Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3626350 A
Publication typeGrant
Publication dateDec 7, 1971
Filing dateFeb 17, 1970
Priority dateFeb 20, 1969
Publication numberUS 3626350 A, US 3626350A, US-A-3626350, US3626350 A, US3626350A
InventorsShoichi Suzuki, Takatosi Okumura
Original AssigneeNippon Musical Instruments Mfg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Variable resistor device for electronic musical instruments capable of playing monophonic, chord and portamento performances with resilient contact strips
US 3626350 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [72] Inventors ShoichlSuzukl; [50] Field of Search 338/47, 92. Takatosi Oltumura, both 0! l-hmamatsu, 96, I99, 69 Japan [2| A l, NQ 11,983 [56] References Cited |22| Filed Feb. l7, I970 UNITED STATES PATENTS 1 1 lbw-7,1971 l,847,l 19 3/1932 Lertes 338/69 x 1 8 Pv Kabushiki Keisha 2,141,231 12/1938 Trautwein 338/69 x NRIZWHM, shilmka- 1,683,059 9/1928 Van Deventer 338/96 m-l n 2,430,989 11 1947 Miller.... 338/96 1 Pmmles 20, 1969 2,510,792 6/1950 Baker 338/96 J p [31] 45/12442; Primary Examiner-Lewis H. Myers Feb. 20 19 9 Japan No. 45 143 Feb. Assistant Examiner-Gerald P. Tol1n 20, 1969, Japan, No. 45/124313; Feb. 20, W- oulmlk 1969, Japan, No. 45/ 14388 ABSTRACT: A variable resistor utilized as a keyboard of an 54 VARIABLE s s o DEVICE FOR ELECTRONIC electronic musical instrument iS comprised of an elongated MUSICAL INSTRUMENTS CAPABLE OF PLAYING rectangular base member, a plurality of strip-shaped resistor MONOPHONIC, CHORD AND PORTAMENTO bodies formed on one surface of the base member, a resilient PERFORMANCES wn RESILIENT CONTACT pressure contact member covering resistor bodies and a plu- STR'PS rality of mutually spaced apart strips of metal mounted on the 7 Claims, 13 Drawing 18$ inner surface of the pressure contact member to confront the resistor bodies with a small gap therebetween. By continu- [52] US. Cl 338/69 ously varying the oint of contact between the resistor body 338/96 338/199 and the metal strip it is possible to produce monophonic chord [5 l Int. Cl H011: 9/02 and ponamemo signals and to vary the coloring and volume of i the musical tone signals. or each or combinations of them.

PATENTEDBEB mm .slszslsso SHEET 2 BF 2 VARIABLE FREQUENCY o g OSClLLATOR OUTPUT I 23b 230 1 9A 1 VARIABLE RESISTOR DEVICE FOR ELECTRONIC MUSICAL INSTRUMENTS CAPABLE OF PLAYING MONOPIIONIC, CHORD AND PORTAMENTO PERFORMANCES WITH RESILIENT CONTACT STRIPS BACKGROUND OF THE INVENTION This invention relates to a variable resistor for operating an electronic musical instrument which enables a player to operate the musical instrument in substantially the same manner as an ordinary electronic musical instrument provided with a keyboard and more particularly to a variable resistor which permits the player to produce a monophonic signal as well as chord signal of any tone pitch, or a portamento signal wherein the tone pitches of the monophonic and chord signals are continuously varied and to readily vary the pitch and the tone color of the musical tone signals or to perform such operations singly or in combination.

As a recent trend it is highly desirable for electronic musical instruments to be provided with an operating portion which can produce a variety of musics with as far as possible simple operation. However, HOwever, in the conventional keyboardoperation musical instrument although it is possible to produce a monophonic, chord or glissando signal of any tone pitch it is not possible to produce a portamento signal wherein the tone pitch is varied continuously. According to one operating portion of a prior art musical instrument capable of playing the portamento, for example, in the Ondes Martenot, a ribbon with rings for receiving fingers is passed in an endless form around a plurality of spaced-apart pulleys and the ribbon is moved toward right or left to continuously vary the capacitance values of variable capacitors so as to continuously vary the oscillation frequencies of a variable-frequency oscillator, thus continuously varying the tone pitch.

However, with the operating portion of the above-described construction playing of only portamento wherein the tone pitch is varied continuously is possible and it is not possible to play melodies wherein sounds of any tone pitch are varied discontinuously or stepwisely. Thus, said arrangement is cnstructed to play monophonic signals alone and is not suitable to play chord signals.

Another example of the operating portions for prior art musical instrument capable of playing portamento involves utilization of a normal close-type sliding resistor as an element for determining the oscillation frequency of a variablefrequency oscillator acting as a tone signal generator.

However, with such an operating portion utilizing a normal close type variable resistor, similar to above-described Ondes Martenot, although it is possible to play a portamento signal, it is difficult to play a melody signal. Moreover, it is difficult to start to play from any desired point unless the contact of the resistor has previously been set to a desired position. Thus, it is not possible to provide rapid and smooth play. Moreover, there is a problem that during play slide noises are introduced owing to the sliding contact of the variable resistor.

SUMMARY OF THE INVENTION Accordingly, it is the principal object of this invention to provide a novel variable-resistor for operating an electronic musical instrument having a simple normal open contact type construction and can be operated in substantially the same manner as a keyboard of a conventional keyboard-operated electronic musical instrument, said variable resistor being used as an element for determining the oscillation frequency of a variable-frequency oscillator acting as a tone signal generator, a variable tone coloring controller of a tone-coloring filter, or a variable volume controller for variably controlling the volume of the musical tone signal whereby to enable to play not only monophonic, chord and portamento signals but also to readily and smoothly vary the volume and/or coloring of the musical tone signals.

In accordance with this invention, there is provided a variable resistor for operating an electronic musical instrument comprising an elongated rectangular base member, a plurality of strip-shaped resistor bodies formed on one surface of the base member, a resilient pressure contact member covering the surface of the base member on which the resistor bodies are carried and a plurality of mutually spaced apart strips of conductive metal respectively confronting the resistor bodies with a small gap therebetween. Alternatively, each pair of a resistor body and a strip of metal may be enclosed by independent base member and pressure contact member. Thus, the resistor is of a normally open type wherein. only when a selected portion of the pressure contact member is depressed a selected portion of the metal strip is caused to contact the corresponding portion of the resistor body, thereby freely controlling each or combinations of the frequency of signals from said variable-frequency oscillator acting as a tone signal generator, the color of tone signals from a tone-coloring filter and the volume of the musical tone signals. As a result, an electrical musical instrument with a fingerboard comprised of the novel variable resistor can be operated with a single or plurality of fingers of one or both hands capable of starting from any desired point just in the same manner as the conventional keyboard electronic musical instrument. Moreover, portamento can be readily played by mere continuous movement of the finger along the fingerboard comprised of the novel resistor, it is not only possible to play monophonic music, chord, portamento signals but also to continuously and smoothly vary the coloring and volume of the musical tone signals.

The fingerboard comprised of the novel resistor may be combined with a conventional keyboard to increase the variety of the music.

BRIEF EXPLANATION OF THE DRAWINGS FIGS. 1 to 3 shown perspective views of different embodiments of the novel variable resistor;

FIG. 4 is a block diagram of operating units of an electronic musical instrument utilizing novel variable resistors as the frequency-determining elements of variable-frequency oscillators;

FIG. 5 shows a detailed circuit construction of one of the operating units shown in F [6.4;

FIG. 6 shows a modified circuit construction of one operating unit;

FIGS. 7 and 8 are diagrams to explain methods of playing an electronic musical instrument with operating units shown in FIG. 4;

FIG. 9 shows a diagram to show the application of the novel variable resistor as a tone-coloring filter;

FIG. 10 is a similar diagram to show the application of the novel variable resistor as a volume controller;

FIGS. 11 and 12 are plan views of two-stage and three-stage manuals, respectively incorporating the operating units shown in FIG. 4 as one of the stages; and

. FIG. 13 is a plan view of a modified keyboard arrangement.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. 1 of the accompanying drawings which shows a perspective view of one embodiment of this invention, there is shown a variable resistor 19A comprising an elongated rectangular base member 13A of an insulator such as wood, plastics or the like. On one wider surface 11 of the base member are provided a plurality of (for example four) equally spaced longitudinal grooves 121, 122, I23 and 124 having a depthof approximately 2 to 3 mm. to respectively receive elongated strip-shaped resistor bodies 141, I42, 143 and 144, each about 1 to 2 mm. thick. It is desirable that barriers I51, 152 and 153 provided between adjacent grooves 121 and 124 have a height lower than that of opposite sidewalls 161 and 162 by about 0.0l to l mm. in order to facilitate the depression operation to be described later. The upper surface of the base member 13A is covered by a channel-shaped cover or a pressure contact member 18A made of an insulator having sufi'icient resiliency and flexibility such as nylon and the like plastics. On the inner surface of the cover 18A there are provided 4 elongated strip-shaped conductive metal films 171, 172, 173 and 174 having substantially the same configuration as the resistor bodies 141 and 144. These metal films are vapor deposited or suitably bonded to the inner surface to oppose respective resistor bodies with a small spacing of about 1 to 2 mm. therebetween. Side flanges of the cover snugly fit against longitudinal side surfaces of the base member.

With this construction, respective metal films 171 to 174 are normally spaced apart a small distance from respective resistor bodies 141 to 144 on the base member 13A. When a point or points on the cover 18A corresponding to one or more resistor bodies 141 to 144 are depressed by a finger or fingers of right or left hand corresponding portion or portions of the metal film are caused to come into contact opposing resistor bodies whereby the resistor can be used as a normal open contact type variable resistor whose resistance value is varied only when the cover is depressed. By continuously moving the contact point to the right or left along the longitudinal length of the resistor bodies the resistance value of the resistor can be varied continuously and smoothly. Where suitably spaced apart taps (not shown) are provided along the length of respective resistor bodies the resistance value is varied discontinuously or stepwisely.

FIG. 2 is a perspective view of a modified embodiment of the novel variable resistor 1 98. While in the previous embodiment resistor bodies 141 to 144 are disposed in independent grooves 121 to 124 of base member 13A, in this modified embodiment, all resistor bodies 141 to 144 are disposed in a common wide groove or recess 12 formed in one surface 11 of base member 138. It will be clear that this modified variable resistor 198 can act substantially in the same manner as the variable resistor 19A of the previous embodiment. However, with this modification wherein all resistor bodies 141 to 144 are disposed in a common wide groove, upon depression of a selected portion of the cover 188 facing to a selected one of the resistor bodies, not only the selected portion of a selected resistor body but also other resistor bodies adjacent thereto are simultaneously contacted opposing conductive metal films 171 to 174. This problem can be alleviated by increasing the spacing between adjacent metal films.

FIG. 3 shows another modification of the novel variable resistor 19C comprising a base member 13C, a single resistor body 121 and a conductive metal film 171 attached on the inner surface of a cover 18C. Any desired number of such variable-resistor unit may be combined (parallel arranged) to form a variable resistor comparable with those shown in FIGS. 1 and 2. In this modification, the base member and cover may not necessarily be made of insulator but may be fabricated with a suitable resistance material and metal.

FIG. 4 is a block diagram of an operating portion of an electronic musical instrument utilizing variable resistors shown and described with reference to FIG. 1, 2 or 3 as the frequency-determining elements of variable-frequency oscillators serving as tone signal generators. Thus, four pressure contact units 21a, 21b, 21c and 21d of the variable resistor 19A each including an elongated resistor body and a metal film which is normally spaced apart therefrom a small distance are arranged in a juxtaposed relationship similar to a keyboard of a conventional electronic musical instrument and connected to function as the frequency or tone pitch determining elements of variable-frequency oscillators or tone signal generators 22a, 22b, 22c and 22d thus forming the first to fourth performing units 23a, 23b, 23c and 23d of the electronic musical instrument.

FIG. shows a detailed circuit construction of one (for example 23a) of performing units 23a to 23! showniin FIG. 4. The opposite ends of an elongated resistor body 141 of a pressure contact unit 21a are connected across positive and negative terminals 31p and 31n of a DC source 31. One end of an elongated metal film 171 is connected to input terminals of a pair of active circuit elements, for example, gate terminals G and G of a pair of field effect transistors FET and FET which are connected as shown to constitute portions of a pair of CR time constant circuits 321 and 322 acting as the frequency-detennining elements of a tone signal generator shown as an astable multivibrator including a pair of NPN- type transistors TR, and TR When utilized in the performing units of the electronic musical instrument thus far described, the novel variable resistor acts as a kind of variable DC voltage generator. Thus, whenever any selected portion of the metal film 171 is depressed into contact the corresponding portion of the resistor body 141 a desired DC voltage can be produced by varying the conductivity or equivalent internal resistance of field effect transistors PET and FET thus producing tone signals of any desired tone pitch.

FIG. 6 shows a modified circuit construction of a performing unit 231a utilizing the novel variable resistor. In this embodiment, the pressure contact unit 210 is connected, in the following manner, to a CR oscillation frequency-determining network of a wien bridge type variable-frequency oscillator 41, said network comprising a plurality of series circuits connected in parallel across positive and negative terminals 42p and 42n of a DC source, said series circuits including a plurality of series combinations of capacitors and resistors 431, 432 4311 and parallel cbmbinations of capacitors and resistors 441, 442 44n. More particularly, suitably spaced apart points along the length of the elongated resistor body 141 are connected to respective junctures of the series combinations 431 and 43n and parallel combinations 441 to 44!: of capacitors and resistors. Similar to the embodiment shown in FIG. 5 by depressing a selected portion of the metal film 171 into contact the corresponding portion of resistor body 141 a tone signal of any desired pitch can be produced.

An electronic musical instrument utilizing a plurality of juxtaposed performing units as shown in FIG. 5 or FIG. 6 can produce not only monophonic music, chords and portamentos but also a variety of musics. For example, the first to fourth performing units 230 to 23d are preset to produce tone signals of the pitch (frequency) ratio of 4:5:6z7. Then, as shown in FIG. 7, simultaneous playing of three performing units 23a, 23b and 23c by depressed means of a single finger 51 results in the production of tone signals of C, E and G for a major chord of C whereas simultaneous operation of all performing units 23a to 23d results in the production of tone signals of G, B, D and F for a 7th chord of 0,. Under these conditions, when the finger is moved upwardly or downwardly dispersed chord Alberti bass) signals of C, E, G and B may be obtained. Furthermore, as shown in FIG. 8, by the simultaneous operation of the first to the third performing units 23a, 23 b and 23c with three fingers 51a, 51b and 510 (only 51b is offset by a semitone leftward) tone signal of C, Eb, and G for a minor chord of Cm may be produced.

While in the foregoing embodiments all performing units 23a to 23d are associated with tone signal generators, when one or a plurality of units are used as a portion of a tone-coloring filter 61, as shown in FIG. 9 or as a portion of a volume controller 62 as shown in FIG. 10, in addition to the monophony, chord and portamento described above, it is possible to vary the color and/or volume of the musical tone signals. 3

Further, it will be clear to those skilled in the art that the depth and speed of vibrato modulation and tremolo modulation or buildup and attenuation characteristics of attack effect, percussion effect, sustain effect can be readily controlled.

While each one of the above-described performing units 2311 to 23d can be effectively used as the performing portion of an electronic musical instrument, by incorporating them into a conventional keyboard operated electrical musical instrument in the following manner it is possible to obtain a novel electronic musical instrument capable of producing a variety of musics.

FIG. 11 shows a plan view of two stage manuals. The upper keyboard 71 has a construction similar to that of a conventional musical instrument and includes a plurality of keys 711, 712 71n whereas the lower fingerboard comprises four performing units 23a to 23d which are disposed in parallel with the upper keyboard 71 so that they can be operated in the same manner as the upper keyboard. Each of the performing units comprises spaced-apart resistor body and a metal film as described above. I

F 1G. 12 shows a plan view of three-stage manuals wherein a fingerboard of perfonning units 23a to 23d is interposed between upper and lower keyboards 81 and 82 in the same manner as in FIG. 11.

Where it is difficult to dispose performing units 23a to 23d in parallel with another keyboard as shown in FIGS. 11 and 13, such performing units may be disposed at right angles to the keyboard 91 including a plurality of keys 911, 912 9ln, and on one end of the keyboard, as shown in FIG. 13.

With a musical instrument having a manual arrangement shown in FIG. 11, 12 or 13 the conventional keyboard may be operated by one hand to produce a melody signal and/or accompanying signal while the performing units 23a to 23d by the other hand to produce a variety of musics as above described.

What we claim is:

l. A variable resistor for controlling the operation of an electronic musical instrument in response to manual operation comprising an electrical insulating base member, a plurality of mutually insulated elongated, strip-shaped first electrical conductors carried by one surface of the base member, said first conductors having mutually parallel axes, a resilient pressure contact member spaced from and covering the first electrical conductors, a plurality of mutually insulated, elongated stripshaped second electrical conductors fixedly secured to and carried by a surface of the resilient contact member facing the first electrical conductors, said second conductors having mutually. parallel axes, the axis of each first conductor being aligned with the axis of a different one of each second conductor, said first and second plurality of conductors normally being spaced from each other whereby conductors of the first and second conductors are arranged in cooperating pairs adapted to engage each other in response to manual depression of a selected portion of the contact member, each of the conductors of one of said first or second plurality of conductors being a resistive body the resistance of which increases from one end of the strip to the other end of the strip, each of I Y the conductors of the other one of the plurality of conductors being a metal conductive strip having a resistance much less than the resistance of the resistive body. and means for preventing more than one cooperating pair of first and second conductors from contacting each other in response to a single manual depression of a portion of the resilient pressure contact member aligned with the cooperating pair, said contact member and each of the plurality of second conductors having sufficient resiliency to establish point contact between aligned regions of each cooperation pair substantially aligned with a manual depression point of the resilient pressure contact member.

2. The resistor of claim 1 wherein the means for preventing comprises ridges between adjacent ones of the first conductors, said ridges extending toward the resilient pressure contact member.

3. The variable resistor of claim 2 wherein the pressure contact member is formed as a channel having sidewalls fitted to corresponding sidewalls of thebase member.

4. The resistor of claim 1 wherein the means for preventing comprises ridges between adjacent ones of the first conduc tors, said ridges extending toward and into contact with the resilient pressure contact member.

5. The resistor of claim 1 wherein the means for preventing comprises ridges between adjacent ones of the first conductors, said ridges extending toward and terminating in spaced relationship with the resilient pressure contact member.

6. The resistor of claim 1 wherein the resistance of the resistive body varies continuously from one end of the strip to the other end of the strip.

7. The variable resistor of claim 1 wherein the pressure contact member is formed as a channel having sidewalls fitted to corresponding sidewalls of the base member.

* l t l

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1683059 *Nov 1, 1923Sep 4, 1928Dubilier Condenser CorpResistor
US1847119 *Nov 25, 1930Mar 1, 1932Bruno HelbergerElectrical musical instrument
US2141231 *Mar 28, 1936Dec 27, 1938Trautwein FriedrichElectrical musical instrument
US2430989 *Nov 8, 1944Nov 18, 1947Miller Raymond JMechanism for controlling welding current
US2510792 *Feb 4, 1949Jun 6, 1950Edward B JordanResistance switch
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3699492 *Nov 9, 1971Oct 17, 1972Nippon Musical Instruments MfgVariable resistance device for a portamento performance on an electronic musical instrument
US3769869 *Apr 24, 1972Nov 6, 1973Opsonar Organ CorpElectronic musical instrument keying assembly providing a minimum of electrical noise
US3776087 *Dec 7, 1971Dec 4, 1973Nippon Musical Instruments MfgElectronic musical instrument with variable impedance playboard providing portamento
US3828108 *Mar 22, 1972Aug 6, 1974F ThompsonBinary organ and coding system for operating same
US3895288 *Sep 4, 1973Jul 15, 1975Stephen H LampenTouch controlled voltage-divider device
US3897708 *May 23, 1974Aug 5, 1975Yoshiro SuzukiElectrically operated musical instrument
US3968467 *Nov 1, 1974Jul 6, 1976Stephen H. LampenTouch controlled voltage-divider device
US3997863 *Apr 3, 1975Dec 14, 1976Norlin Music, Inc.Helically wound pitch-determining element for electronic musical instrument
US4044642 *Oct 29, 1974Aug 30, 1977Arp Instruments, Inc.Touch sensitive polyphonic musical instrument
US4052923 *Jun 22, 1976Oct 11, 1977Cohn J MElectrical control devices
US4080519 *Aug 8, 1975Mar 21, 1978Michalson George MPressure-operated tape switches
US4108035 *Jun 6, 1977Aug 22, 1978Alonso Sydney AMusical note oscillator
US4182209 *Dec 29, 1976Jan 8, 1980Mitsubishi Denki Kabushiki KaishaWaveform generator
US4196650 *May 10, 1977Apr 8, 1980CMB Colonia Management- und Beratungsgesellschaft mbH. & Co., K.G.Combined electronic-pneumatic musical instrument
US4235141 *Sep 18, 1978Nov 25, 1980Eventoff Franklin NealElectronic apparatus
US4267586 *Feb 21, 1979May 12, 1981Citizen Watch Co., Ltd.Electrophonic musical instrument
US4268815 *Nov 26, 1979May 19, 1981Eventoff Franklin NealMulti-function touch switch apparatus
US4276538 *Jan 7, 1980Jun 30, 1981Franklin N. EventoffTouch switch keyboard apparatus
US4305321 *Oct 10, 1978Dec 15, 1981Cohn James MElectrical control devices
US4333068 *Jul 28, 1980Jun 1, 1982Sangamo Weston, Inc.Position transducer
US4410872 *Aug 27, 1980Oct 18, 1983Robert Bosch GmbhElectrical thick-film, free-standing, self-supporting structure, and method of its manufacture, particularly for sensors used with internal combustion engines
US4430918 *Feb 16, 1982Feb 14, 1984University Of PittsburghElectronic musical instrument
US4444998 *Oct 27, 1981Apr 24, 1984Spectra-Symbol CorporationTouch controlled membrane for multi axis voltage selection
US4494105 *Mar 26, 1982Jan 15, 1985Spectra-Symbol CorporationTouch-controlled circuit apparatus for voltage selection
US4535219 *Oct 12, 1982Aug 13, 1985Xerox CorporationInterfacial blister bonding for microinterconnections
US4644893 *Aug 6, 1984Feb 24, 1987International Hydraulic Systems, Inc.Position indicating apparatus for use in a boat leveling system
US4651123 *Aug 6, 1984Mar 17, 1987International Hydraulic Systems, IncLinear potentiometer
US4677419 *Feb 6, 1986Jun 30, 1987University Of PittsburghElectronic musical instrument
US4816200 *Aug 27, 1982Mar 28, 1989Robert Bosch GmbhMethod of making an electrical thick-film, free-standing, self-supporting structure, particularly for sensors used with internal combustion engines
US5005460 *Dec 22, 1988Apr 9, 1991Yamaha CorporationMusical tone control apparatus
US5033351 *Apr 14, 1989Jul 23, 1991Casio Computer Co., Ltd.Fingerboard and neck for electronic musical instrument
US5241126 *Jun 11, 1990Aug 31, 1993Yamaha CorporationElectronic musical instrument capable of simulating special performance effects
US5401898 *Dec 3, 1993Mar 28, 1995Yamaha CorporationElectronic musical instrument having multiple performance functions
US5448008 *Dec 5, 1994Sep 5, 1995Yamaha CorporationMusical-tone control apparatus with means for inputting a bowing velocity signal
US5872503 *Feb 11, 1997Feb 16, 1999Oerlikon Contraves AgScanning potentiometer, particularly for a rapid-orientation apparatus on an observation and/or artillery vehicle
US6703552Jul 19, 2001Mar 9, 2004Lippold HakenContinuous music keyboard
US7271331 *Jan 30, 2006Sep 18, 2007Eric LindemannMusical synthesizer with expressive portamento based on pitch wheel control
US7619156Oct 15, 2005Nov 17, 2009Lippold HakenPosition correction for an electronic musical instrument
US7902450 *Jan 13, 2007Mar 8, 2011Lippold HakenMethod and system for providing pressure-controlled transitions
DE3044384A1 *Nov 25, 1980Aug 27, 1981Franklin Neal EventoffDruckempfindliches elektronisches geraet
WO1980001762A1 *Feb 22, 1980Sep 4, 1980W PepperTouch panel system and method
Classifications
U.S. Classification338/69, 338/96, 338/99, 984/321, 84/DIG.800, 338/199, 84/DIG.700
International ClassificationG10H1/055, H03H7/24, H01C10/00
Cooperative ClassificationY10S84/07, H03H7/24, Y10S84/08, H01C10/00, G10H1/0558
European ClassificationH01C10/00, G10H1/055R, H03H7/24