB2127524B (en) * 1982-09-24 1986-04-16 Showa Mfg Hydraulic damper adjusted remotely by means of pin gearing
DE8230199U1 (en) * 1982-10-27 1983-03-24 Laboratorium Prof. Dr. Rudolf Berthold, 7547 Wildbad DARK-OUT MEASURING STATION OF A PHOTOMETER
DE3239866A1 (en) * 1982-10-27 1984-05-03 Laboratorium Prof. Dr. Rudolf Berthold, 7547 Wildbad DARK-OUT MEASURING STATION OF A PHOTOMETER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US422825A (en) * 1890-03-04 Shutter for photographic cameras
US3163756A (en) * 1962-04-03 1964-12-29 Nuclear Chicago Corp Sample-conveying and light-sealing mechanism for scintillation counting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US422825A (en) * 1890-03-04 Shutter for photographic cameras
US3163756A (en) * 1962-04-03 1964-12-29 Nuclear Chicago Corp Sample-conveying and light-sealing mechanism for scintillation counting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Solderholm, Lars G., Elevator and Index Mechanism Handle Samples in Radiation Detector, Design News, Aug. 4, 1961 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809897A (en) * 1967-03-29 1974-05-07 Intertechnique Sa Sample changing and light sealing device for liquid scintillation spectrometer
US3932752A (en) * 1974-02-19 1976-01-13 Beckman Instruments, Inc. Gamma counter shutter assembly
FR2503370A1 (en) * 1981-04-03 1982-10-08 Valpron Grpt Valorisa Produits Continuous sample analyser - employing chemiluminescence reagents injection and light emission measurement
US4634869A (en) * 1982-08-11 1987-01-06 Institut Molekulyarnoi Genetiki Akademii Nauk Sssr Liquid scintillation counter
EP0102433A1 (en) * 1982-09-03 1984-03-14 Biosys S.A. Device for the biochemical testing of a plurality of samples
US4472352A (en) * 1982-09-24 1984-09-18 Biosys S.A. Device for biochemical quantitative analysis of successive samples
US8569020B2 (en) 1998-05-01 2013-10-29 Gen-Probe Incorporated Method for simultaneously performing multiple amplification reactions
US8221682B2 (en) 1998-05-01 2012-07-17 Gen-Probe Incorporated System for incubating the contents of a reaction receptacle
US20050239127A1 (en) * 1998-05-01 2005-10-27 Gen-Probe Incorporated Automated process for isolating and amplifying a target nucleic acid sequence using a robotic pipettor
US20050266489A1 (en) * 1998-05-01 2005-12-01 Gen-Probe Incorporated Automated process for isolating and amplifying a target nucleic acid sequence using a rotatable transport mechanism
US9598723B2 (en) 1998-05-01 2017-03-21 Gen-Probe Incorporated Automated analyzer for performing a nucleic acid-based assay
US7267795B2 (en) 1998-05-01 2007-09-11 Gen-Probe Incorporated Incubator for use in an automated diagnostic analyzer
US7384600B2 (en) 1998-05-01 2008-06-10 Gen-Probe Incorporated Multiple ring assembly for providing specimen to reaction receptacles within an automated analyzer
US7396509B2 (en) * 1998-05-01 2008-07-08 Gen-Probe Incorporated Instrument for detecting light emitted by the contents of a reaction receptacle
US7482143B2 (en) 1998-05-01 2009-01-27 Gen-Probe Incorporated Automated process for detecting the presence of a target nucleic acid in a sample
US7524652B2 (en) 1998-05-01 2009-04-28 Gen-Probe Incorporated Automated process for detecting the presence of a target nucleic acid in a sample
US9150908B2 (en) 1998-05-01 2015-10-06 Gen-Probe Incorporated Method for detecting the presence of a nucleic acid in a sample
US7560255B2 (en) 1998-05-01 2009-07-14 Gen-Probe Incorporated Automated process for detecting the presence of a target nucleic acid in a sample
US7560256B2 (en) 1998-05-01 2009-07-14 Gen-Probe Incorporated Automated process for detecting the presence of a target nucleic acid in a sample
US7638337B2 (en) 1998-05-01 2009-12-29 Gen-Probe Incorporated System for agitating the fluid contents of a container
US7666602B2 (en) 1998-05-01 2010-02-23 Gen-Probe Incorporated Method for agitating the fluid contents of a container
US7666681B2 (en) 1998-05-01 2010-02-23 Gen-Probe Incorporated Method for agitating the fluid contents of a container
US8883455B2 (en) 1998-05-01 2014-11-11 Gen-Probe Incorporated Method for detecting the presence of a nucleic acid in a sample
US8709814B2 (en) 1998-05-01 2014-04-29 Gen-Probe Incorporated Method for incubating the contents of a receptacle
US8569019B2 (en) 1998-05-01 2013-10-29 Gen-Probe Incorporated Method for performing an assay with a nucleic acid present in a specimen
US20020098117A1 (en) * 1998-05-01 2002-07-25 Gen-Probe Incorporated Incubator for use in an automated diagnostic analyzer
US8012419B2 (en) 1998-05-01 2011-09-06 Gen-Probe Incorporated Temperature-controlled incubator having rotatable door
US8137620B2 (en) 1998-05-01 2012-03-20 Gen-Probe Incorporated Temperature-controlled incubator having an arcuate closure panel
US8192992B2 (en) 1998-05-01 2012-06-05 Gen-Probe Incorporated System and method for incubating the contents of a reaction receptacle
US20040115796A1 (en) * 1998-05-01 2004-06-17 Burns Ralph E. Instrument for detecting light emitted by the contents of a reaction receptacle
US8309358B2 (en) 1998-05-01 2012-11-13 Gen-Probe Incorporated Method for introducing a fluid into a reaction receptacle contained within a temperature-controlled environment
US8318500B2 (en) 1998-05-01 2012-11-27 Gen-Probe, Incorporated Method for agitating the contents of a reaction receptacle within a temperature-controlled environment
US8337753B2 (en) 1998-05-01 2012-12-25 Gen-Probe Incorporated Temperature-controlled incubator having a receptacle mixing mechanism
US8546110B2 (en) 1998-05-01 2013-10-01 Gen-Probe Incorporated Method for detecting the presence of a nucleic acid in a sample
US7794659B2 (en) 2005-03-10 2010-09-14 Gen-Probe Incorporated Signal measuring system having a movable signal measuring device
US8615368B2 (en) 2005-03-10 2013-12-24 Gen-Probe Incorporated Method for determining the amount of an analyte in a sample
US8501461B2 (en) 2005-03-10 2013-08-06 Gen-Probe Incorporated System for performing multi-formatted assays
US7964413B2 (en) 2005-03-10 2011-06-21 Gen-Probe Incorporated Method for continuous mode processing of multiple reaction receptacles in a real-time amplification assay
US10006862B2 (en) 2005-03-10 2018-06-26 Gen-Probe Incorporated Continuous process for performing multiple nucleic acid amplification assays
US8663922B2 (en) 2005-03-10 2014-03-04 Gen-Probe Incorporated Systems and methods for detecting multiple optical signals
US7897337B2 (en) 2005-03-10 2011-03-01 Gen-Probe Incorporated Method for performing multi-formatted assays
US7547516B2 (en) 2005-03-10 2009-06-16 Gen-Probe Incorporated Method for reducing the presence of amplification inhibitors in a reaction receptacle
US8008066B2 (en) 2005-03-10 2011-08-30 Gen-Probe Incorporated System for performing multi-formatted assays
US8349564B2 (en) 2005-03-10 2013-01-08 Gen-Probe Incorporated Method for continuous mode processing of the contents of multiple reaction receptacles in a real-time amplification assay
US9726607B2 (en) 2005-03-10 2017-08-08 Gen-Probe Incorporated Systems and methods for detecting multiple optical signals
US9372156B2 (en) 2005-03-10 2016-06-21 Gen-Probe Incorporated System for processing contents of a receptacle to detect an optical signal emitted by the contents
US20060204997A1 (en) * 2005-03-10 2006-09-14 Gen-Probe Incorporated Method for performing multi-formatted assays
US9046507B2 (en) 2010-07-29 2015-06-02 Gen-Probe Incorporated Method, system and apparatus for incorporating capacitive proximity sensing in an automated fluid transfer procedure
US8718948B2 (en) 2011-02-24 2014-05-06 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
US9915613B2 (en) 2011-02-24 2018-03-13 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
US10641707B2 (en) 2011-02-24 2020-05-05 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector

Also Published As

Publication number Publication date
DE1589513A1 (en) 1971-02-18
GB1167204A (en) 1969-10-15
JPS5020469B1 (en) 1975-07-15

Similar Documents

Publication Publication Date Title
US3626190A (en) Sample changing elevator and light sealing mechanism for scintillation counting
US3493749A (en) Counting statistics in radioactive sampling apparatus by sample rotation
US2788519A (en) Position indicating device
US3809897A (en) Sample changing and light sealing device for liquid scintillation spectrometer
US3663816A (en) Sample-conveying mechanism for scintillation counting
EP3314305B1 (en) Radon detector comprising multiple detector location areas
US3198948A (en) Apparatus for measuring activity levels of radioactive samples
US6360449B1 (en) Incremental encoder having absolute reference marks
US3500546A (en) Automatic container storage level container
US3163756A (en) Sample-conveying and light-sealing mechanism for scintillation counting
US3597596A (en) Analysis of large quantities of materials
US4220855A (en) Scintillation counter with rotatable light seal
US5074369A (en) Electronic weighing apparatus having protective cover means
US3604935A (en) Signalling member and method for programming automatic radioactivity-measuring system
US4574196A (en) Coil spring conveyor for positioning an external radioactive standard in a liquid scintillation counter
US5008533A (en) High speed fiber optic container inspection apparatus and method
US3937961A (en) Liquid scintillation systems and apparatus for measuring high-energy radiation emitted by samples in standard laboratory test tubes
US3089030A (en) Operation of pipelines
SU1166027A1 (en) Device for changing specimens in fluid scintillation counter
FI76646B (en) VAETSKESCINTILLATIONSRAEKNARE.
US3932752A (en) Gamma counter shutter assembly
US3415987A (en) Specimen changer for an x-ray fluorescence spectrometer
US3710120A (en) Manually operated sample changing elevator and light sealing mechanism for scintillation counters and the like
CN215905187U (en) Biological sample box access window door structure
US3388253A (en) Radioactive well logging system utilizing mechanically controlled pulsed neutron source